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Abstract

Finding a maximum weight path in a directed or undirected graph is a basic combinatorial

and algorithmic problem. We consider this problem for tournaments in the well-studied random

weighted model. Denote by P(G,D) the probability space obtained by independently assigning

weights to the edges of a tournament G according to a nonnegative probability distribution D.

Denote by `(G,D) the expected weight of a path with maximum weight.

If D has finite mean µ, then `(G,D) ≥ µ(n − 1) is a trivial lower bound, with equality

if D is constant, as by Redei’s Theorem, every tournament has a Hamilton path. However,

already for very simple nontrivial distributions, it is challenging to determine `(G,D) even

asymptotically, and even if the tournament is small and fixed. We consider the two natural

distributions of the random weighted model, the continuous uniform distribution U [0, 1] and

the symmetric Bernoulli distribution U{0, 1}. Our first result is that for any tournament, both

`(G,U{0, 1}) and `(G,U [0, 1]) are larger than the above trivial 0.5(n − 1) lower bound in the

sense that 0.5 can be replaced by a larger constant. To this end we prove the existence of dense

partial squares of Hamilton paths in any tournament, a combinatorial result which seems of

independent interest. Regarding upper bounds, while for some tournaments one can prove that

both `(G,U{0, 1}) and `(G,U [0, 1]) are n− o(n), we prove that there are other tournaments for

which both `(G,U{0, 1}) and `(G,U [0, 1]) are significantly smaller. In particular, for every n,

the are n-vertex tournaments for which `(G,U{0, 1}) ≤ 0.614(n − 1). Finally, we state several

natural open problems arising in this setting.

1 Introduction

Finding the longest (simple) path in a weighted/unweighted graph/digraph is a central problem

in graph theory both in the extremal setting and the algorithmic setting. In particular, already

deciding if a given graph or digraph has a Hamilton path is an NP-Hard problem. In this paper we

look at this problem in the random-weighted model. In this model we assign weights to the edges

where the weights are i.i.d. random variables with a given distribution D. This is a well-studied

model that has been used by many researchers in various settings, see [3, 8]. We next mention a

few notable results in this area.

Walkup [16] proved that the expected value of a minimum weight perfect matching in a randomly

weighted complete bipartite graph is bounded by a constant. By “randomly weighted” one assumes
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that D = U [0, 1] is the uniform distribution in [0, 1]. Later, Aldous [1] proved that the expected

value converges to ζ(2) =
∑∞

k=1 k
−2 = π2/6, see also [17] and the references therein. Frieze [6]

determined the expected value of a minimum spanning tree of a randomly weighted complete graph

where D belongs to a large class of distributions. In particular, for D = U [0, 1] it turns out that

this value converges to ζ(3) =
∑∞

k=1 k
−3 ∼ 1.202. See also [5] for a sharpened result. In [12], Karp

considered the expected weight of a minimum length Hamilton cycle in the complete directed graph.

Frieze considered the same problem in the complete (undirected) graph [7]. Hassin and Zemel [10]

considered the case of weights of shortest paths in complete undirected or directed graphs where

here again D = U [0, 1]. They proved that the length of the longest shortest path is O(log n/n)

almost surely. Resolving a long-standing open problem, Peres et al. [13] designed a probabilistic

algorithm for the all-pairs shortest paths problem which runs in O(n2) expected time, in the case

of a randomly weighted complete directed graph and D = U [0, 1]. See their paper for many other

references to related results.

While in all of the results mentioned above one tries to minimize an objective function (be

it defined on a path, spanning tree, or Hamilton cycle), in our problem we try to maximize the

length of a path. It is straightforward to verify that if D = U [0, 1], then the expected length of a

longest path in the complete directed or undirected graph with n vertices is n− o(n). This is not

surprising as in both of these graphs, any permutation of vertices corresponds to a Hamilton path.

However, things become considerably more involved when one limits the set of possible Hamilton

paths. An interesting class of graphs for this problem is the class of all orientations of complete

graphs, namely the class of tournaments. In fact, as we show in this paper, tournaments form a

very rich class with respect to the longest path in the random weighted model. We next give the

formal definitions.

A tournament G = (V,E) is a digraph such that for every pair of distinct vertices u, v, the edge

set E contains exactly one edge with ends {u, v}. In other words, either (u, v) ∈ E or (v, u) ∈ E
is present, but not both. If G = (V,E) is a tournament, we say that X ⊆ V is transitive if the

sub-tournament G[X] induced on X has no directed cycle. We denote by Tn the (unique) transitive

tournament on n vertices. We shall usually denote the set of vertices by {1, . . . , n} and if the

tournament is transitive, we shall assume that (i, j) ∈ E whenever i < j. Denote by P(G,D) the

probability space obtained by independently assigning weights to the edges of G according to a

nonnegative probability distribution D. The weight of a path is the sum of the weights of its edges.

Denote by X(G,D) the random variable corresponding to the weight of a path with maximum

weight and let `(G,D) = E[X(G,D)] be the expectation of X(G,D). To avoid trivial cases we

assume that E[D] is finite, and so `(G,D) is well-defined. Let Dmax be the supremum of all values

attained by D. Thus, we have the following bounds:

(n− 1)E[D] ≤ `(G,D) ≤ (n− 1)Dmax .

