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Abstract

Given positive integers h and k, denote by r(h, k) the smallest integer n such that in any

k-coloring of the edges of a tournament on more than n vertices there is a monochromatic copy

of every oriented tree on h vertices. We prove that r(h, k) = (h− 1)k for all k sufficiently large

(k = Θ(h log h) suffices). The bound (h − 1)k is tight. The related parameter r∗(h, k) where

some color contains all oriented trees is asymptotically determined. Values of r(h, 2) for some

small h are also established.

1 Introduction

An oriented graph is a digraph such that for every two distinct vertices u, v at most one of the

ordered pairs (u, v) or (v, u) is an edge. Stated otherwise, an oriented graph is obtained by assigning

a direction to each edge of an undirected graph. The undirected graph is also called the underlying

graph. A tournament is an oriented graph whose underlying graph is complete. An oriented tree is

an oriented graph whose underlying graph is a tree.

A seminal theorem, so called the Gallai-Roy Theorem asserts that any oriented graph has a

directed path whose order is at least as large as the chromatic number of its underlying graph. This

theorem was obtained independently by Gallai [7], Hasse [9], Roy [13], and Vitaver [14]. We note

that the Gallai-Roy Theorem generalizes Redei’s Theorem [12] that states that any tournament

has a Hamilton path.

By observing that in any edge coloring of a complete graph with more than
∏k

i=1(hi − 1)

vertices with k colors, there is a color i that induces a graph whose chromatic number is at least

hi, Gyárfás and Lehel [8], Bermond [2], and Chvátal [4] deduced that in any k-coloring of the edges

of a tournament on more than
∏k

i=1(hi − 1) vertices, there is a directed path of order hi, all of

whose edges are colored i. They also observed that there is a simple construction showing that

the bound
∏k

i=1(hi − 1) is tight. The diagonal case, where all hi are equal, is equivalently stated

as the following Ramsey-type parameter. Let Ph denote the directed path of order h. Given a

positive integer h, let r(Ph, k) be the smallest integer n such that in any k-coloring of the edges of

a tournament with more than n vertices, there is a monochromatic Ph. The aforementioned result

states that r(Ph, k) = (h− 1)k.

∗Department of Mathematics, University of Haifa, Haifa 31905, Israel. Email: raphy@math.haifa.ac.il. This

research was supported by the Israel Science Foundation (grant No. 1082/16).

1



A natural question which follows is the value of the corresponding Ramsey number of oriented

trees other than the directed path. In particular, what bound guarantees a monochromatic copy

of any oriented tree on h vertices? Already the case k = 1 is interesting, and, in fact, notoriously

difficult. A famous conjecture of Sumner from 1971 states that any tournament on 2h− 2 vertices

contains any oriented tree on h vertices (we always assume h ≥ 2 to avoid the trivial case). If

true, then this is best possible since a regular tournament on 2h− 3 vertices has all in-degrees and

out-degrees equal to h − 2. It therefore has no copy of Sh, the out-directed star on h vertices.

Sumner’s conjecture is still open, though it has recently been established for very large h by Kuhn,

Mycroft, and Osthus [11]. The best bound that applies to all h is 3h − 3 proved by El-Sahili [6]

based on a method of Havet and Thomassé [10].

Let r(h, k) be the smallest integer n such that in any k-coloring of the edges of a tournament

with more than n vertices, there is a monochromatic copy of every oriented tree on h vertices.

Determining r(h, 1) is thus equivalent to solving Sumner’s conjecture. The discussion in the previous

paragraphs implies, in particular, that r(h, k) ≥ (h− 1)k, that 3h− 4 ≥ r(h, 1) ≥ 2h− 3 and that

r(h, 1) = 2h− 3 for all h sufficiently large. Our first main result is the following.

Theorem 1 Let h ≥ 2 be a positive integer and let k be a positive integer satisfying (1 + 1/(h −
2))k > 2(h − 2)k + 1. Then, for every n > (h − 1)k, any edge coloring of an n-vertex tournament

with k colors contains a monochromatic copy of every oriented tree on h vertices. In particular,

r(h, k) = (h− 1)k.

