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Abstract

A rainbow coloring of a graph is a coloring of the edges with distinct colors. We prove the

following extension of Wilson’s Theorem. For every integer k there exists an n0 = n0(k) so that

for all n > n0, if n mod k(k− 1) ∈ {1, k} then every properly edge-colored Kn contains
(
n
2

)
/
(
k
2

)
pairwise edge-disjoint rainbow copies of Kk.

Our proof uses, as a main ingredient, a double application of the probabilistic method.

1 Introduction

All graphs considered here are finite, undirected, and simple. For standard graph-theoretic termi-

nology the reader is referred to [2]. For an integer k ≥ 3, a Steiner system S(2, k, n) is a set X of

n points, and a collection of subsets of X of size k (called blocks), such that any two points of X

are in exactly one of the blocks. We say that the complete graph Kn has a Kk-decomposition if Kn

contains
(n
2

)
/
(k
2

)
pairwise edge-disjoint copies of Kk. Clearly, an S(2, k, n) exists if and only if Kn

has a Kk-decomposition. More generally, for a given graph H we say that Kn is H-decomposable

if Kn contains
(n
2

)
/e(H) edge-disjoint copies of H.

For a graph H, let gcd(H) denote the largest integer that divides the degree of each vertex of

H. Two obvious necessary conditions for the existence of an H-decomposition of Kn are that e(H)

divides
(n
2

)
and that gcd(H) divides n− 1 (notice that n− 1 = gcd(Kn)). These trivial divisibility

conditions are not always sufficient. For example K4 does not have a K1,3-decomposition. However,

a seminal result of Wilson [10] show that, for all n sufficiently large, the two divisibility conditions

suffice.
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Theorem 1.1 [Wilson [10]] For every fixed graph H there exists n0 = n0(H) so that if n > n0,

e(H) |
(n
2

)
, and gcd(H) | n− 1 then Kn has an H-decomposition.

We note that if H = Kk the divisibility conditions translate to n mod k(k − 1) ∈ {1, k}. The case

k = 3 (i.e. the existence of a Steiner triple system) is an old result. Such a system exists if and

only if n mod 6 ∈ {1, 3} [9]. The case k = 4 is also known to exist if and only if n mod 12 ∈ {1, 4}
[3].

Recently there have been a rise of interest in extremal rainbow-type problems. A rainbow coloring

of a graph is a coloring of the edges with distinct colors. An edge coloring of a graph is called proper

if two edges sharing an endpoint receive distinct colors. Vizing’s theorem asserts that there exists

a proper edge coloring of a graph G which uses at most ∆(G)+1 colors. In extremal graph theory,

one is interested in establishing conditions on a graph G that guarantee the existence of a (possibly

induced) set of subgraphs of a specific type (Ramsey and Turán type problems are central problems

of this type). In rainbow-type problems one is interested in establishing conditions on a properly

edge-colored graph G that guarantee the existence of a (possibly induced) set of rainbow subgraphs

of a specific type. Many graph theoretic parameters have corresponding rainbow variants. Erdős

and Rado [6] were among the first to consider problems of this type. Jamison, Jiang and Ling

[7], and Chen, Schelp and Wei [4] considered Ramsey type variants where an arbitrary number of

colors can be used. Alon et al. [1] studied the function f(H) which is the minimum integer n such

that any proper edge coloring of Kn has a rainbow copy of H. Keevash et al. [8] considered the

rainbow Turán number ex∗(n, H) which is the largest integer m such that there exists a properly

edge-colored graph with n vertices and m edges and which has no rainbow copy of H. Yuster [12]

gave necessary and sufficient conditions for the existence of rainbow H-factors.

Is Theorem 1.1 still true in the rainbow setting? The main result of this paper shows that,

indeed, this is the case.

Theorem 1.2 For every fixed graph H there exists n1 = n1(H) so that if n > n1, e(H) |
(n
2

)
, and

gcd(H) | n− 1 then a properly edge-colored Kn has an H-decomposition so that each copy of H in

the decomposition is rainbow colored.

We note that the case H = K3 is trivial since every properly edge-colored triangle is also rainbow

colored. However, already for K4, the analogue of Brouwer’s result [3] trivially does not hold, as

a properly edge-colored K4 need not be rainbow colored. The proof of Theorem 1.2 appears in

Section 3 and is based upon a double application of the probabilistic method. A few lemmas that

are needed for the proof of Theorem 1.2 follow in the next section. The final section contains some

concluding remarks and open problems.
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2 Preliminary lemmas

Let F be a family of positive integers. We say that Kn is F -decomposable if we can color the edges

of Kn such that each color class induces a complete graph whose order belongs to F .