The upper bound follows trivially from the fact that any path has at most n − 1 edges and the

lower bound follows from Redei’s Theorem [15] that every tournament has a Hamilton path, so by

linearity of expectation, the expected weight of a Hamilton path is (n− 1)E[D]. Notice that if D is
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constant, then the bounds are tight. As is common in the random weight model, we shall consider

the most natural distributions U [0, 1] (the continuous uniform distribution on the unit interval) and

U{0, 1}, the Bernoulli distribution with success probability 0.5. So the above inequalities translate

to
n− 1

2
≤ `(G,U [0, 1]), `(G,U{0, 1}) ≤ (n− 1) . (1)

It turns out that computing `(G,U [0, 1]) and `(G,U{0, 1}) is difficult already for small fixed tour-

naments, moreover determining such values asymptotically. As we shall see, distinct tournaments

with n vertices may exhibit very different values. Hence, we are interested in the extremal setting.

Let `(n,D) = min|G|=n `(G,D) and let `max(n,D) = max|G|=n `(G,D). It is not difficult to prove

that `max(n,U [0, 1]) and `max(n,U{0, 1}) get close to the upper bound in (1) as shown in the

following proposition.

Proposition 1.1

lim
n→∞

`max(n,U{0, 1})
n− 1

= lim
n→∞

`max(n,U [0, 1])

n− 1
= 1 .

It is more intriguing, however, to determine the behavior of `(n,U [0, 1]) and `(n,U [0, 1]). To this

end, define

β(D) = lim inf
n→∞

`(n,D)

n− 1
.

βtr(D) = lim
n→∞

`(Tn,D)

n− 1
.

By their definition and by (1) we have 0.5 ≤ β(U [0, 1]) ≤ βtr(U [0, 1]) ≤ 1 and similarly for U{0, 1}.
We can, however, significantly improve these bounds.

Theorem 1 For U [0, 1] we have:

85

168
≤ β(U [0, 1]) , 0.525 ≤ βtr(U [0, 1]) <

2

3
.

For U{0, 1} we have:

29

56
≤ β(U{0, 1}) , 0.595 ≤ βtr(U{0, 1}) ≤ 0.614 .

The proof of the lower bounds for β in both cases means that for every tournament we can signifi-

cantly improve upon the 0.5(n−1) lower bound of (1). To the proofs end, we establish an extremal

result concerning the existence of dense partial squares of Hamilton paths that exist in every tour-

nament. This result, which may be of independent interest, as well as the lower bound for β, are

established in Section 2. One may stipulate that βtr = β as it is plausible (but not obvious) that

transitive tournaments are the “worst” w.r.t. minimizing the expected maximum length. Thus, it

seems of interest to determine βtr. For the lower bound of βtr(U [0, 1]) and βtr(U{0, 1}), proved in

Section 3, we first compute precisely some exact values of `(Tn, U [0, 1]) and `(Tn, U{0, 1}). This

task turns out to be rather involved already for very small n. In Section 4 we prove the upper
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bound of βtr(U [0, 1]) and βtr(U{0, 1}) as well as an upper bound for a wider class of distributions.

To this end we use large deviation inequalities, the properties of the Irwin-Hall distribution, and

some recursive analysis. Notice in particular that our lower and upper bounds for βtr(U{0, 1}) are

very close. Proposition 1.1 is proved in Section 5. We end the paper by stating some conjectures

and open problems that arise naturally in our setting.

2 Partial squares of Hamilton paths and a lower bound for β

For an integer k ≥ 1, a k’th power of a Hamilton path is a Hamilton path ordered by v1, . . . , vn
where for all 1 ≤ i < j ≤ n with j ≤ i + k, (vi, vj) is an edge. In other words, every sequence of

k+ 1 consecutive vertices on the Hamilton path induces the transitive tournament Tk+1. The case

k = 2 is also called a square of a Hamilton path.

It has been proved by Bollobás and Häggkvist [4] that for every ε > 0 and k ∈ N, every

sufficiently large n-vertex tournament with minimum in-degree and minimum out-degree at least

n(14 + ε) has a k’th power of a Hamilton cycle (and hence a k’th power of a Hamilton path).

Unfortunately, however, while every tournament has a Hamilton path, it is no longer true that

every tournament (no matter how large) has a square of a Hamilton path, as shown by the following

construction. Suppose that 3 divides n and consider the tournament on vertex sets V1, . . . , Vn/3.

For all 1 ≤ i < j ≤ n/3, there is an edge from each vertex of Vi to each vertex of Vj . Furthermore,

each Vi consists of three vertices inducing a directed triangle. This tournament has n vertices,

and it is straightforward that in each Hamilton path, all vertices of Vi precede all vertices of Vj
whenever i < j. But for any such Hamilton path, the partial path on Vi “misses” an edge in the

square. Hence, altogether, at least n/3 edges are missed. If 3 does not divide n, then the last set

may have fewer than three vertices and bn/3c edges are missed.

Thus, the best we can ask for in general is a partial square of a Hamilton path, formally defined

as follows. An α-square of a Hamilton path is a Hamilton path such that at least an α fraction

of the consecutive sequences of three vertices on the path induce a T3. So, a 1-square is just a

(usual) square of a Hamilton path. The extremal function of interest here is to determine α∗, the

supremum over all α’s such that any sufficiently large tournament has an α-square of a Hamilton

path. The construction in the previous paragraph shows that α∗ ≤ 2/3. The next lemma supplies

a nontrivial lower bound for α∗. This lower bound will be useful in the rest of this paper.

A shortcut triple on a path is a set of three consecutive vertices on the path which induces a T3.

Lemma 2.1 Every tournament has a Hamilton path with at least n/7 − 1 pairwise edge-disjoint

shortcut triples.

