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Abstract. For every fixed graph H and every fixed 0 < α < 1, we show
that if a graph G has the property that all subsets of size αn contain the
“correct” number of copies of H one would expect to find in the random
graph G(n, p) then G behaves like the random graph G(n, p); that is, it
is p-quasi-random in the sense of Chung, Graham, and Wilson [4]. This
solves a conjecture raised by Shapira [8] and solves in a strong sense an
open problem of Simonovits and Sós [9].

1 Introduction

The theory of quasi-random graphs asks the following fundamental question:
which properties of graphs are such that any graph that satisfies them, resembles
an appropriate random graph (namely, the graph satisfies the properties that a
random graph would satisfy, with high probability). Such properties are called
quasi-random.

The theory of quasi-random graphs was initiated by Thomason [10, 11] and
then followed by Chung, Graham and Wilson who proved the fundamental theo-
rem of quasi-random graphs [4]. Since then there have been many papers on this
subject (see, e.g. the excellent survey [6]). Quasi-random properties were also
studied for other combinatorial structures such as set systems [1], tournaments
[2], and hypergraphs [3]. There are also some very recent results on quasi-random
groups [5] and generalized quasi-random graphs [7].

In order to formally define p-quasi-randomness we need to state the funda-
mental theorem of quasi-random graphs. As usual, a labeled copy of an undirected
graph H in a graph G is an injective mapping φ from V (H) to V (G) that maps
edges to edges. That is xy ∈ E(H) implies φ(x)φ(y) ∈ E(G). For a set of vertices
U ⊂ V (G) we denote by H[U ] the number of labeled copies of H in the subgraph
of G induced by U and by e(U) the number of edges of G with both endpoints in
U . A graph sequence (Gn) is an infinite sequence of graphs {G1, G2, . . .} where
Gn has n vertices. The following result of Chung, Graham, and Wilson [4] shows
that many properties of different nature are equivalent to the notion of quasi-
randomness, defined using edge distribution. The original theorem lists seven
such equivalent properties, but we only state four of them here.



Theorem 1 (Chung, Graham, and Wilson [4]). Fix any 0 < p < 1. For
any graph sequence (Gn) the following properties are equivalent:

P1: For an even integer t ≥ 4, let Ct denote the cycle of length t. Then e(Gn) =
1
2pn

2 + o(n2) and Ct[V (Gn)] = ptnt + o(nt).
P2: For any subset of vertices U ⊆ V (Gn) we have e(U) = 1

2p|U |
2 + o(n2).

P3: For any subset of vertices U ⊆ V (Gn) of size n/2 we have e(U) = 1
2p|U |

2 +
o(n2).

P4: Fix an α ∈ (0, 1
2 ). For any U ⊆ V (Gn) of size αn we have e(U, V \ U) =

pα(1− α)n2 + o(n2).

The formal meaning of the properties being equivalent is expressed, as usual,
using ε, δ notation. For example the meaning that P3 implies P2 is that for any
ε > 0 there exist δ = δ(ε) and N = N(ε) so that for all n > N , if G is a graph
with n vertices having the property that any subset of vertices U of size n/2
satisfies |e(U) − 1

2p|U |
2| < δn2 then also for any subset of vertices W we have

|e(W )− 1
2p|W |

2| < εn2.
Given Theorem 1 we say that a graph property is p-quasi-random if it is

equivalent to any (and therefore all) of the four properties defined in that theo-
rem. (We will usually just say quasi-random instead of p-quasi-random since p is
fixed throughout the proofs). Note, that each of the four properties in Theorem
1 is a property we would expect G(n, p) to satisfy with high probability.

It is far from true, however, that any property that almost surely holds for
G(n, p) is quasi-random. For example, it is easy to see that having vertex degrees
np(1 + o(1)) is not a quasi-random property (just take vertex-disjoint cliques of
size roughly np each). An important family of non quasi-random properties are
those requiring the graphs in the sequence to have the correct number of copies
of a fixed graph H. Note that P1(t) guarantees that for any even t, if a graph
sequence has the correct number of edges as well as the correct number of copies
of H = Ct then the sequence is quasi-random. As observed in [4] this is not true
for all graphs H. In fact, already for H = K3 there are simple constructions
showing that this is not true.

Simonovits and Sós observed that the standard counter-examples showing
that for some graphs H, having the correct number of copies of H is not enough
to guarantee quasi-randomness, have the property that the number of copies of H
in some of the induced subgraphs of these counter-examples deviates significantly
from what it should be. As quasi-randomness is a hereditary property, in the
sense that we expect a sub-structure of a random-like object to be random-like
as well, they introduced the following variant of property P1 of Theorem 1, where
now we require all subsets of vertices to contains the “correct” number of copies
of H.