The fact that Theorem 1 requires some lower bound on k in order for the value (h− 1)k to hold is,

of course, necessary as shown already for the case k = 1. It is thus of some interest to determine,

for a given h, the value f(h) which is the smallest k for which r(h, k) = (h− 1)k. Theorem 1 shows

that f(h) = O(h log h), but we cannot rule out that f(h) is bounded by a value independent of

h. Nevertheless, we certainly have f(h) ≥ 2 for all h ≥ 3 as demonstrated by the lower bound

in Sumner’s conjecture. Furthermore, Sumner’s conjecture is known to hold for some small h by

computer verification. As usual in Ramsey theory, when the number of colors increases, say even

k = 2 colors, it is not easy to determine r(h, 2) even for very small h. The fact that r(3, 2) = 5

and r(3, k) = 2k for all k ≥ 3 is a simple exercise. Hence f(3) = 3. Already determining the first

non-trivial case r(4, 2) turns out to be somewhat involved, as well as determining f(h) for h ≥ 4.

We show that:

Theorem 2 r(4, 2) = 12. Hence, f(4) ≥ 3. In fact, f(h) ≥ 3 for all h ≤ 6.

Notice that it is hopeless to use computer verification for r(4, 2) as one needs to check all 2-edge

colorings of all (non-isomorphic) tournaments on 13 vertices and it is known that there are more

than 245 such tournaments.

One may wonder whether Theorem 1 can be strengthened to show that there is some particular

color so that there is a monochromatic copy of every oriented tree with that color. Formally, let

r∗(h, k) be the smallest integer n such that in any k-coloring of the edges of a tournament with

more than n vertices, some color induces a subgraph that contains all oriented trees on h vertices.
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Clearly r∗(h, k) ≥ r(h, k). However, we show in proposition 3.1 that r∗(k, h) ≥ (2h−3)(h−1)k−1 so

Theorem 1 does not hold for this stronger parameter, and r∗(h, k) is truly separated from r(h, k).

Nevertheless, we can prove that the bound (h− 1)k is asymptotically correct in the sense that the

base h− 1 can be replaced with h− 1 + ε.

Theorem 3 For every ε > 0, an integer h ≥ 2 and a positive integer k satisfying (1+ε/(h−1))k >

2(h− 2)k + 1 we have r∗(h, k) ≤ (h− 1 + ε)k.

It is appropriate to mention here the conjecture of Burr [3] that any digraph whose chromatic

number is at least 2h−2 contains every oriented tree on h vertices. It has been proved by Addario-

Berry, Havet, Sales, Reed, and Thomassé [1] that chromatic number h2/2−h/2+1 suffices. Hence,

if Burr’s conjecture is true, then r∗(h, k) ≤ (2h−3)k is true for all h and k. The bound in Theorem

3 which applies to all k sufficiently large, is significantly stronger.

In the remainder of this paper we prove Theorem 1 in Section 2, the case of r∗(h, k), in particular

Theorem 3 and Proposition 3.1 are proved in Section 3, and Theorem 2 is proved in Section 4.

2 Proof of Theorem 1

Let H be an oriented tree on h vertices. We will prove a stronger version of Theorem 1 which is

based on some graph parameter of H, its strong radius, which is now defined. Let r be some vertex

of H and consider H rooted at r. Namely, the children of r are all the vertices of H that have an

edge in any direction connecting them to r (so r is their parent). Similarly, the children of any

other vertex u are all the vertices of H, excluding the parent of u, that are connected to u with

an edge in any direction. A leaf is a vertex with no children. We say that a vertex u is in level

k, if its parent is in level k − 1. The level of r is zero. We shall dispense labels to the vertices as

follows. The label of r is zero. Assume we have given labels to all vertices in level k and that the

maximum label used thus far is t. If all the edges connecting vertices in level k to vertices in level

k+ 1 are oriented in the same direction (either all from level k to level k+ 1 or all from level k+ 1

to level k), then all vertices in level k + 1 receive label t+ 1. Otherwise, all vertices in level k + 1

that point to their parents receive label t+ 1 and all vertices in level k + 1 that are pointed to by

their parents receive label t + 2. We let rad(r) denote the value of the largest label used. We let

rad(H), the strong radius of H denote the smallest value of rad(v) ranging over all vertices v of H.