Proof. Let t be the largest integer such that there is a path P with t vertices and with at least

t/3 shortcut triples. We will first prove that P (which is not necessarily a Hamilton path) has at

least n/7− 1 pairwise edge-disjoint shortcut triples. Let v1, v2, . . . , vt denote the vertices of P and

let W = V (G) \ {v1, . . . , vt} where G denotes the tournament. Consider any w ∈ W . We say that

w has type t if (vt, w) ∈ E(G). We say that w has type 0 if (w, v1) ∈ E(G). We say that w has type
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i if (vi, w) ∈ E(G) and (w, vi+1) ∈ E(G) for some i = 1, . . . , t − 1. Observe that each w ∈ E(G)

has at least one type out of the t+ 1 possible types.

If there are two vertices of type t we are done. Indeed, say these are w,w′ and suppose that

(w,w′) ∈ E(G). By defining vt+1 = w and vt+2 = w′ we increase the number of shortcut triples

by 1 and the number of vertices on P only by 2, contradicting the maximality of t. Similarly, if

there are two vertices of type 0 we are done. Say these are w,w′ and (w,w′) ∈ E(G). So defining

v−1 = w and v0 = w′ we increase the number of shortcut triples by 1 and the number of vertices

on P only by 2, again contradicting the maximality of t.

We may now assume that there is at most one vertex in W of type 0 and at most one vertex

in W of type t. Hence at least |W | − 2 vertices of W have types that are distributed over the t− 1

types 1, . . . , t− 1. Let Q be a maximum set of pairwise edge-disjoint shortcut triples on the path.

Trivially, |Q| ≤ (t − 1)/2 as the triples are pairwise edge-disjoint. By the definition of t we also

have |Q| ≥ t/3. Let X ⊂ {v1, . . . , vt−1} where vi ∈ X if (vi, vi+1) does not belong to a shortcut

triple of Q. Notice that |X| = t− 1− 2|Q|.
If some w ∈ W has type i where vi ∈ X we are done. Indeed, placing w between vi and

vi+1 increases the length of P by 1 and increases the number of shortcut triples by 1 since now

vi, w, vi+1 also form a shortcut triple. This contradicts the maximality of t. We may therefore

assume that there are |W | − 2 vertices of W distributed over t− 1− |X| = 2|Q| types, where these

types correspond to indices 1 ≤ i ≤ t−1 and vi /∈ X. Now, assume there are three vertices with the

same type i, say x, y, z, where, without loss of generality, (x, y) ∈ E(G) and (y, z) ∈ E(G). Then

we can extend P by adding x, y, z between vi and vi+1 so that the sub-path is now (vi, x, y, z, vi+1),

and we have formed two edge-disjoint shortcut triples vi, x, y and y, z, vi+1 whereas we have deleted

at most one shortcut triple of Q (the shortcut triple that contains the edge (vi, vi+1)). Notice that

we have added only three vertices and gained one shortcut triple, contradicting the maximality of

t.

So, there are at most two vertices with the same given type out of at most 2|Q| possible types,

and hence |W |−2 = n−2−t ≤ 4|Q| < 4(n/7−1) where the latter inequality assumes |Q| < n/7−1

as otherwise we are done. We therefore obtain that t > 3n/7 + 2 and thus t/3 > n/7 and we are

done.

The only remaining issue is that P is not necessarily a Hamilton path (namely, it may be that

t < n). Let W and Q be defined as above. If W = ∅ we are done since then P is a Hamilton path.

Otherwise, let w ∈ W and consider its type, as defined above. If w’s type is 0 we may extend the

path by adding w before v1, without decreasing the number of shortcut triples. If w’s type is t we

may extend the path by adding w after vt, without decreasing the number of shortcut triples. If w’s

type is i where 1 ≤ i ≤ t− 1, we may extend the path by adding w between vi and vi+1. We may

have destroyed at most one shortcut triple in Q (one that contains the edge (vi, vi+1)) but we have

introduced instead a new shortcut triple vi, w, vi+1 which is edge disjoint from all other remaining

shortcut triples in Q. Thus, we have not decreased the number of shortcut triples. Continuing in

this fashion, we extend P until it becomes a Hamilton path.

We note that the constant 1
7 in Lemma 2.1 can be slightly improved using a somewhat more
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involved proof. This is because we can start constructing P with a denser fraction of shortcut

triples using the fact that for any k, any sufficiently large tournament contains Tk, so we may pick

the vertices of such a Tk as vertices of the initial P and also continue to extend this P somewhat

using a slightly better than 1 : 3 ratio of vertices versus disjoint shortcut triples. However, as the

proof becomes more involved and the improvement will not be dramatic, we prefer the simpler

proof. Observe also that Lemma 2.1 guarantees a lower bound for the stronger property of having

pairwise edge-disjoint shortcut triples, while in the definition of α∗ the shortcut triples are not

required to be pairwise edge-disjoint. In any case, we have the following corollary.

Corollary 2.2
1

7
< α∗ ≤ 2

3
.

Corollary 2.3
85

168
≤ β(U [0, 1]) ,

29

56
≤ β(U{0, 1}) .

Proof. Let G be an arbitrary tournament with n vertices, and let P be a Hamilton path with

k pairwise edge-disjoint shortcut triples. By Lemma 2.1 we may assume that k ≥ n/7 − 1. Then

this path can be partitioned into n − 1 − k sub-paths, say P1, . . . , Pn−1−k where each Pi is either

a single edge (ui, vi) or a shortcut triple (ui, xi, vi). The last vertex of each Pi is the first vertex of

Pi+1, namely vi = ui+1, for i = 1, . . . , n − 2 − k. Now, clearly, `(G,D) is at least as large as the

expected weight of P . The latter, by linearity of expectation, is at least the sum of the expected

weights of the Pi. As there are n− 1− 2k of the Pi’s that are isomorphic to T2 and there are k of

the Pi’s that are isomorphic to T3 we have that

`(G,D) ≥ (n− 1− 2k)E[D] + k · `(T3,D) .

