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Abstract

The study of problems concerning subdivisions of graphs has a rich history in extremal combina-
torics. Confirming a conjecture of Burr and Erdős, Alon proved in 1994 that subdivided graphs have
linear Ramsey numbers. Later, Alon, Krivelevich and Sudakov showed that every n-vertex graph with
at least εn2 edges contains a 1-subdivision of the complete graph on cε

√
n vertices, resolving another

old conjecture of Erdős. In this paper we consider the directed analogue of these problems and show
that every tournament on at least (2 + o(1))k2 vertices contains the 1-subdivision of a transitive tour-
nament on k vertices. This is optimal up to a multiplicative factor of 4 and confirms a conjecture of
Girão, Popielarz and Snyder.
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1 Introduction

Given a graph G, a subdivision of G is a graph obtained by replacing its edges with internally vertex-
disjoint paths of arbitrary length. More specifically, the 1-subdivision of G is the subdivision in which the
length of these paths is 2. Problems concerning subdivisions of graphs have been extensively studied in
extremal combinatorics.

One of the central topics in discrete mathematics is the study of Ramsey numbers. The Ramsey
number, r(G), of a graph G is the smallest number N such that every 2-coloring of KN contains a
monochromatic copy of G. A well known conjecture of Erdős and Burr [5] was that subdivisions of graphs
in which each subdivision path is of length at least 2, have Ramsey number which is linear in the number
of vertices. Alon [1] resolved this in 1994, showing that every graph on n vertices in which no two vertices
of degree at least 3 are adjacent has Ramsey number at most 12n. Later, Alon, Krivelevich and Sudakov
[2] proved a stronger density-type result for cliques, showing that every n-vertex graph with at least εn2

edges contains the 1-subdivision of a complete graph on cε
√
n vertices. This proved an old conjecture of

Erdős [6].
In this paper, we study analogues of these problems in the framework of directed graphs. Notice that

in this context it is only sensible to consider embedding acyclic graphs in host digraphs, since in general
the host digraph might not contain a directed cycle. Therefore, we will only consider subdivisions of
the transitive tournament Tk on k vertices. Secondly, it is not possible to give a density-type statement
as it was done in the result of Alon, Krivelevich and Sudakov [2]. Indeed, note that an orientation of
the edges of the Turán graph T (n, k) with k parts in which the direction of an edge between two parts
conforms to a previously specified ordering of the parts, does not even contain a path of length k. Hence,
only in very dense host directed graphs can we hope to embed an arbitrary subdivision of Tk, let alone
the 1-subdivision (Scott [11], in fact, proved that one can find a non-specified subdivision of Tk inside of
every n-vertex digraph with more edges than T (n, k)). This naturally leads to the following Ramsey-type
question: How many vertices should a tournament have in order to contain the 1-subdivision of Tk?
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The oriented Ramsey number, −→r (H), of an oriented graph H is the smallest number N such that
every tournament on N vertices contains a copy of H. The study of oriented Ramsey numbers goes
back 60 years to the work of Stearns, and Erdős and Moser, who showed that −→r (Tk) is exponential in k
(see e.g., [7] and its references for the history of this subject and some more recent results). The above
question then asks for the oriented Ramsey number of the 1-subdivision of Tk. This problem was raised
by Girão, Popielarz and Snyder [8], who gave an upper bound of O(k2 log3 k). They also conjectured that
1-subdivisions of Tk actually have linear oriented Ramsey number. We prove this conjecture.

Theorem 1.1. Every tournament on 2k2(1 + o(1)) vertices contains the 1-subdivision of Tk.

The above result is optimal up to a factor of 4, since the 1-subdivision of Tk has at least (1 + o(1))k2/2
vertices. In the next section, we give some preliminaries and then prove the result in Section 3. We finish
with some brief concluding remarks.

2 Preliminary results and proof ideas

We mainly use standard terminology. For a directed graph G and a vertex v ∈ V (G), let N+(v) and
N−(v) denote the set of out-neighbors and the set of in-neighbors of v in G, respectively. The out-degree
of v is d+(v) = |N+(v)| and the in-degree of v is d−(v) = |N−(v)|. An edge from u to v in a directed graph
is denoted by (u, v) and an edge between u and v in an undirected graph is denoted by uv. Let Tk be the
transitive tournament on vertices {v1, . . . , vk} where (vi, vj) ∈ E(Tk) for 1 ≤ i < j ≤ k. Considering its
1-subdivision Hk, we call v1, . . . , vk the base vertices and for every 1 ≤ i < j ≤ k there is a unique vertex
wi,j such that (vi, wi,j) and (wi,j , vj) are the only edges incident with wi,j . We call wi,j the subdivision
vertex connecting vi to vj .