Some observations follow. The only oriented trees with rad(H) = 1 are the out-directed star

and the in-directed star. For any other oriented star we have rad(H) = 2. The only oriented tree

with rad(H) = h−1 is the directed path on h vertices. Any other oriented tree has rad(H) ≤ h−2.

This is true since in any other oriented tree there is either a vertex with out-degree at least 2 or

a vertex with in-degree at least 2, so letting that vertex be a root, we save at least one label. An

anti-directed path (a path which has no directed sub-path of length 2) has rad(H) = bh/2c.

Theorem 4 Let H be an oriented tree with rad(H) = s. Let k be any integer satisfying (1+1/(h−
2))k > 2(h − 2)k + 1. Then, for every n ≥ (s + 1)k, any edge coloring of an n-vertex tournament

with k colors contains a monochromatic copy of H.
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Theorem 1 is a consequence of Theorem 4 and the Gallai-Roy Theorem. Indeed, if H is a directed

path, Theorem 1 is valid for H by the Gallai-Roy Theorem. Since rad(H) ≤ h−2 for any H which

is not a directed path, Theorem 1 is valid for H by Theorem 4.

Proof of Theorem 4. It suffices to prove the theorem for tournaments on n = (s+ 1)k vertices.

Fix some oriented tree H on h vertices and suppose that rad(H) = s ≤ h − 2 (we may assume

this since Theorem 4 trivially holds for the directed path which is the only oriented tree with

rad(H) = h− 1).

Let G = (V,E) be a tournament on n vertices whose edges have been colored by the colors

1, . . . , k. We denote the spanning oriented graph consisting of the edges colored i by Gi = (V,Ei).

Consider a vertex r ∈ V (H) with rad(r) = s. Fixing r, this defines children, parents, levels and

labels. Let the label of a vertex be denoted by `(v) and recall that 1 ≤ `(v) ≤ s for all v 6= r. Let

Ht = {v | `(v) = t}. So, V (H) = {r} ∪H1 ∪ · · · ∪Hs. We say that Ht is backward if all vertices

in Ht point to their parents. We say that Ht is forward if all vertices in Ht are pointed to by their

parents. By definition of the labels, each Ht is either forward or backward.

For each oriented graph Gi, we define disjoint sets of vertices of G, denoted by Vi,1, . . . , Vi,s
as follows. We start from s downwards, first defining Vi,s. If Hs is forward, then Vi,s are all the

vertices whose out-degree in Gi is at most h − 2. If Hs is backward, then Vi,s are all the vertices

whose in-degree in Gi is at most h− 2. Let Ui,s = V \ Vi,s. Let Gi,s = Gi[Ui,s] be the subgraph of

Gi induced by Ui,s. Assume that we have already defined Vi,t and Ui,t, we now define Vi,t−1 and

Ui,t−1 as follows. If Ht−1 is forward, then Vi,t−1 are all the vertices whose out-degree in Gi,t is at

most h− 2. If Ht−1 is backward, then Vi,t−1 are all the vertices whose in-degree in Gi,t is at most

h− 2. Let Ui,t−1 = Ui,t \ Vi,t−1. Let Gi,t−1 = Gi[Ui,t−1] be the subgraph of Gi induced by Ui,t−1.

Lemma 2.1 If Ui,1 6= ∅, then Gi contains a copy of H.

Proof. We embed a copy of H in Gi in s+ 1 steps starting from step 0 where in step t we embed

all the vertices of Ht (vertices having label t). We maintain the property that the copy of the

subgraph of H consisting of all vertices having label at most t is in Gi,t+1 (for completeness, define

Gi,s+1 = Gi). For v ∈ V (H), we denote by f(v) the vertex of Gi to which v was embedded.