Consider first D = U [0, 1]. In this case, E[D] = 1
2 and, as shown in the next section, `(T3, U [0, 1]) =

25
24 . Using k ≥ n/7− 1 we obtain

`(G,U [0, 1]) ≥ n− 1− 2k

2
+

25k

24
≥ 85

168
(n− 1)− 1

28
.

By the definition of β(U [0, 1]) as a limit, it follows that β(U [0, 1]) ≥ 85
168 .

Consider next D = U{0, 1}. In this case, E[D] = 1
2 and, as shown in the next section,

`(T3, U{0, 1}) = 9
8 . Using k ≥ n/7− 1 we obtain

`(G,U{0, 1}) ≥ n− 1− 2k

2
+

9k

8
≥ 29

56
(n− 1)− 3

28
.

By the definition of β(U{0, 1}) as a limit, it follows that β(U{0, 1}) ≥ 29
56 .
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n 3 4 5 6 7 8

`(Tn, U{0, 1}) 9
8

111
64

2399
1024

96735
32768

7468479
2097152

1119481727
268435456

`(Tn,U{0,1})
n−1 ≥ 0.562 0.578 0.585 0.59 0.593 0.595

Table 1: Small values of `(Tn, U{0, 1}).

3 Lower bounds for transitive tournaments

Lemma 3.1 Let D be a nonnegative distribution with finite expectation. If k − 1 divides n − 1,

then `(Tn,D) ≥ n−1
k−1 `(Tk,D). In particular, regardless of divisibility,

`(Tn,D) ≥ (1− o(1))(n− 1)
`(Tk,D)

k − 1
.

Proof. Since D is nonnegative, there is a maximum weight path in Tn that starts at vertex 1 and

ends at vertex n. To see this, notice that any path that starts at vertex i and ends at vertex j can

be extended to a path from 1 to n by starting with a path from vertex 1 to i and ending with a

path from vertex j to n. The weight of the extended path is at least as large as the original one.

Now, suppose that k − 1 divides n − 1. Let Y be the random variable corresponding to the

maximum weight of all paths that go through all the vertices i(k−1)+1 for i = 0, . . . , (n−1)/(k−1).

By definition, Y ≤ X(Tn,D) and thus E[Y ] ≤ `(Tn,D). By linearity of expectation E[Y ] =
n−1
k−1 `(Tk,D).

Observe that Lemma 3.1 implies, in particular, that βtr(D) = limn→∞
`(Tn,D)
n−1 exists, justifying the

comment in the introduction.

We next establish `(Tn, U{0, 1}) and `(Tn, U [0, 1]) for some small values of n. Lemma 3.1 shows

that any such bound can be used as a lower bound for the corresponding βtr.

We start with the discrete case, as it is simpler and one can explicitly compute `(Tn, U{0, 1})
for some small n. For convenience, set Xn = X(Tn, U{0, 1}). We notice that Pr[Xn = n−1] = 21−n

as the only option to obtain the weight n − 1 is through the unique Hamilton path of Tn. Also,

Pr[Xn = 0] = 2−(n2) as for this to happen, all edges must receive weight 0. These observations

already give `(T3, U{0, 1}) = 9/8.

The case n = 4 is determined manually as follows. By the above, Pr[X4 = 0] = 1/64 and

Pr[X4 = 3] = 1/8. In order to have X4 = 2 exactly one of the following must occur:

(i) Precisely two of the edges of the Hamilton path have weight 1.

(ii) Edge (1, 2) is the only edge on the Hamilton path with weight 1 and (2, 4) also has weight 1.

(iii) Edge (3, 4) is the only edge on the Hamilton path with weight 1 and (1, 3) also has weight 1.

Hence Pr[X4 = 2] = 3/8+1/16+1/16 = 1/2. This leaves Pr[X4 = 1] = 23/64 hence `(T4, U{0, 1}) =

111/64 ∼ 1.734.

Larger exact values of `(Tn, U{0, 1}) are hard to compute manually, but can be easily evaluated

by a computer, by considering all possible {0, 1} weighings of Tn. This is feasible for all n ≤ 8

(where T8 has 228 weighings). The values are summarized in Table 1.
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The continuous case is harder already for very small n. Again, for convenience, set Xn =

X(Tn, U [0, 1]). We start by determining the distribution of X3.

Lemma 3.2 `(T3, U [0, 1]) = 25
24 .

Proof. Clearly, X3 = max{Y,Z3} where Y = Z1 + Z2 and Z1, Z2, Z3 are independent random

variables distributed uniformly in [0, 1]. The probability density function of Y is the result of an

easy convolution (for example, see [9], page 291) and is:

fY (t) =


t if 0 ≤ t ≤ 1

2− t if 1 ≤ t ≤ 2

0 otherwise.

Since

Pr[X3 ≤ α] = Pr[Y ≤ α] · Pr[Z3 ≤ α]

we have that for 0 ≤ α < 1,

Pr[X3 ≤ α] =

[∫ α

0
t dt

]
·
[∫ α

0
1 dt

]
=
α3

2

and for 1 ≤ α ≤ 2,

Pr[X3 ≤ α] =

[∫ 1

0
t dt+

∫ α

1
(2− t) dt

]
= 2α− 1− α2

2
.

Hence, the probability density function of X3 is:

fX3(t) =


1.5t2 if 0 < t < 1

2− t if 1 < t < 2

0 otherwise.

It follows that

`(T3, U [0, 1]) =

∫ 1

0
1.5t3 dt+

∫ 2

1
(2− t)t dt =

25

24
.

The case n = 4 is quite involved, as demonstrated in the proof of the following lemma.