Let H be a fixed graph, and let t be a positive integer. We say that a finite set of positive

integers F is an (H, t)-complete decomposition set ((H, t)-CDS for short) if the following holds:

1. If k ∈ F then k ≥ t and Kk is H-decomposable.

2. There exists N such that for all n > N , Kn is H-decomposable if and only if Kn is F -

decomposable.

We prove that, for all H and t, an (H, t)-CDS always exists. For this purpose we need a

theorem of Wilson on F -decompositions. For a (possibly infinite) set of positive integers F , let

gcd(F ) denote the largest positive integer which divides each number in F , let F1 = {n−1 | n ∈ F}
and let F2 = {n(n− 1)/2 | n ∈ F}. In [11] Wilson has proved the following:

Lemma 2.1 (Wilson [11]) Let F be a finite set of positive integers. Then, there exists n0 =

n0(F ) such that if n > n0, gcd(F1) divides n − 1 and gcd(F2) divides
(n
2

)
then there exists an

F -decomposition of Kn.

We can now show the following:

Lemma 2.2 Let H be a graph, and let t be a positive integer. Then, an (H, t)-CDS exists.

Proof: Let

S = {s | s ≥ t and Ks is H − decomposable}.

S is infinite but, obviously, gcd(S1) and gcd(S2) are finite. Thus, there are finite subsets Sα ⊂ S

and Sβ ⊂ S such that gcd(Sα
1 ) = gcd(S1) and gcd(Sβ

2 ) = gcd(S2). Let F = Sα ∪ Sβ. Note that

since Sα ⊂ F then gcd(F1) divides gcd(S1). Similarly, since Sβ ⊂ F we have that gcd(F2) divides

gcd(S2). We claim that F is an (H, t)-CDS. First note that, by definition, every s ∈ F satisfies

s ≥ t and Ks is H-decomposable. Now let N = max{n0, t} where n0 = n0(F ) is the constant

defined in the statement of Lemma 2.1. It suffices to show that for every n > N , if Kn is H-

decomposable then it is also F -decomposable. Indeed, if Kn is H-decomposable, then n ∈ S, so

gcd(F1) | gcd(S1) | n− 1, and gcd(F2) | gcd(S2) |
(n
2

)
. Thus, by Lemma 2.1, Kn is F -decomposable.
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A properly colored forest T will be called a weed if it contains three distinct edges e1, e2, e3, so

that for each ei there is an edge fi /∈ {e1, e2, e3} having the same color as ei (the fi need not be

distinct; in particular, if e1, e2, e3 have the same color we can have f1 = f2 = f3). Furthermore,

we assume that T has no sub-weed. Trivially, every weed contains at most 6 edges and at least 4

edges. In fact, is is not difficult to check that, up to color isomorphism, there is precisely one weed

with four edges, 8 weeds with five edges, and 41 weeds with six edges. The 50 weeds are shown in

Figure 1.

A properly colored graph is called multiply colored if no color appears only once in the graph.

We need the following combinatorial lemma.

Lemma 2.3 Every multiply colored graph with at least 29 edges contains a weed.

Proof: Let G be a multiply colored graph with 29 edges. If some color appears four times in G then

it forms a matching with four edges which is the weed W1. Otherwise, suppose that some color c

appears three times in the edges (v1, v2), (v3, v4), (v5, v6). Since six vertices induce at most 15 edges,

there is some edge (x, y) colored with c′, and x /∈ {v1, v2, v3, v4, v5, v6}. Let (w, z) be another edge

colored with c′. Since the coloring of G is proper, the five edges (v1, v2), (v3, v4), (v5, v6), (x, y), (w, z)

form a weed.

We remain with the case where each color appears precisely twice in G. Let c be the color of

(v1, v2) and of (v3, v4). Let c′ be a color not appearing in the subgraph induced by {v1, v2, v3, v4}.
Denote the edges colored with c′ by (v5, v6) and (v7, v8). Assume first that {v1, v2, v3, v4} ∩
{v5, v6, v7, v8} = ∅. Since 8 vertices induce at most 28 edges, there is some edge (x, y) colored

with c′′, and x /∈ {v1, v2, v3, v4, v5, v6, v7, v8}. Let (w, z) be another edge colored with c′′. Since the

coloring of G is proper, the six edges (v1, v2), (v3, v4), (v5, v6), (v7, v8), (x, y), (w, z) form a weed.