Step 0 simply consists of embedding r to any vertex of Ui,1 (thus f(r) ∈ Ui,1). This is possible

since Ui,1 6= ∅. We describe Step 1. Now H1 is either forward or backward. Assume without loss

of generality that it is forward (namely all the vertices with label 1 are out-neighbors of r). By

construction, Ui,1 consists of all the vertices in Gi,2 having out-degree at least h− 1 in Gi,2. So, in

particular, f(r) has at least h−1 out-neighbors in Gi,2 so we pick q of them where q = |H1| ≤ h−1

and embed the vertices of H1 arbitrarily to them. Observe that all the images of the vertices having

labels 0 or 1 are in Gi,2 as required.

Assume we have already embedded all vertices with label at most t−1 and satisfy the property

that all their images are in Gi,t. We show how to embed the vertices with label t. Assume without

loss of generality that Ht is forward (namely all the vertices with label t are out-neighbors of

their parents). By construction, Ui,t consists of all the vertices in Gi,t+1 having out-degree at least

h − 1 in Gi,t+1. So, in particular, each parent of a vertex with label t, say v, has at least h − 1
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out-neighbors in Gi,t+1 so we pick as many out-neighbors of v as needed, not reusing previously

embedded vertices and make them the children of v with label t. (The reason we can pick the

required amount of vertices that have not yet been embedded is straightforward: Suppose we need

to pick q out-neighbors of v. This means that up until now, we have only embedded at most h−1−q
vertices not including v, as we did not yet embed any out-neighbors of v. So, out of the at least

h− 1 out-neighbors of v in Gi,t+1, there are at least h− 1− (h− 1− q) = q out-neighbors that have

not yet been embedded, so these can be picked.) Observe that all the images of the vertices having

labels at most t are in Gi,t+1 as required.

It remains to prove that for some color i we indeed have Ui,1 6= ∅. Recall that Vi,1, . . . , Vi,s are dis-

joint subsets of V (some of them may be empty) and that Ui,1 = V \(∪st=1Vi,t). So Ui,1, Vi,1, . . . , Vi,s
is a partition of V into s+1 vertex classes (some may be empty). Let Fi ⊂ Ei be the set of edges of

Gi where the endpoints of Fi are not in the same vertex class, except for the edges with both end-

points in Ui,1 which are retained in Fi. Let G∗i = (V, Fi) be the spanning subgraph of Gi consisting

of these edges.

Lemma 2.2 If χ(G∗i ) ≥ s+ 1, then Ui,1 6= ∅ .

Proof. If Ui,1 = ∅, then G∗i is an s-partite graph so in particular, has χ(G∗i ) ≤ s.
How many edges colored i are there with two endpoints in Vi,t ? We claim that there are no

more than (h− 2)|Vi,t| such edges. Indeed, otherwise, there would have been a vertex x inside Vi,t
with at least h− 1 out-neighbors in Vi,t and all edges having color i. But then this vertex x has, in

particular, out-degree at least h − 1 in Gi,t+1. Similarly, there would have been a vertex y inside

Vi,t with at least h− 1 in-neighbors in Vi,t and all edges having color i. But then this vertex y has,

in particular, in-degree at least h − 1 in Gi,t+1. But then by construction (depending on whether

Ht is forward or backward) one of x or y would not have been in Vi,t.

Since G∗i is obtained from Gi by removing only edges with both endpoints in the same Vi,t for

t = 1, . . . , s, we have by the previous paragraph that

|Fi| ≥ |Ei| − (h− 2)
s∑

t=1

|Vi,t| ≥ |Ei| − (h− 2)n .

Consider now the union of all of the G∗i , namely G∗ = (V,∪ki=1Fi). This is a graph on n vertices,

at least
(
n
2

)
− k(h − 2)n edges, and which decomposes into k spanning subgraphs G∗1, . . . , G

∗
k and

we wish to prove that one of these subgraphs has chromatic number at least s+ 1.

Assume otherwise, and fix an s-coloring of G∗i with color classes Xi,1, . . . , Xi,s for i = 1, . . . , k

(possibly some vertex classes are empty). So each v ∈ V is associated with a k-tuple where the i’th

coordinate equals j if v ∈ Xi,j . So there are n vertices associated with at most sk possible tuples.

We will prove that at least two vertices that are connected by an edge are associated with the same

tuple, a contradiction.