Lemma 3.3 `(T4, U [0, 1]) = 7949
5040 .

Proof. Notice that X4 = max{Z1+Z2+Z3, Z1+Z4, Z3+Z5, Z6} where Z1, . . . , Z6 are independent

random variables distributed uniformly in [0, 1]. We first observe that the density of Z1 + Z2 + Z3

is the case n = 3 of the Irwin-Hall distribution (also known as the Uniform Sum distribution, see

[11]) and is:

fZ1+Z2+Z3(t) =



t2

2 if 0 ≤ t ≤ 1
1
2

(
−2t2 + 6t− 3

)
if 1 ≤ t ≤ 2

1
2

(
t2 − 6t+ 9

)
if 2 ≤ t ≤ 3

0 otherwise.

(2)
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1
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α-1

α-1

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Figure 1: Partitioning Z1 +Z3 into regions in the case 1 ≤ α ≤ 2. The aspect ratio in the figure is

for α = 1.5.

This covers the case 2 ≤ α ≤ 3 since in this case we have Pr[X4 ≤ α] = Pr[Z1 + Z2 + Z3 ≤ α]. We

next consider the case 1 ≤ α ≤ 2. It will be convenient to look at conditional probabilities given

Z1 and Z3. We partition into six regions, as depicted in Figure 1.

(i) If Z1 + Z3 ≥ α, then Pr[X4 ≤ α] = 0.

(ii) If Z1+Z3 ≤ α and Z1 ≥ α−1 and Z3 ≥ α−1, then Pr[X4 ≤ α] = (α−Z1)(α−Z3)(α−Z1−Z3).

(iii) If Z1 + Z3 ≤ α and Z1 ≥ α− 1 and Z3 ≤ α− 1, then Pr[X4 ≤ α] = (α− Z1)(α− Z1 − Z3).

(iv) If Z1 + Z3 ≤ α and Z1 ≤ α− 1 and Z3 ≥ α− 1, then Pr[X4 ≤ α] = (α− Z3)(α− Z1 − Z3).

(v) If Z1 + Z3 ≥ α− 1 and Z1 ≤ α− 1 and Z3 ≤ α− 1, then Pr[X4 ≤ α] = α− Z1 − Z3.

(vi) If Z1 + Z3 ≤ α− 1, then Pr[X4 ≤ α] = 1.

It follows that for 1 ≤ α ≤ 2,

Pr[X4 ≤ α] =

∫ 1

α−1

∫ α−t

α−1
(α− t)(α− s)(α− t− s) ds dt

+ 2

∫ α−1

0

∫ 1

α−1
(α− s)(α− t− s) ds dt

+

∫ α−1

0

∫ α−1

α−1−t
(α− t− s) ds dt

+

∫ α−1

0

∫ α−1−t

0
1 ds dt .
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Computing these integrals we obtain

Pr[X4 ≤ α] =
(2− α)3

120
(α2 + 6α+ 4)

+
1

6
(−α4 + 4α3 − 9α2 + 14α− 8)

+
1

6
(4− α)(α− 1)2

+
(α− 1)2

2

= − 1

120
(α5 + 20α4 − 80α3 + 40α2 + 20α− 12) . (3)

We last consider the case 0 ≤ α ≤ 1. Here, if Z1 +Z3 ≥ α, then surely Pr[X4 ≤ α] = 0. Otherwise,

Pr[X4 ≤ α] = Pr[Z6 ≤ α] ·
∫ α

0

∫ α−t

0
(α− t)(α− s)(α− t− s) ds dt

=
11α6

120
. (4)

Summarizing (2), (3), (4) we get that the probability density function of X4 is:

fX4(t) =



11t5

20 if 0 < t < 1

− 1
24(t4 + 16t3 − 48t2 + 16t+ 4) if 1 < t < 2

1
2

(
t2 − 6t+ 9

)
if 2 < t < 3

0 otherwise.

It follows that

`(T4, U [0, 1]) =

∫ 1

0

11t6

20
dt+

∫ 2

1

−t
24

(t4 + 16t3 − 48t2 + 16t+ 4) dt+

∫ 3

2

t

2

(
t2 − 6t+ 9

)
dt =

7949

5040
.

Determining `(T5, U [0, 1]) precisely seems far more complicated.

Problem 1 Determine `(T5, U [0, 1]) .

We can use Lemma 3.1 and the exact values of `(T8, U{0, 1}) and `(T4, U [0, 1]) that were de-

termined here and obtain:

Corollary 3.4

βtr(U{0, 1}) ≥
159925961

268435456
> 0.595 ,

βtr(U [0, 1]) ≥ 7949

15120
> 0.525 .

10



4 Upper bounds for transitive tournaments

4.1 An upper bound via a large deviation inequality

Throughout this subsection we shall assume that D is any distribution taking values only in [0, 1]

and with mean 1/2 (so in particular this is satisfied by U [0, 1] and U{0, 1}). For m = 1, . . . , n− 1,

let Pm,n be the set of paths of Tn starting at vertex 1 and ending at vertex n, and which contain

m edges. As a path in Pm,n corresponds to choosing m− 1 vertices out of the vertices 2, . . . , n− 1,

we have that |Pm,n| =
(
n−2
m−1

)
. We shall assume here that m goes to infinity and upper bound the

probability that a given path in Pm,n has a large weight. We will then use this upper bound to

give an upper bound for βtr(D).

Let X(Tn,m,D) be the random variable corresponding to the weight of a maximum weighted

path in Pm,n. Clearly,

X(Tn,D) =
n−1
max
m=1

X(Tn,m,D) .