Given a pair of vertices in a tournament, it will be handy for us to quantify how well the pair is
connected by directed paths of length two. This is captured in the following definition.

Definition 2.1. For two vertices u, v of a directed graph, we define

c(u, v) = max{|N+(u) ∩N−(v)| , |N+(v) ∩N−(u)|} .

Observe that if u, v are vertices of a tournament and d+(u) ≥ d+(v), then clearly c(u, v) ≤ |N+(u) ∩
N−(v)|+ 1. The following simple lemma shows that for every vertex in a tournament there always exists
another vertex such that the pair they form is well connected in the sense of Definition 2.1.

Lemma 2.2. Let T be a tournament on n vertices. Then for every vertex u ∈ V (T ) there exists a vertex
v ∈ V (T ) such that c(u, v) ≥ (n− 3)/4.

Proof. Without loss of generality, assume that d+(u) ≥ (n − 1)/2. Let v be a vertex of minimum out-
degree in T [N+(u)], i.e. the subtournament of T induced by N+(u). Then v has out-degree at most
(d+(u)− 1)/2 in T [N+(u)]. Thus, |N+(u) ∩N−(v)| ≥ (d+(u)− 1)− (d+(u)− 1)/2 ≥ (n− 3)/4.

We now define, for a tournament T and each t ≥ 1, the undirected graph T≤t on the vertex set V (T ) to
consist of those edges uv such that c(u, v) ≤ t. The previous lemma trivially indicates that this graph
must be sparse.

Lemma 2.3. The maximum degree of T≤t is at most 4t + 2.

Proof. Consider a vertex v and let X be its set of neighbors in T≤t. Then we must have |X| ≤ 4t + 2
since otherwise the sub-tournament T [X ∪ {v}] has more than 4t + 3 vertices and thus by Lemma 2.2,
there exists a vertex u ∈ X such that c(u, v) > t, contradicting the definition of T≤t.
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Let us now outline the main ideas behind the proof of Theorem 1.1. Given a tournament T , we will
take a random subset A of vertices of T of expected size slightly larger than k. We then show that in fact
for every t ≤ |V (T )| we do not expect too many pairs (u, v) in A which have c(u, v) < t. This will allow
us, after removing some vertices from A, to embed Hk into T by using the remaining vertices A′ ⊆ A
as base vertices. We will employ a greedy embedding strategy by connecting the pairs in A′ one by one,
giving priority to the pairs which have fewer possible connections. The next simple lemma describes the
framework of our greedy embedding strategy, and is tailored for the use on the set A′ which we will be
able to find.

Lemma 2.4. Let T be a tournament and let A′ = {v1, . . . , vk} be a subset of its vertices such that we
can order all pairs e1, e2 . . . e(k2)

contained in A′, so that for every t ≤
(
k
2

)
for the pair et = (vi, vj) (where

i < j) it holds that |N+(vi) ∩N−(vj) \A′| ≥ t. Then T contains Hk.

Proof. We let A′ be the base set of the copy of Hk which we want to find, and we greedily find the
connections in V (T ) \ A′ for each pair of vertices following the order given in the statement, and noting
that by assumption there is at least one free vertex which we can use for the current pair.

3 Randomised embedding of Hk

Throughout the rest of this section we assume, whenever necessary, that k is sufficiently large. Let T be
tournament with K = 2(k2 + k1.9) vertices. The following lemma shows that T contains a set of vertices
which we will later use in order to apply Lemma 2.4 and complete the proof of Theorem 1.1.

Lemma 3.1. T contains a subset A of vertices such that the following hold:

(P1) |A| ≥ k + 2k0.8.

(P2) Let qt be the number of distinct pairs u, v in A for which c(u, v) < t. For all integers t with
k0.8 ≤ t ≤ K it holds that qt ≤ t− t

32k0.1
.

(P3) For all pairs of distinct vertices u, v ∈ V (T ) with |N+(u) ∩N−(v)| = t ≥ k0.7 it holds that

|N+(u) ∩N−(v) ∩A| ≤ t/(2k) + t3/4 − 1.

Proof. Select a random subset A ⊆ V (T ) where each v ∈ V (T ) is independently chosen with probability
p = 1

2(k+ 3
4
k0.9)

. For each of the three listed properties in the statement, we show that each individual one

holds with probability more than 2/3 for the randomly chosen set A, thus completing the proof of the
lemma.

