
Reconstructing approximate phylogenetic trees from quartet samples

Sagi Snir ∗ Raphael Yuster †

Abstract
The reconstruction of evolutionary trees (also known as phy-
logenies) is central to many problems in Biology. Accurate
phylogenetic reconstruction methods are currently limited
to a maximum of few dozens of species. Therefore, in or-
der to construct a tree over larger sets of species, a method
capable of inferring accurately trees over small, overlapping
sets, and subsequently merging these sets into a tree over
the complete set, is required.

A quartet tree is the smallest informative piece of infor-
mation and quartet based methods are based on combining
quartet trees into a big tree. However, even this case is NP-
hard, and even when the set of quartet trees is compatible
(agree on a certain tree). The general problem of approx-
imating quartets, or maximum quartet consistency (MQC),
even for compatible inputs, is open for nearly twenty years.
Despite its importance, the only rigorous results for approx-
imating quartets are the naive 1/3 approximation that ap-
plies to the general case and a PTAS when the input is the
complete set of all

(
n
4

)
possible quartets.

Even when it is possible to determine the correct quartet
induced by every four taxa, the time needed to generate the
complete set of all quartets may be impractical. A faster
approach is to sample at random just m �

(
n
4

)
quartets,

and provide this sample as an input.
In this work we present the first approximation algo-

rithm whose guaranteed approximation is strictly better
than 1/3 when the input is any random sample of m com-
patible quartets. The approximation ratio we obtain is 0.425
for general m, and 0.468 when m = ω̃(n2). An important
ingredient in our algorithm involves solving a weighted Max-
Cut in a certain graph induced by the set of input quartets.
We also show an extension of the PTAS algorithm to handle
dense, rather than complete, inputs.

1 Introduction

The study of evolution and the construction of phylo-
genetic (evolutionary) trees (or phylogenies) are classi-
cal subjects in Biology. DNA sequences from a variety
of organisms are rapidly accumulating, providing large
amounts of data to various phylogenetic reconstruction
methods. The goal behind the “tree of life” project is
to accurately construct the tree representing the evolu-
tionary history of over several millions of taxa (species).
This task cannot be achieved by the traditional accurate
reconstruction methods. Therefore, the need to design
methods capable of amalgamating small, accurately in-

∗Department of Evolutionary Biology, University of Haifa,

Haifa 31905, Israel. E–mail: ssagi@research.haifa.ac.il
†Department of Mathematics, University of Haifa, Haifa

31905, Israel. E–mail: raphy@math.haifa.ac.il

ferred trees into a large tree emerges.
Perhaps the simplest version of this task is quartet

based reconstruction, in which all input trees are quartet
trees (or simply quartets) - trees over four taxa. The
study of quartets is of prime importance as quartets are
the smallest informational unit and hence, quartets play
a major role in other reconstruction methods [2, 3, 4, 5,
8, 11].

A set of quartets can be consistent (or compatible) in
which case all quartets agree on (or satisfied by) some
complete tree, or inconsistent if there is no such tree.
Nevertheless, despite its simplicity, even when all quar-
tets are consistent with some tree, finding such a tree
is NP-hard [15]. The general problem of approximat-
ing quartets, or maximum quartet consistency (MQC),
even for consistent inputs, is open for nearly twenty
years, and the best approximation ratio is 1/3, obtained
naively by a random tree. Exact polynomial algorithms
exist for special cases only (see e.g. [4]). The only
rigorous approximation result is a polynomial time ap-
proximation scheme (PTAS) by Jiang et al. [9] for the
case when all

(
n
4

)
quartets exist in the input.

Generating a large set of correct quartets, based
on biological data, may be time consuming. Therefore,
preparing a large input (moreover a complete input of(
n
4

)
quartets) may be too costly and impractical even for

relatively small datasets. A faster approach is to sample
a relatively small number of m �

(
n
4

)
4-taxa sets, and

generate the input corresponding to the m quartets they
define, and try to solve MQC on this input.

In this paper, we devise a new approximation
algorithm for the MQC problem. Given a set of m
quartets sampled uniformly from the set of all

(
n
4

)
quartets, our algorithm achieves an approximation ratio
of 0.425. To the best of our knowledge, this is the
first algorithm achieving a better ratio than the naive
1/3. When m ≥ Cn2 log n, a modified version of our
algorithm achieves an approximation ratio of 0.468.

An important ingredient in our algorithm involves
solving a weighted MaxCut in a certain graph induced
by the set of quartets, a technique proved to be prac-
tically efficient as a heuristic for the same task [13].
We build a weighted graph based on the set of input
quartets. We rely on combinatorial properties of trees
that enable us to rigorously prove a lower bound for

1035 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

the maximum cut in our graph. Next we use the Max-
Cut approximation algorithm of Goemans and Willam-
son [7] to compute an approximate maximum cut in
the graph. However, since our graph contains negative
weights, special care must be taken in the establishment
of the lower bound. We then translate our solution to
a solution of MQC, by amalgamating the cut solution
with an approximate solution from each of the parts
separated by the cut.