Definition 1 (PH). For a fixed graph H with h vertices and r edges, we say
that a graph sequence (Gn) satisfies PH if all subsets of vertices U ⊂ V (Gn)
satisfy H[U ] = pr|U |h + o(nh).

As opposed to P1, which is quasi-random only for even cycles, Simonovits
and Sós [9] showed that PH is quasi-random for any nonempty graph H.



Theorem 2. For any fixed H that has edges, property PH is quasi-random.

We can view property PH as a generalization of property P2 in Theorem 1,
since P2 is just the special case PK2 . Now, property P3 in Theorem 1 guarantees
that in order to infer that a sequence is quasi-random, and thus satisfies P2, it
is enough to require only the sets of vertices of size n/2 to contain the correct
number of edges. An open problem raised by Simonovits and Sós [9], and in
a stronger form by Shapira [8], is that the analogous condition also holds for
any H. Namely, in order to infer that a sequence is quasi-random, and thus
satisfies PH , it is enough, say, to require only the sets of vertices of size n/2 to
contain the correct number of copies of H. Shapira [8] proved that it is enough
to consider sets of vertices of size n/(h+ 1). Hence, in his result, the cardinality
of the sets depends on h. Thus, if H has 1000 vertices, Shapira’s result shows
that it suffices to check vertex subsets having a fraction smaller than 1/1000 of
the total number of vertices. His proof method cannot be extended to obtain the
same result for fractions larger than 1/(h+ ε).

In this paper we settle the above mentioned open problem completely. In
fact, we show that for any H, not only is it enough to check only subsets of size
n/2, but, more generally, we show that it is enough to check subsets of size αn
for any fixed α ∈ (0, 1). More formally, we define:

Definition 2 (PH,α). For a fixed graph H with h vertices and r edges and fixed
0 < α < 1 we say that a graph sequence (Gn) satisfies PH,α if all subsets of
vertices U ⊂ V (Gn) with |U | = bαnc satisfy H[U ] = pr|U |h + o(nh).

Our main result is, therefore:

Theorem 3. For any fixed graph H and any fixed 0 < α < 1, property PH,α is
quasi-random.

2 Proof of the main result

For the remainder of this section let H be a fixed graph with h > 1 vertices
and r > 0 edges, and let α ∈ (0, 1) be fixed. Throughout this section we ignore
rounding issues and, in particular, assume that αn is an integer, as this has no
effect on the asymptotic nature of the results.

Suppose that the graph sequence (Gn) satisfies PH,α. We will prove that it
is quasi-random by showing that it also satisfies PH . In other words, we need to
prove the following lemma which, together with Theorem 2, yields Theorem 3.

Lemma 1. For any ε > 0 there exists N = N(ε, h, α) and δ = δ(ε, h, α) so that
for all n > N , if G is a graph with n vertices satisfying that for all U ⊂ V (G)
with |U | = αn we have |H[U ] − pr|U |h| < δnh then G also satisfies that for all
W ⊂ V (G) we have |H[W ]− pr|W |h| < εnh.

Proof: Suppose therefore that ε > 0 is given. Let N = N(ε, h, α), ε′ = ε′(ε, h, α)
and δ = δ(ε, h, α) be parameters to be chosen so that N is sufficiently large and



δ � ε′ are both sufficiently small to satisfy the inequalities that will follow, and
it will be clear that they are indeed only functions of ε, h, and α.

Now, let G be a graph with n > N vertices satisfying that for all U ⊂ V (G)
with |U | = αn we have |H[U ]− pr|U |h| < δnh. Consider any subset W ⊂ V (G).
We need to prove that |H[W ]− pr|W |h| < εnh.

For convenience, set k = αn. Let us first prove this for the case where |W | =
m > k. This case can rather easily be proved via a simple counting argument.
Denote by U the set of

(
m
k

)
k-subsets of W . Hence, by the given condition on

k-subsets, (
m

k

)
(prkh − δnh) <

∑
U∈U

H[U ] <
(
m

k

)
(prkh + δnh) . (1)

Every copy of H in W appears in precisely
(
m−h
k−h

)
distinct U ∈ U . It follows from

(1) that

H[W ] =
1(

m−h
k−h

) ∑
U∈U

H[U ] <

(
m
k

)(
m−h
k−h

) (prkh + δnh) < prmh +
ε′

2
nh , (2)

and similarly from (1)

H[W ] =
1(

m−h
k−h

) ∑
U∈U

H[U ] >

(
m
k

)(
m−h
k−h

) (prkh − δnh) > prmh − ε′

2
nh . (3)