Property (P1). Notice that |A| ∼ Bin(K, p) and so its expectation is Kp, which satisfies 2k ≥ Kp ≥
k + k0.9/8, and its variance is Kp(1− p) ≤ 2k. Thus, by Chebyshev’s inequality,

P
(
||A| −Kp| > k0.9

16

)
<

1

3
.

Hence the first property holds with probability more than 2/3.
Property (P2). Fix an integer t with with k0.8 ≤ t ≤ K. Notice that qt is the number of edges of

T≤t with both endpoints in A. Hence, qt =
∑

uv∈E(T≤t)
Xuv where Xuv is the indicator variable for the

event that both endpoints u, v are chosen to A. By the definition of A we have that Pr[Xuv = 1] = p2

and further, by Lemma 2.3, we know that |E(T≤t)| ≤ (2t + 1)K. Thus,

E[qt] ≤ (2t + 1)Kp2 = (2t + 1)
2(k2 + k1.9)

4(k + 3
4k

0.9)2
=

(
t +

1

2

)
k2 + k1.9

k2 + 3
2k

1.9 + 9
16k

1.8

≤
(
t +

1

2

)(
1−

1
2k

1.9

k2 + 3
2k

1.9

)
≤
(
t +

1

2

)(
1− 1

4k0.1

)
≤ t +

1

2
− t

4k0.1
≤ t− t

8k0.1
.
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We would now like to show that qt does not deviate much from its expected value, so we estimate its
variance. As the choice of each vertex to A is made independently, we have that Xuv is independent of Xu′v′

whenever uv and u′v′ are disjoint edges of T≤t. Thus, by Lemma 2.3, there are at most |E(T≤t)|(8t+2) ≤
(2t + 1)K(8t + 2) ordered pairs uv, u′v′ for which Xuv and Xu′v′ are not independent. As for each
non-independent pair we have Pr[Xuv = 1 ∧Xu′v′ = 1] = p3, we obtain that

Var[qt] ≤ E[qt] + (2t + 1)(8t + 2)Kp3 ≤ t + 17t2 · (3k2) · 1

8k3
≤ t +

7t2

k
. (1)

Consider first the case where t ≤ k/7, for which we have by (1) that Var[qt] ≤ 2k/7. By Chebyshev’s
inequality and by our estimate on the expectation of qt we then get

P
(
qt ≥ t− t

16k0.1

)
≤ P

(
qt − E[qt] ≥

t

16k0.1

)
≤ 2k/7

t2/256k0.2
= O

(
k1.2

t2

)
= O

(
1

k0.4

)
, (2)

where we are also using that t ≥ k0.8. Consider next the case where t ≥ k/7, for which we have by (1)
that Var[qt] ≤ 14t2/k. Now we have

P
(
qt ≥ t− t

16k0.1

)
≤ P

(
qt − E[qt] ≥

t

16k0.1

)
≤ 14t2/k

t2/256k0.2
= O

(
1

k0.8

)
. (3)

As the number of possible choices for t is Θ(k2), we cannot just use (2), (3) and the union bound to
guarantee that qt ≤ t − t

16k0.1
holds with high probability for all t. Instead, we proceed as follows. Let

S be the set of integers of the form ti = k0.8
(
1 + 1/32k0.1

)i
which are contained in [k0.8,K] - clearly,

|S| ≤ k0.2. We will prove that with probability larger than 2/3, we have qt ≤ t− t
16k0.1

for every t ∈ S. Once
we show that, we are done since for each t ∈ [k0,8,K], letting ti ∈ S be such that t ≤ ti ≤ t

(
1 + 1/32k0.1

)
,

we have

qt ≤ qti ≤ ti −
ti

16k0.1
≤ t +

t

32k0.1
− t

16k0.1
= t− t

32k0.1

establishing the lemma. Thus, it remains to apply (2), (3) and the union bound to the elements of
S. Indeed, this follows since S has size at most k0.2 and for each ti ∈ S, qti ≤ ti − ti

16k0.1
occurs with

probability O(1/k0.4). Hence, with probability larger than 2/3, qt ≤ t− t
16k0.1

for every t ∈ S.
Property (P3). Fix a pair of vertices u, v ∈ V (T ) for which |N+(u) ∩ N−(v)| = t ≥ k0.7. Then

Z = |N+(u) ∩N−(v) ∩A| ∼ Bin(t, p). By Chernoff’s inequality, it holds then that

Pr
[
Z − tp > t2/3

]
≤ e−

2t4/3

t <
1

15k4
.