We wish to lower bound the number of pairs of vertices of V that share the same k-tuple. There

are sk tuples and n vertices, so the number of pairs sharing a tuple is at least

sk ·
n
sk
· ( n

sk
− 1)

2
=
n

2
· ( n
sk
− 1) .
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As the number of edges removed from Kn is only at most k(h− 2)n, we will arrive at the required

contradiction if we can show that

n

2
· ( n
sk
− 1) > k(h− 2)n .

Equivalently, we must prove that
n

sk
> 2k(h− 2) + 1 .

Equivalently, and using n = (s+ 1)k, it suffices to prove that(
1 +

1

s

)k

> 2k(h− 2) + 1

which indeed holds by the assumption in the statement of Theorem 4 since s ≤ h−2. This completes

the proof of Theorem 4.

3 Bounds for r∗(h, k)

We begin with the following proposition that provides a lower bound for r∗(h, k) showing that it is

larger than r(h, k).

Proposition 3.1 For all h ≥ 2 and for all k ≥ 1 there is a k-coloring of the edges of a tournament

on (2h− 3)(h− 1)k−1 vertices so that no colored subgraph contains all oriented trees on h vertices.

Proof. The construction is inductive by k. For the case k = 1 we take a regular tournament G1

on 2h − 3 vertices and color all its edges with color 1. Observe that G1 has no copy of Sh, the

out-directed star on h vertices, as the out-degree of each vertex is h− 2.

Now assume that k ≥ 2 and that we have already constructed a coloring of a tournament Gk−1
on (2h − 3)(h − 1)k−2 vertices using colors 1, . . . , k − 1. Take h − 1 vertex-disjoint copies of the

colored Gk−1, denoting them by X1, . . . , Xh−1. Now orient all edges between Xi and Xj from

Xi towards Xj whenever i < j and color each of these edges with the color k. This results in a

tournament on (2h− 3)(h− 1)k−1 vertices. Observe that any directed path all of whose edges use

color k contains at most one vertex from each Xi, and hence has at most h − 1 vertices. As this

holds in all steps of the induction, there is no monochromatic copy of Ph in the colors 2, . . . , k. In

fact, notice that in the final graph Gk, color 1 induces a subgraph with (h − 1)k−1 components,

each of which is a G1. So color 1 still does not contain a monochromatic copy of Sh. So there is no

color that contains all oriented trees on h vertices.

We now proceed to prove Theorem 3. The proof is similar to the proof of Theorem 4 except

that we will be using a universal labeling which applies to all oriented trees. We only outline the

differences between the two proofs.

Proof of Theorem 3. Consider the underlying undirected tree Hu of any oriented tree H with

h vertices. It is well-known that we can always root Hu in a vertex r such that the rooted tree

distance between v and any other vertex in Hu is at most bh/2c. Hence, the level of each vertex is
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an integer in 1, . . . , bh/2c. In fact, the only case where we need to use level h/2 is when h is even

and Hu is an oriented path.

We shall dispense labels to the vertices as follows. The label of r is zero. Assume we have given

a label to a parent and we now need to give a label to its child. If the edge in H points from the

child to the parent, we assign the child the first odd label larger than the parent’s label. If the

edge in H points from the parent to the child, we assign the child the first even label larger than

the parent’s label. Observe that it is possible for vertices with the same label to occur in different

levels. Notice that in this labeling, the largest label that is used is at most h− 1, since vertices in

level t never receive a label larger than 2t. There is one exception though, which is the case where

h is even and H is an oriented path, in which case there could be a single vertex v in level h/2 and

we might assign it the label h. Observe that this will happen only if there is a directed path in H

from the root r to v, of length h/2. Let r′ be the vertex immediately after r on this path. We can

re-root H at r′ and now r′ will receive label 0, r will receive label 1, v will receive label h− 2, and

any other vertex will receive label at most h− 1.

It suffices to prove the theorem for tournaments on n = (h − 1 + ε)k vertices. Let G = (V,E)

be a tournament on n vertices whose edges have been colored by the colors 1, . . . , k. We denote

the spanning oriented graph consisting of the edges colored i by Gi = (V,Ei).