In order to prove that `(Tn,D) ≤ 0.85(n− 1)(1 + o(1)), which in turn implies that βtr(D) ≤ 0.85,

it suffices to prove the following lemma.

Lemma 4.1 For all sufficiently large n we have that for all m = 1, . . . , n− 1.

Pr[X(Tn,m,D) > 0.85(n− 1)] <
1

n2
.

In particular, for all sufficiently large n, Pr[X(Tn,D) > 0.85(n − 1)] < 1
n and hence `(Tn,D) ≤

0.85(n− 1)(1 + o(1)).

Proof. We may assume that m ≥ 0.85(n− 1) as otherwise Pr[X(Tn,m,D) > 0.85(n− 1)] = 0. As

|Pm,n| =
(
n−2
m−1

)
, it suffices to prove that the probability that a given element of Pm,n has weight

larger than 0.85(n− 1) is less than n−2
(
n−2
m−1

)−1
.

Fix a path p of length m and let w(p) denote the random variable corresponding to its weight.

Observe that w(p) is the sum of m i.i.d. random variables each with distribution D and recall that

D has mean 0.5 and takes values only in [0, 1]. Hence, by a Chernoff large deviation inequality (see

[2] A.1.18),

Pr[w(p)− m

2
> αm] < exp(−2α2m) .

Let m = c(n− 1) where c ≥ 0.85. Hence (α+ 0.5)m = (α+ 0.5)c(n− 1) so by the last inequality,

Pr[w(p) > 0.85(n− 1)] < exp(−2c(
0.85

c
− 1

2
)2(n− 1)) .

It thus remains to prove that

exp(−2c(
0.85

c
− 1

2
)2(n− 1)) < n−2

(
n− 2

c(n− 1)− 1

)−1
.

Taking logarithms in both sides, this amounts to proving that for every 0.85 ≤ c ≤ 1,

2c(
0.85

c
− 1

2
)2 > −c ln c− (1− c) ln(1− c)

11



Figure 2: The function f(c) = 2c(0.85c −
1
2)2 + c ln c+ (1− c) ln(1− c)

which indeed holds as the function f(c) = 2c(0.85c −
1
2)2+c ln c+(1−c) ln(1−c) is positive in this range

(see Figure 2). Formally, f(0.85) is positive and its derivative is f ′(c) = 0.5+ln(c/(1−c))−1.445/c2

which proves that it is also monotone increasing for 0.85 ≤ c ≤ 1.

Corollary 4.2 Let D be any distribution with mean 1/2 taking values only in [0, 1]. Then βtr(D) ≤
0.85.

4.2 An upper bound for βtr(U [0, 1])

For the case of the distribution U [0, 1] we can do better than the general bound supplied by Corollary

4.2. An edge e = (i, j) ∈ E(Tn) is said to have width j−i. Notice that there are precisely n−k edges

with width k. Consider the probability space P(Tn, U [0, 1]) and let w(e) denote the weight of an

edge. We say that an edge e = (i, j) is a candidate if w(e) is the weight of a maximum weight path

of the sub-tournament induced by i, i+ 1, . . . , j. In particular, all edges of width 1 are candidates.

Let Y (Tn, U [0, 1]) be the random variable which is the sum of the weights of all candidate edges

and recall that X(Tn, U [0, 1]) is the random variable which is the weight of a maximum weighted

path. We claim that Y (Tn, U [0, 1]) ≥ X(Tn, U [0, 1]). Suppose not, and let p be a maximum weight

path. Then if p contains a non-candidate edge e = (i, j), then replacing e with a maximum weight

path in the sub-tournament i, i+ 1, . . . , j results in a path with larger weight, a contradiction. So,

all edges in p are candidates. Thus, the sum of weights of all candidates is at least as large as the

weight of p.

Now, since Y (Tn, U [0, 1]) ≥ X(Tn, U [0, 1]) then also E[Y (Tn, U [0, 1])] ≥ E[X(Tn, U [0, 1])] =

`(Tn, U [0, 1]). So, it suffices to upper bound E[Y (Tn, U [0, 1])].

Lemma 4.3 E[Y (Tn, U [0, 1])] < 2
3(n− 1). Consequently, βtr(U [0, 1]) ≤ 2

3 .

Proof. We start by estimating the probability that a given edge e = (i, i + k) is a candidate.

Clearly, if k = 1 then e is of width 1 so it is trivially a candidate, so assume k > 1. Consider the

12



following random variable:

Z(e) =

{
w(e) if

∑i+k−1
j=i w(j, j + 1) ≤ w(e)

0 otherwise.

Notice that if e is a candidate, then, in particular,
∑i+k−1

j=i w(j, j + 1) ≤ w(e) so its contribution to

the sum of weights of all candidates is w(e) = Z(e). If e is not a candidate, then its contribution to

the sum of weights of all candidates is 0 ≤ Z(e). So, in particular, if Y1 is the sum of the weights

of all edges with width 1, then

Y (Tn, U [0, 1]) ≤ Y1 +
∑

e∈E(T ) , width(e)≥2

Z(e) .

Notice that the distribution of
∑i+k−1

j=i w(j, j + 1) is the sum of k i.i.d. random variables with

distribution U [0, 1] so its distribution is the Irwin-Hall distribution with parameter k which, in

[0, 1], has probability density function xk−1/(k− 1)!. Also notice that w(e) has distribution U [0, 1]

and is independent of
∑i+k−1

j=i w(j, j + 1). Thus, the cumulative distribution function of Z(e) in

[0, 1] is

Pr[Z(e) ≤ z] =

∫ z

0

∫ t

0

xk−1

(k − 1)!
dx dt =

zk+1

(k + 1)!
.