Hence, the probability that |N+(u) ∩N−(v) ∩A| is larger than

tp + t2/3 ≤ t

2k
+ t2/3 ≤ t

2k
+ t3/4 − 1

is less than 1/(15k4). As there are at most K2 ≤ 5k4 choices for pairs u, v to consider, we obtain by the
union bound that (P3) holds with probability larger than 1− 5k4/(15k4) = 2/3.

The proof of Theorem 1.1 follows now from the following lemma.

Lemma 3.2. Let A be a subset of V (T ) for which (P1), (P2), (P3) hold. Then, there is a copy of Hk in
T whose base vertices are in A.

Proof. Let A∗ ⊆ A be those vertices u of A for which c(u, v) ≤ k0.8 for some v ∈ A. Since (P2) holds, we
have that |A∗| ≤ 2k0.8 as there are at most k0.8 (in fact, at most k0.8− k0.8/(32k0.1)) pairs u, v of distinct
vertices of A with c(u, v) ≤ k0.8. Moreover, since (P1) holds, we have that |A| ≥ k + 2k0.8 and so there
is a subset A′ ⊆ A \ A∗ with |A′| = k vertices. We will prove that there is an Hk copy in T whose set of
base vertices is A′.
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Consider an ordering A′ = {v1, . . . , vk} satisfying that d+(vi) ≥ d+(vj) for all 1 ≤ i < j ≤ k. Let also

S be a total ordering of the
(
k
2

)
pairs {vi, vj} with 1 ≤ i < j ≤ k where {vi, vj} precedes {vi′ , vj′} in S

implies that c(vi, vj) ≤ c(vi′ , vj′). Let us now show that A′ together with the ordering S of the pairs satisfy
the conditions of Lemma 2.4, i.e. that for the `-th pair {vi, vj} in S, it holds that |N+(vi)∩N−(vj)\A| ≥ `.
This would give the desired copy of Hk with base set A′, thus completing the proof.

Consider the `-th element of S, and suppose it is {vi, vj} where i < j. Now, suppose that c(vi, vj) = t.
First, observe that t ≥ k0.8 as we have already removed A∗. By the definition of S, we have that qt ≥ `.
But on the other hand, since (P2) holds, we must have qt ≤ t − t/(32k0.1). We therefore have that
` ≤ t− t/(32k0.1) which implies

c(u, v) = t ≥ ` +
`

32k0.1
.

Consider now the set N+(vi) ∩N−(vj) and let r := |N+(vi) ∩N−(vj)|. Since d+(vi) ≥ d+(vj), we have
that r ≥ c(vi, vj) − 1 = t − 1 ≥ k0.8 − 1 ≥ k0.7. Since (P3) holds, we have that |N+(u) ∩N−(v) ∩ A| ≤
r/(2k) + r3/4 − 1. We therefore have that

|(N+(u) ∩N−(v)) \A| ≥ r − (r/(2k) + r3/4 − 1) = r

(
1− 1

2k
− 1

r1/4

)
+ 1 ≥ t

(
1− 1

2k
− 1

k0.2

)
≥ t

(
1− 2

k0.2

)
≥
(
` +

`

32k0.1

)(
1− 2

k0.2

)
≥ ` .

This completes the proof.

4 Concluding remarks

In this paper we confirmed the conjecture of Girão, Snyder and Popielarz stating that the oriented
Ramsey number of the 1-subdivision of the transitive tournament is linear. In particular, we show that
the necessary size of a tournament which forces such a 1-subdivision is larger by at most a factor of 4+o(1)
than the trivial lower bound of

(
k
2

)
+k, which can be obtained by noting that this is precisely the number

vertices in the 1-subdivision. In turn, our proof cannot give a tight bound - this is because the bound on
c(u, v) in Lemma 2.2 is tight, i.e. there exist tournaments (namely, those which are doubly-regular, see
[4]) for which we know that c(u, v) = n−3

4 for every pair of vertices u, v. Therefore, if n < 2k2, we cannot

use Lemma 2.4 as an embedding strategy since for each n/4 ≤ t ≤
(
k
2

)
, there will not exist pairs u, v with

|N+(u) ∩ N−(v)| ≥ t. Despite this, it is natural to ask whether indeed a ’spanning’ behaviour for this
problem is true at least in an asymptotic form, i.e., if the oriented Ramsey number is k2/2 + o(k2).
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[5] S. A. Burr and P. Erdős. On the magnitude of generalized Ramsey numbers for graphs. In Infinite
and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. 1, 215–240.
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