Let H be any oriented tree on h vertices and consider a rooting with root r and labeling as

described above. As in the proof of Theorem 4 we define Ht = {v | `(v) = t}, this time for

t = 1, . . . , h− 1. So, V (H) = {r} ∪H1 ∪ · · · ∪Hh−1 and notice that it is possible that some Ht are

empty. We say that Ht is backward if t is odd and that Ht is forward if t is even.

For each oriented graph Gi, we define disjoint sets of vertices of G, denoted by Vi,1, . . . , Vi,h−1
as in the proof of Theorem 4 (so we use s = h − 1 in Theorem 4). Recall that this also defines

Gi,t = Gi[Ui,t] for t = 1, . . . , h−1. Notice the crucial fact that the Vi,t, Gi,t, Ui,t are now independent

of H (unlike in Theorem 4), because being backward or forward now only depends on parity.

As in Lemma 2.1, it suffices to prove that Ui,1 6= ∅ to obtain that Gi has a copy of H, and as

H is an arbitrary oriented tree, this applies to all H (the proof is identical).

As in Theorem 4, it remains to prove that for some color i we indeed have Ui,1 6= ∅. Using

the same notation, it remains to prove that χ(G∗i ) ≥ h for some i. We again have the inequality

|Fi| ≥ |Ei| − (h − 2)
∑h−1

t=1 |Vi,t| ≥ |Ei| − (h − 2)n. Consider now the union of all of the G∗i ,

namely G∗ = (V,∪ki=1Fi). This is a graph on n vertices, at least
(
n
2

)
− k(h− 2)n edges, and which

decomposes into k spanning subgraphs G∗1, . . . , G
∗
k and we wish to prove that one of these subgraphs

has chromatic number at least h.

Assume otherwise, and fix an (h − 1)-coloring of G∗i with color classes Xi,1, . . . , Xi,h−1 for

i = 1, . . . , k (possibly some vertex classes are empty). So each v ∈ V is associated with a k-tuple

where the i’th coordinate equals j if v ∈ Xi,j . So there are n vertices associated with at most

(h− 1)k possible tuples. We will prove that at least two vertices that are connected by an edge are

associated with the same tuple, a contradiction.
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As in Theorem 4, we lower bound the number of pairs of vertices of V that share the same

k-tuple. There are (h− 1)k tuples and n vertices, so the number of pairs sharing a tuple is at least

(h− 1)k ·
n

(h−1)k · (
n

(h−1)k − 1)

2
=
n

2
· ( n

(h− 1)k
− 1) .

As the number of edges removed from Kn is only at most k(h− 2)n, we will arrive at the required

contradiction if we can show that

n

(h− 1)k
> 2k(h− 2) + 1 .

Equivalently, and using n = (h− 1 + ε)k, it suffices to prove that(
1 +

ε

h− 1

)k

> 2k(h− 2) + 1

which indeed holds by the assumption in the theorem.

4 Two colors

In this section we prove Theorem 2. We first need the following lemma. Let Sa,i be the star on a

vertices where the root has out-degree i and in-degree a− 1− i.

Lemma 4.1 In any red-blue edge coloring of a tournament with more than 8a− 20 vertices there

is a copy of Sa,ba/2c. There exists a red-blue coloring of a tournament with 8a− 20 vertices with no

copy of Sa,ba/2c.

Proof. We start with the construction. We consider first the case where a is odd. Consider four

disjoint vertex classes A,B,C,D each with 2a−5 vertices. Each of them will induce a red-blue edge

colored tournament G′ on 2a − 5 vertices as follows. Since the complete graph on 2a − 5 vertices

decomposes into a− 3 Hamilton cycles, we can make each cycle into a directed one, and color half

of the cycles (that is, (a − 3)/2 cycles) red, and half blue. Hence, G′ has no monochromatic copy

of Sa,ba/2c. Now orient all edges from C to A, from D to B, and from D to A and make all of them

red. Orient all edges from A to B, from C to D, and from C to B and make all of them blue. We

thus have a coloring of a tournament on 8a− 20 vertices with no monochromatic Sa,ba/2c.