Assume next that |{v1, v2, v3, v4} ∩ {v5, v6, v7, v8}| = 1. Without loss of generality, v1 = v5.

Since 7 vertices induce at most 21 edges, there is some edge (x, y) colored with c′′ so that c′′ is not

the color of the edge (v2, v6) (if the latter even exists), and x /∈ {v1, v2, v3, v4, v6, v7, v8}. Let (w, z)

be another edge colored with c′′. The six edges (v1, v2), (v3, v4), (v1, v6), (v7, v8), (x, y), (w, z) form

a weed.

We remain with the case |{v1, v2, v3, v4} ∩ {v5, v6, v7, v8}| = 2. There are two sub-cases here,

up to isomorphism. The first is v1 = v5 and v3 = v7. The second is v1 = v5 and v2 = v7. In

the first sub-case, since six vertices induce at most 15 edges, there is some edge (x, y) colored with

c′′ so that c′′ is not the color of the edge (v2, v6) nor of the edge (v4, v8) (if any of these edges

even exist), and x /∈ {v1, v2, v3, v4, v6, v8}. Let (w, z) be another edge colored with c′′. Since the

coloring of G is proper, the six edges (v1, v2), (v3, v4), (v1, v6), (v3, v8), (x, y), (w, z) form a weed.

Similarly, in the second sub-case, there is some edge (x, y) colored with c′′ so that c′′ is not the
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color of the edge (v2, v6) nor of the edge (v1, v8) nor of the edge (v6, v8) (if any of these edges even

exist), and x /∈ {v1, v2, v3, v4, v6, v8}. Let (w, z) be another edge colored with c′′. The six edges

(v1, v2), (v3, v4), (v1, v6), (v2, v8), (x, y), (w, z) form a weed.

It is possible to improve the constant 29 in Lemma 2.3 at the price of a tedious case analysis.

This, however, is not important for our purposes. A multiple coloring of K6 (which has 15 edges)

having no weed is easily obtained by coloring a matching of three edges red, and the other 12 edges

with 6 distinct colors, where the union of each of these colors with the red edges contains a C4.

3 Proof of the main result

The proof of Theorem 1.2 is established by the following two lemmas.

Lemma 3.1 For a positive integer r, and for a graph H, there is a constant C = C(r, H) so

that if k > C and Kk is H-decomposable, then for any given set U of r edges of Kk, there is an

H-decomposition of Kk in which no two elements of U appear together in the same H-copy of the

decomposition.

Proof: Suppose Kk is H-decomposable, and fix an H-decomposition of Kk, denoted L. Let π be

a permutation of {1, . . . , k}. The permutation π and L naturally define another H-decomposition

of Kk, denoted Lπ. Indeed, if Q ∈ L is a copy of H then Q is mapped to a copy Qπ ∈ Lπ by the

automorphism π on the vertex set of Kk.

Fix a set U of r edges of Kk. Picking π uniformly at random, consider the probability that

two edges e, f ∈ U are in the same copy of H in Lπ. If e and f do not share an endpoint, the

probability of this event is at most
e(H)− 1(k−2

2

) .

If e and f share an endpoint, the probability of this event is at most

v(H)− 2
k − 2

.

As there are
(r
2

)
possible pairs of edges of U , we have that, as long as(

r

2

)
max

{
e(H)− 1(k−2

2

) ,
v(H)− 2

k − 2

}
< 1, (1)

with positive probability, no two elements of U appear together in the same H-copy of Lπ. Thus,

for sufficiently large k, as a function of r and H, inequality (1) holds, and hence the lemma follows.
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Figure 1: The 50 weeds. Labels on edges represent colors
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Lemma 3.2 For every finite set of positive integers F there exists a constant M = M(F ), so

that for every n > M , if Kn is a properly edge colored and F -decomposable, then Kn also has an

F -decomposition so that every element of the decomposition contains no weed.

Proof: Suppose that Kn is properly edge colored and F -decomposable, and fix an F -decomposition

of Kn, denoted L. Notice that, clearly, |L| ≤
(n
2

)
. As in the proof of Lemma 3.1, let π be a

permutation of {1, . . . , n}, and let Lπ be the F -decomposition naturally defined by π and L. It

suffices to prove that if π is picked uniformly at random, then for each Q ∈ L, the mapped copy

Qπ ∈ Lπ, contains a weed with probability less than 1/n2 (since 1/n2 < 1/|L|), assuming n is

sufficiently large as a function of F . Let z be the largest integer in F .