We now consider the case where |W | = m = βn < αn = k. Notice that
we can assume that β ≥ ε since otherwise the result is trivially true. The set
H of H-subgraphs of G can be partitioned into h + 1 types, according to the
number of vertices they have in W . Hence, for j = 0, . . . , h let Hj be the set of
H-subgraphs of G that contain precisely j vertices in V \W . Notice that, by
definition, |H0| = H[W ]. For convenience, denote wj = |Hj |/nh. We therefore
have, together with (2) and (3) applied to V ,

w0 + w1 + · · ·+ wh =
|H|
nh

=
H[V ]
nh

= pr + µ (4)

where |µ| < ε′/2.
Define λ = (1−α)

h+1 and set ki = k + iλn for i = 1, . . . , h. Let Yi ⊂ V \W be a
random set of ki−m vertices, chosen uniformly at random from all

(
n−m
ki−m

)
subsets

of size ki−m of V \W . Denote Ki = Yi∪W and notice that |Ki| = ki > αn. We
will now estimate the number of elements of Hj that “survive” in Ki. Formally,
let Hj,i be the set of elements of Hj that have all of their vertices in Ki, and let
mj,i = |Hj,i|. Clearly, m0,i = H[W ] since W ⊂ Ki. Furthermore, by (2) and (3),

m0,i +m1,i + · · ·+mh,i = H[Ki] = prkhi + ρin
h (5)

where ρi is a random variable with |ρi| < ε′/2.



For an H-copy T ∈ Hj we compute the probability pj,i that T ∈ H[Ki].
Since T ∈ H[Ki] if and only if all the j vertices of T in V \W appear in Yi we
have

pj,i =

(
n−m−j
ki−m−j

)(
n−m
ki−m

) =
(ki −m) · · · (ki −m− j + 1)
(n−m) · · · (n−m− j + 1)

.

Defining xi = (ki −m)/(n−m) and noticing that

xi =
ki −m
n−m

=
α− β
1− β

+
λ

1− β
i

it follows that (for large enough graphs)∣∣∣pj,i − xji ∣∣∣ < ε′

2
. (6)

Clearly, the expectation of mj,i is E[mj,i] = pj,i|Hj |. By linearity of expec-
tation we have from (5) that

E[m0,i] + E[m1,i] + · · ·+ E[mh,i] = E[H[Ki]] = prkhi + E[ρi]nh.

Dividing the last equality by nh we obtain

p0,iw0 + · · ·+ ph,iwh = pr (α+ λi)h + E[ρi] . (7)

By (6) and (7) we therefore have

h∑
j=0

xjiwj = pr (α+ λi)h + µi (8)

where µi = E[ρi]+ζi and |ζi| < ε′/2. Since also |ρi| < ε′/2 we have that |µi| < ε′.
Now, (4) and (8) form together a system of h + 1 linear equations with

the h + 1 variables w0, . . . , wh. The coefficient matrix of this system is just the
Vandermonde matrix A = A(x1, . . . , xh, 1). Since x1, . . . , xh, 1 are all distinct,
and, in fact, the gap between any two of them is at least λ/(1−β) = (1−α)/((h+
1)(1 − β)) ≥ (1 − α)/(h + 1), we have that the system has a unique solution
which is A−1b where b ∈ Rh+1 is the column vector whose i’th coordinate is
pr (α+ λi)h + µi for i = 1, . . . , h and whose last coordinate is pr + µ. Consider
now the vector b∗ which is the same as b, just without the µi’s. Namely b∗ ∈ Rh+1

is the column vector whose i’th coordinate is pr (α+ λi)h for i = 1, . . . , h and
whose last coordinate is pr. Then the system A−1b∗ also has a unique solution
and, in fact, we know explicitly what this solution is. It is the vector w∗ =
(w∗0 , . . . , w

∗
h) where

w∗j = pr
(
h

j

)
βh−j(1− β)j .

Indeed, it is straightforward to verify the equality

h∑
j=0

pr
(
h

j

)
βh−j(1− β)j = pr



and, for all i = 1, . . . , h the equalities

h∑
j=0

(
α− β
1− β

+
λ

1− β
i

)j
pr
(
h

j

)
βh−j(1− β)j = pr (α+ λi)h .

Now, since the mapping F : Rh+1 → Rh+1 mapping a vector c to A−1c is
continuous, we know that for ε′ sufficiently small, if each coordinate of c has
absolute value less than ε′, then each coordinate of A−1c has absolute value
at most ε. Now, define c = b − b∗ = (µ1, . . . , µh, µ). Then we have that each
coordinate wi of A−1b differs from the corresponding coordinate w∗i of A−1b∗ by
at most ε. In particular,

|w0 − w∗0 | = |w0 − prβh| < ε.

Hence,
|H[W ]− nhprβh| = |H[W ]− pr|W |h| < εnh

as required.
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