For the even case, we will use |A| = 2a − 5, |B| = 2a − 3, |C| = 2a − 7 and |D| = 2a − 5.

The tournament induced by A will consist of (a− 2)/2 red directed Hamilton cycles and (a− 4)/2

blue directed Hamilton cycles. The tournament induced by B will consist of (a− 2)/2 red directed

Hamilton cycles and (a − 2)/2 blue directed Hamilton cycles. The tournament induced by C will

consist of (a− 4)/2 red directed Hamilton cycles and (a− 4)/2 blue directed Hamilton cycles. The

tournament induced by D will consist of (a− 4)/2 red directed Hamilton cycles and (a− 2)/2 blue

directed Hamilton cycles. Now orient all edges from C to A, from D to B, and from D to A and

make all of them red. Orient all edges from A to B, from C to D, and from C to B and make all
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of them blue. We thus have a coloring of a tournament on 8a− 20 vertices with no monochromatic

Sa,a/2.

We next show that in any red-blue edge coloring of a tournament G on 8a− 19 vertices there is

a monochromatic Sa,ba/2c. We consider the case where a is even. The case where a is odd is similar

and a bit simpler. Let X ⊂ V (G) be the set of vertices with red in-degree at most (a− 4)/2. Let

Y ⊂ (V (G) \X) be the set of vertices with red out-degree at most (a− 2)/2. If X ∪ Y 6= V (G) we

are done as a vertex v /∈ X ∪Y has red in-degree at least (a− 2)/2 and red out-degree at least a/2,

so there is a red Sa,a/2. We are therefore left with the case |X| + |Y | = 8a − 19. We assume by

way of contradiction that G has no monochromatic Sa,ba/2c and show that this assumption implies

that |X|+ |Y | < 8a− 19, a contradiction.

Let G1 be the spanning subgraph on vertex set X induced by the blue edges. Let C ⊂ X be the

set of vertices whose in-degree in G1 is at most (a− 4)/2. Let D ⊂ (X \ C) be the set of vertices

whose out-degree in G1 is at most (a− 2)/2. If C ∪D 6= X we are done as a vertex x ∈ X where

x /∈ C ∪D has in-degree at least (a − 2)/2 in G1 and out-degree at least a/2 in G1, so there is a

blue Sa,a/2. So we may assume |C|+ |D| = |X|. By the definitions of X and C, the subtournament

of G induced by C has red in-degree at most (a− 4)/2 and blue in-degree at most (a− 4)/2, so any

vertex in this sub-tournament has in-degree at most a− 4. This implies that |C| ≤ 2a− 7. By the

definitions of X and D, the subtournament of G induced by D has red in-degree at most (a− 4)/2.

Hence it has at most |D|(a − 4)/2 red edges. It also has blue out-degree at most (a − 2)/2 so it

has at most |D|(a− 2)/2 blue edges. Altogether, it has at most |D|(a− 3) edges. This implies that

|D| ≤ 2a− 5.

Let G2 be the spanning subgraph on vertex set Y induced by the blue edges. Let A ⊂ Y be the

set of vertices whose in-degree in G2 is at most (a − 4)/2. Let B ⊂ (Y \ A) be the set of vertices

whose out-degree in G2 is at most (a − 2)/2. If A ∪ B 6= Y we are done as a vertex y ∈ Y where

y /∈ A∪B has in-degree at least (a−2)/2 in G2 and out-degree at least a/2 in G2, so there is a blue

Sa,a/2. So we may assume |A|+ |B| = |Y |. By the definitions of Y and A, the subtournament of G

induced by A has red out-degree at most (a − 2)/2. Hence it has at most |A|(a − 2)/2 red edges.

It also has blue in-degree at most (a− 4)/2 so it has at most |A|(a− 4)/2 blue edges. Altogether,

it has at most |A|(a − 3) edges. This implies that |A| ≤ 2a − 5. By the definitions of Y and B,

the subtournament of G induced by B has red out-degree at most (a − 2)/2 and blue out-degree

at most (a− 2)/2, so any vertex in this sub-tournament has out-degree at most a− 2. This implies

that |B| ≤ 2a− 3.