Fix Q ∈ L, and suppose that |Q| = q ≤ z. Without loss of generality, Q is a Kq induced by the

vertices {1, . . . , q}. We will prove that, for each possible weed Wi for i = 1, . . . , 50, the probability

that Qπ (which is a properly colored Kq subgraph of Kn) contains a forest which is color isomorphic

to Wi is less than 1/(50n2). For the sake of space compactness, we will prove this for W1 (the only

weed with four edges), for W7 (a representative weed with five edges), and for W33 (a representative

weed with six edges). The proof for all other 47 weeds is practically the same.

Consider a labeled copy of a forest that is isomorphic to the uncolored forest W1 in Q. As W1

contains 8 vertices, there are less than q8 such labeled forests. Fixing one such forest P , w.l.o.g.

the one defined by the edges (1, 2), (3, 4), (5, 6), (7, 8), we will prove that all the edges of Pπ are

colored the same with probability less than 1/(50n2q8). This will show that the probability that

Qπ contains the weed W1 is less than 1/(50n2), as required. Let a be the color of (π(1), π(2)).

Given a, the probability that (π(3), π(4)) is also colored a is precisely

na − 1(n−2
2

) ≤ n/2− 1(n−2
2

) =
1

n− 3

where na is the number of edges colored a in the given proper edge coloring of Kn. Similarly,

given that (π(1), π(2)) and (π(3), π(4)) are both colored a, the probability that (π(5), π(6)) is also

colored a is precisely (na − 2)/
(n−4

2

)
≤ 1/(n − 5). Finally, given that (π(1), π(2)), (π(3), π(4)),

and (π(5), π(6)) are all colored a, the probability that (π(7), π(8)) is also colored a is precisely

(na − 3)/
(n−6

2

)
≤ 1/(n− 7). Overall, the edges of Pπ are colored the same with probability at most

1
(n− 3)(n− 5)(n− 7)

≤ 1
50n2z8

≤ 1
50n2q8

if n is sufficiently large, as required.

Consider a labeled copy of a forest which is isomorphic to the uncolored forest W7 in Q. As W7

contains 7 vertices, there are less than q7 such labeled forests. Fixing one such forest P , w.l.o.g. the
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one defined by the edges (1, 2), (2, 3), (3, 4), (5, 6), (6, 7) (notice that this is indeed a labeled copy

of W7), we will prove that the probability that all the edges (π(1), π(2)), (π(3), π(4)), (π(5), π(6))

are colored the same, and that the edges (π(2), π(3)) and (π(6), π(7)) are also colored the same

is less than 1/(50n2q7). This will show that the probability that Qπ contains the weed W7 is less

than 1/(50n2), as required. Let a be the color of (π(1), π(2)) and let b be the color of (π(2), π(3)).

Notice that a 6= b since the given coloring of Kn is proper. Given a and b, the probability that

(π(3), π(4)) is colored a is at most 1/(n − 3). This is because at most one edge (π(3), x) incident

with π(3) is colored a, and the probability that x = π(4) is precisely 1/(n−3). Similarly, given that

(π(1), π(2)) and (π(3), π(4)) are both colored a, and that (π(2), π(3)) is colored b, the probability

that (π(5), π(6)) is colored a is precisely (na−2)/
(n−4

2

)
≤ 1/(n−5). Finally, given that (π(1), π(2)),

(π(3), π(4)), and (π(5), π(6)) are colored a, and that (π(2), π(3)) is colored b, the probability that

(π(6), π(7)) is colored b is at most 1/(n − 6). This is because at most one edge (π(6), x), where

x 6= π(i) for i = 1, . . . , 5, incident with π(6), is colored b, and the probability that x = π(7) is

precisely 1/(n − 6). Overall, the probability that (π(1), π(2)), (π(3), π(4)), (π(5), π(6)) are colored

the same, and that (π(2), π(3)) and (π(6), π(7)) are also colored the same is at most

1
(n− 3)(n− 5)(n− 6)

≤ 1
50n2z7

≤ 1
50n2q7

if n is sufficiently large, as required.

Consider a labeled copy of a forest which is isomorphic to the uncolored forest W33 in Q.