Hence

E[Z(e)] =

∫ 1

0
z · z

k

k!
dz =

k + 1

(k + 2)!
.

Thus,

E[Y (Tn, U [0, 1])] = E[Y1] +
n−1∑
k=2

(n− k)
k + 1

(k + 2)!
<
n− 1

2
+

1

6
(n− 1) =

2

3
(n− 1) .

In the last inequality we have used the fact that Y1 is the sum of n− 1 i.i.d. variables with mean

0.5 each and that
∑∞

k=2
k+1

(k+2)! = 1
6 . Finally, we note that for k ≥ 3, E[Z(e)] is strictly larger than

the expected contribution of a candidate edge e = (i, i + k) with width k to Y (Tn, U [0, 1]) since

in the definition of Z(e) we only considered the Hamilton path from i to i + k while there can be

other paths that void the candidacy of e. This shows that, in fact βtr(U [0, 1]) < 2
3 .

4.3 An upper bound via recurrence

The discrete nature of the random variable X(Tn, U{0, 1}) makes it possible to obtain good esti-

mates for βtr(U{0, 1}) via recurrence.

Consider the set of n − 1 edges of the (unique) Hamilton path of Tn. For any assignment of

weights from {0, 1} to the edges of Tn, there always exists a maximum weight path that contains

all the edges of the Hamilton path that received weight 1. Indeed, take any maximum weight path

p and assume that (i, i+ 1) received weight 1 and (i, i+ 1) /∈ p. Then let j ≤ i be the largest index

such that j ∈ p, and let (j, j′) be the edge of p emanating from j. Notice that j′ ≥ i+ 1. Then we

13



k 3 4 5 6 7 8

c(k) 1
2

7
8

79
64

1663
1024

65535
32768

4986879
2097152

Table 2: Small values of c(k).

can replace (j, j′) with the sub-path j, j+ 1, . . . , j′ and the new path now contains (i, i+ 1) and its

weight has not decreased, so it is still a maximum weight path. Using this observation, we can now

state and prove our recurrence. We require some additional notation. Denote by c(k) the expected

weight of a random U{0, 1} assignment to the edges of Tk under the additional constraint that all

the edges of the Hamilton path of Tk receive weight 0. Let w(e) denote the weight of an edge.

Thus c(1) = c(2) = 0. Notice that c(3) = 1/2 since the maximum path weight of T3 is either 1 if

w(1, 3) = 1 or 0 is w(1, 3) = 0. Observe that such a weighing of T4 has maximum path weight at

most 1 and it is 0 if all three edges (1, 4), (1, 3), (2, 4) have weight 0. Thus, c(4) = 7/8. Some further

easily computed values are given in Table 2. To simplify notation denote `(n) = `(Tn, U{0, 1}).

Lemma 4.4 For any n > k ≥ 1 we have

`(n) ≤ `(n)

2k
+

k∑
t=1

1

2t
(1 + `(n− t) + c(t)) .

Proof. We will bound `(n) (which, recall, is the expected value of X(Tn, U{0, 1})) using conditional

expectations. Divide the probability space of the U{0, 1} assignment of Tn into the following k+ 1

events A0, A1, . . . , Ak. For 1 ≤ t ≤ k, event At is the event that edge (t, t + 1) received weight 1,

and all t − 1 edges preceding it on the Hamilton path of Tn received weight 0. Event A0 is the

event that all the first k edges on the Hamilton path received weight 0. Clearly, this partitions

the probability space, and Pr[At] = 2−t for t = 1, . . . , k, while Pr[A0] = 2−k. Using conditional

expectations we have

`(n) =
k∑
t=0

E[X(Tn, U{0, 1}) | At] · Pr[At] .

As for the first term corresponding to t = 0, we use the trivial upper bound E[X(Tn, U{0, 1}) | A0] ≤
E[X(Tn, U{0, 1})] = `(n) Since the occurrence of A0 only decreases the expected largest weight.

This corresponds to the first term of the recurrence in the statement of the lemma. As for a general

term corresponding to some 1 ≤ t ≤ k we proceed as follows. Suppose event At occurred. By the

observation preceding the lemma, we know that a maximum weight path can be obtained by taking

a maximum weight path on the vertices induced by 1, . . . , t, then concatenating it with the edge

(t, t + 1) that received weight 1 and then concatenating it with a maximum weight path on the

vertices induced by t+ 1, . . . , n. The latter of the three parts is just a weighing of Tn−t and hence

contributes in expectation a weight of `(n− t). The first of the three parts is a weighing of Tt but

under the additional constraint that the Hamilton path of this Tt has all its edges with weight 0,

as we assume the event At now holds. Thus, it contributes in expectation a weight of c(t). The

edge (t, t+ 1) contributes its unit weight. Hence,

E[X(Tn, U{0, 1}) | At] = c(t) + 1 + `(n− t) .
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This corresponds to a general term in the sum of the recurrence in the statement of the lemma.

Corollary 4.5 `(n) ≤ 0.614(n− 1) for all n ≥ 1.

Proof. Suppose `(n) ≤ α(n− 1) for all n ≥ 1. We prove that α ≤ 0.614. Notice that this clearly

holds for all n ≤ 8 by Table 1. Suppose we know that `(n) ≤ α(n − 1) for all n ≤ k. By Lemma

4.4 we know that

`(n)

(
1− 1

2k

)
≤

k∑
t=1

1

2t
(1 + `(n− t) + c(t)) .

So, to prove that `(n) ≤ α(n− 1) for all n > k using induction, we must prove that

k∑
t=1

1

2t
(1 + α(n− t− 1) + c(t)) ≤

(
1− 1

2k

)
α(n− 1) .