We have shown that |X|+ |Y | = |A|+ |B|+ |C|+ |D| ≤ (2a−5)+(2a−3)+(2a−7)+(2a−5) =

8a− 20 < 8a− 19, a contradiction.

Proof of Theorem 2. We start with the first part of the theorem, showing that r(4, 2) = 12. Let

H = {P4, Q1, Q2, Q3, S4,0, S4,1, S4,2, S4,3} denote the 8 distinct oriented trees on four vertices. Here

P4 is the path on four vertices, S4,i is the star on four vertices where the root has out-degree i and
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in-degree 3− i for i = 0, 1, 2, 3. Q1, Q2 and Q3 are the following oriented paths:

Q1 = (1→ 2← 3→ 4)

Q2 = (1→ 2→ 3← 4)

Q3 = (1← 2→ 3→ 4)

Lemma 4.1 gives, in particular, a construction of a tournament with 12 vertices and a red-blue

coloring of its edges with no monochromatic S4,2. Hence we have r(4, 2) ≥ 12.

We next prove that every red-blue edge coloring of any tournament G on 13 vertices has all

elements of H as monochromatic subgraphs. Let us first consider the easy cases. A monochromatic

P4 exists since 13 > (4− 1)2 = 9 (by the Gallai-Roy Theorem already every red-blue edge colored

10-vertex tournament contains a monochromatic P4). There is a vertex of G with out-degree at

least 6 hence there must be a monochromatic S4,3. Similarly, there is a vertex of G with in-degree

at least 6 hence there must be a monochromatic S4,0.

We next show that there is a monochromatic S4,2 (the proof for S4,1 is symmetric). This indeed

holds by Lemma 4.1 by using a = 4.

For the remaining graphs, Q1, Q2, Q3, we can use a more general result of El Sahili [5] which

states that any oriented graph whose underlying graph has chromatic number at least 4 contains

every path on four vertices. Since in any red-blue edge coloring of K13 (in fact, K10) one of the

colors induces a graph that has chromatic number at least 4, it also contains Q1, Q2, Q3 (and of

course P4). In our case we can use a simpler, more direct argument, as follows.

We show that there is a monochromatic Q1 (the anti-directed path). Assume without loss of

generality that at least half of the edges of a given red-blue edge coloring of G are blue. Let G1 be

the spanning subgraph on the blue edges. Consider a vertex u of G1 with maximum out-degree t.

Then we must have t ≥ 3 as the average out-degree in G1 is at least 3. If there are two out-neighbors

of u in G1, say, v, w where (v, w) is a blue edge, then the three edges (v, w), (u,w), (u, x) where x

is another out-neighbor of u in G1 form a blue copy of Q1. Otherwise, the out-neighborhood of u

in G1 induces a red sub-tournament. If t ≥ 4 then we have a red copy of Q1 since any tournament

on 4 vertices contains Q1. If t = 3, then all vertices of G1 have out-degree 3 and in-degree 3. In

this case the three edges (u, x), (u, v), (y, v) where y is an in-neighbor of v distinct from u and x

form a blue copy of Q1.

We show that there is a monochromatic copy of Q3. The proof for Q2 is symmetric. As in the

previous case we define G1, u, and t ≥ 3. If there are two out-neighbors of u in G1, say, v, w where

(v, w) is a blue edge, then the three edges (u, x), (u, v), (v, w) where x is another out-neighbor of

u in G1 form a blue copy of Q3. Otherwise, the out-neighborhood of u in G1 induces a red sub-

tournament. If t ≥ 4 then we have a red copy of H1 since any tournament on 4 vertices contains

Q3. If t = 3 then all vertices of G1 have out-degree 3 and in-degree 3. In this case the three edges

(u, x), (u, v), (v, y) where y is an out-neighbor of v distinct from u and x form a blue copy of Q3.

For the second part of the theorem, notice that Lemma 4.1 implies, in particular that r(h, 2) ≥
8h− 20. Since 8h− 20 > (h− 1)2 for h < 7, we have that f(h) ≥ 3 for all h ≤ 6.
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