As W33 contains 8 vertices, there are less than q8 such labeled forests. Fixing one such forest

P , w.l.o.g. the one defined by the edges (1, 2), (2, 3), (3, 4), (2, 5), (6, 7), (7, 8) (notice that this is

indeed a labeled copy of W33), we will prove that the probability that the edges (π(1), π(2)) and

(π(6), π(7)) are colored the same, the edges (π(2), π(3)) and (π(7), π(8)) are colored the same, and

the edges (π(3), π(4)) and (π(2), π(5)) are colored the same, is less than 1/(50n2q8). This will show

that the probability that Qπ contains the weed W33 is less than 1/(50n2), as required. Let a be the

color of (π(1), π(2)), let b be the color of (π(2), π(3)), and let c be the color of (π(2), π(5)). Notice

that a, b, and c are distinct colors since the given coloring of Kn is proper. Given a, b, and c, the

probability that (π(3), π(4)) is colored c is at most 1/(n − 4). Similarly, given that (π(2), π(5))

and (π(3), π(4)) are both colored c, that (π(1), π(2)) is colored a, and that (π(2), π(3)) is colored

b, the probability that (π(6), π(7)) is colored a is at most ((n − 5)/2)/
(n−5

2

)
≤ 1/(n − 6). Finally,

given that (π(2), π(5)) and (π(3), π(4)) are both colored c, that (π(1), π(2)) and (π(6), π(7)) are

both colored a, and that (π(2), π(3)) is colored b, the probability that (π(7), π(8)) is colored b is

at most 1/(n− 7). Overall, the probability that the edges (π(1), π(2)) and (π(6), π(7)) are colored

the same, the edges (π(2), π(3)) and (π(7), π(8)) are colored the same, and the edges (π(3), π(4))
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and (π(2), π(5)) are colored the same is at most

1
(n− 4)(n− 6)(n− 7)

≤ 1
50n2z8

≤ 1
50n2q8

if n is sufficiently large, as required.

Proof of Theorem 1.2: Fix a graph H, and let t = C(28,H) be the constant from Lemma 3.1.

Let F be an (H, t)-CDS, whose existence is guaranteed by Lemma 2.2. Let M = M(F ) be the

constant from lemma 3.2. Since F is an (H, t)-CDS, there exists N = N(F ) so that for all n > N ,

Kn is H-decomposable if and only if Kn is F -decomposable. We define

n1 = n1(H) = max{M , N , n0(H)}

where n0(H) is the constant from Theorem 1.1.

Suppose that n > n1, e(H) |
(n
2

)
, and gcd(H) | n− 1 and consider a properly edge-colored Kn.

Since n1 ≥ n0 we have, by Theorem 1.1, that Kn is H-decomposable. Since n1 ≥ N we have,

by the definition of F , that Kn is also F -decomposable. Since n1 ≥ M we have, by Lemma 3.2,

that there is an F -decomposition of Kn so that every element of the decomposition contains no

weed. Consider some Kk element of such an F -decomposition. Thus, k ∈ F and hence k ≥ t.

Furthermore, Kk is H-decomposable. Let U be a maximal multiply colored subgraph of Kk. We

identify U with its set of edges. Since Kk contains no weed, we have, by Lemma 2.3, that |U | ≤ 28.

Since k ≥ t = C(28,H) we have, by Lemma 3.1, that Kk has an H-decomposition so that no two

edges of U appear together in the same H-copy of the decomposition. But this implies that each

copy of H in such a decomposition is rainbow colored. Repeating this process for each element of

the F -decomposition yields an H-decomposition of Kn in which each element is rainbow colored.

4 Concluding remarks

• The statement of Theorem 1.2 remains valid even if Kn is not necessarily properly colored,

but, instead, no color appears more than constantly many times in the edges incident with a

vertex. More precisely, an edge coloring is C-proper if the subgraph induced by each color has

maximum degree at most C. The proof is essentially the same, although one has to broaden

the definition of weeds to forests that are not necessarily properly colored, but C-properly

colored (there are still finitely many such weeds). The following extension of Theorem 1.2 is:

9



Theorem 4.1 For every fixed graph H and positive integer C there exists n1 = n1(H,C) so

that if n > n1, e(H) |
(n
2

)
, and gcd(H) | n − 1 then a C-properly edge-colored Kn has an

H-decomposition so that each copy of H in the decomposition is rainbow colored.

• The exact smallest possible value of n1 = n1(H) is extremely difficult to determine even for

the smallest non-trivial cases. For example, is it true that every properly edge colored K13

contains 13 rainbow copies of K4? It is not difficult to show that this is true if each color is

used at most twice, but already in K13 we can have each color appearing 6 times. We leave

this as an open problem.
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