Rearranging the terms, the last inequality is equivalent to showing that

−α
(

1− 1

2k

)
+ α

k∑
t=1

t+ 1

2t
≥

k∑
t=1

1 + c(t)

2t

which simplifies to

α
2k+1 − k − 2

2k
≥

k∑
t=1

1 + c(t)

2t
.

Since we know c(k) for all k ≤ 8 using Table 2 we can use k = 8 in the last inequality and obtain

that α must satisfy

α
502

256
≥ 645396351

536870912
.

In particular α = 0.614 satisfies the last inequality.

By 2.3, 3.4, 4.3, 4.5, Theorem 1 is now established.

5 Proof of Proposition 1.1

In this section we assume that D is a nonnegative distribution with Pr[D ≥ 1 − o(1)] ≥ n−1/3.

Notice that U{0, 1} trivially satisfies this assumption and so does U [0, 1] since for X ∼ U [0, 1] we

have Pr[X ≥ 1− n−1/3] = n−1/3. We prove that `max(n,D) ≥ n− o(n) implying Proposition 1.1.

Lemma 5.1 `max(n,D) ≥ n− o(n).

Proof. Consider a random tournament G with n vertices and the probability space P(G,D).

By our assumption on D, there exists tn ≥ 1 − o(1) such that Pr[D ≥ tn] ≥ n−1/3. Let G′ be

the subgraph of G obtained by keeping only the edges that received weight at least tn. We will

prove that with high probability (i.e. with probability tending to 1 as n goes to infinity), G′ has a

Hamilton cycle and in particular, w.h.p., X(G,D) ≥ (n − 1)tn ≥ n − o(n). Thus, its expectation

`(G,D) also satisfies `(G,D) ≥ n− o(n). In particular, `max(n,D) ≥ n− o(n).
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Stated otherwise, we must show that if G′ is a random oriented graph where each edge appears

with probability n−1/3, and the direction of an edge is chosen uniformly from both possible direc-

tions, then w.h.p. G′ has a Hamilton cycle. One can observe that in the undirected case this occurs

already if the edge probability is Ω(log n/n) [14] (and in fact, it is possible to modify Pósa’s proof

using a slightly more complicated argument to handle the case of random orientations – however,

we settle here for n−1/3 as it makes the proof much simpler, and suffices for our purposes).

We will first prove that w.h.p. for every ordered sequence of vertices v1, . . . , vk with 3 ≤ k < n,

there exists a vertex u outside of the sequence such that (vi, u) ∈ E(G′) and also (u, vi+1) ∈ E(G′)

for some 1 ≤ i ≤ k − 1. For a given sequence S = v1, . . . , vk, a given 1 ≤ i ≤ k − 1 and a given

u /∈ S, let A(S, i, u) be the event that (vi, u) /∈ E(G′) or (u, vi+1) /∈ E(G′). Hence,

Pr[A(S, i, u)] = 1−

(
n−1/3

2

)2

= 1− 1

4n2/3
.

Let A(S, u) be the event ∩k−1i=1A(S, i, u). Since A(S, i, u) is independent of A(S, j, u) unless |j−i| ≤ 1,

we have that

Pr[A(S, u)] ≤
(

1− 1

4n2/3

)(k−1)/2
.

Let A(S) = ∩u/∈SA(S, u). As for u 6= u′ the events A(S, u) and A(S, u′) are independent we have

Pr[A(S)] ≤
(

1− 1

4n2/3

)(k−1)(n−k)/2
.

There are k!
(
n
k

)
sequences of length k, so taking the union of A(S) over all possible sequences we

obtain

Pr[∪SA(S)] ≤
n−1∑
k=3

(
n

k

)
k!

(
1− 1

4n2/3

)k(n−k)/2
� 1

n
.

We have thus proved that with probability at least 1− 1/n, for every ordered sequence of vertices

v1, . . . , vk with 3 ≤ k < n, there exists a vertex u outside of the sequence such that (vi, u) ∈ E(G′)

and also (u, vi+1) ∈ E(G′) for some 1 ≤ i ≤ k − 1. So, assuming this holds our Hamilton cycle

can be easily constructed as follows. Take an arbitrary directed cycle (trivially, the probability

that G′ is acyclic is extremely small). Suppose it is on the vertices v1, . . . , vk. If k = n we are

done. Otherwise, there exists a vertex u outside of the cycle such that (vi, u) ∈ E(G′) and also

(u, vi+1) ∈ E(G′). Place u between vi and vi+1 to obtain a larger cycle and continue accordingly

until a Hamilton cycle is formed.

6 Some open problems and conjectures

As mentioned in the introduction, it seems plausible that β = βtr (and hence that the limsup in

the definition of β is a limit).

16



Conjecture 1

β(U [0, 1]) = βtr(U [0, 1]) , β(U{0, 1}) = βtr(U{0, 1}) .

In fact, it is plausible that the conjecture holds for any nonnegative distribution with finite mean.

Notice that the upper bound of βtr(U{0, 1}) via recurrence is very close to the lower bound of

βtr(U{0, 1}). It is better than the more general upper bound given in Corollary 4.2 which applies

to any distribution D with mean 0.5 taking values only in [0, 1]. On the other hand, U{0, 1} is

easily shown to have the largest possible variance (1/4) among all such distributions D. Hence it

is plausible to conjecture that

Conjecture 2 Let D be an arbitrary distribution taking values only in 0, 1 and with mean 0.5.

Then,

βtr(D) ≤ βtr(U{0, 1}) .

Finally, obtaining exact formulas for `(Tk, U{0, 1}) and `(Tk, U [0, 1]) seems like a challenging open

problem already for small k.
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