When the input is dense enough so that m =
Ω(n2 log n), we can further exploit the structure of
the tree and also have some control over the negative
weights in our graph. This yields a better approxima-
tion in this case.

Finally, we show how to generalize the aforemen-
tioned PTAS of Jiang et al. [9] to the case where
m = Θ(n4) (and is not necessarily a complete input).
This generalization works for arbitrary input.

2 Quartets MaxCut

In this section we describe the central tool used in our
approximation algorithms Quartets MaxCut (QMC).
Before we present the algorithm, we provide some basic
definitions, we formally describe the graph induced by
a set of quartets, and provide some properties of this
graph.

2.1 Preliminaries A cut C = (S, S̄) in an edge-
weighted graph G is a partition over the vertex set
V = V (G) into non-empty parts S and S̄ = V − S. An
edge belongs to the cut if its endpoints are in distinct
parts. We denote the set of edges of the cut by EC .
The weight w(C) of a cut C is the sum of weights of the
edges in EC . A maximum cut of G is a cut of G with
maximum weight. The task of finding a maximum cut
is the MaxCut problem.

Recall that a full binary rooted tree is a tree whose
internal vertices have two children each. A full binary
undirected (also called unrooted) tree is a tree whose
internal vertices have three neighbors each (a trivalent
tree). Throughout this paper, all trees are assumed
to be full unrooted binary trees, with leaves labeled
bijectively by a taxa set X . Such trees are called
phylogenetic trees. For a tree T = (V,E), we denote
by L(T) the set of leaves of T .

The removal of an edge e in a tree splits the tree
into two subtrees and therefore induces a split among
the leaves of the tree. We identify an edge e by the split
(U,X \ U) it generates and denote it by eU . Let T be
a tree and A ⊆ L(T) a subset of the leaves of T . We
denote by T |A, the subtree of T induced by A where all
leaves in X \A and paths leading exclusively to them are
removed, and subsequently internal vertices with degree

two are contracted.
For two trees T and T ′, we say that T satisfies

T ′, and T ′ is satisfied by T , if L(T ′) ⊆ L(T) and
T |L(T ′) = T ′. Otherwise, T ′ is violated by T . For a
set of trees T = {T1, . . . , Tk} with possibly overlapping
leaves, we denote by Ts(T) the set of trees in T that are
satisfied by T . We say that T is consistent if there
exists a tree T ∗ over the set of leaves

⋃
i L(Ti) that

satisfies every tree Ti ∈ T (see Figure 1). Otherwise, T
is inconsistent. When T is inconsistent, it is desirable
to find a tree T ∗ over

⋃
i L(Ti) that maximizes some

objective function. T ∗ is denoted a supertree and the
problem of finding T ∗ is the supertree problem.

(a) (b)

Figure 1: (a) A phylogenetic tree over five leaves. (b) Two
trees over four leaves induced by the tree on the left.

A quartet tree (or just a quartet for short), is an
undirected tree over four leaves {a, b, c, d}. We write a
quartet over {a, b, c, d} as ((a, b), (c, d)) if there exists an
edge eU such that a, b ∈ U and c, d /∈ U . A important
case of the supertree problem is when the set of input
trees is a set of quartet trees Q and the task is to find
a tree T such that |Qs(T)| is maximized. The problem
is denoted as maximum quartet consistency (MQC). We
note that MQC is NP-hard even when Q is consistent
[15].

Let T be any tree with n leaves. Consider a random
bijection π between a taxa set X of size n and the leaves
of T . The corresponding labeled tree is denoted by Tπ.
As each of the n! possible bijections is equally likely, we
notice that a quartet ((a, b), (c, d)) with labels from X
is satisfied by Tπ with probability 1/3. We therefore
have, by linearity of expectation:

Lemma 2.1. Let Q be an arbitrary set of quartets over
a taxa set X of size n, and let Tπ be a random bijection
between the leaves of a tree T and X . Then the expected
number of elements in Q satisfied by T is |Q|/3.

1036 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

2.2 The Quartets MaxCut approach The quar-
tets MaxCut (QMC) is a divide and conquer algorithm
that operates on the taxa set X by first partitioning
the set into a partition P of two or more parts. Then
it operates on the sub problems induced by each part,
and merges the sub-solutions obtained into a complete
solution. In our cases the partition P is of two or three
parts.

Let Q be a set of quartets with |Q| = m. A
quartet q = ((a, b), (c, d)) ∈ Q is said to be unaffected
by a partition P, if all {a, b, c, d} are in one part of
P. Otherwise, it is affected by P. For an affected
q = ((a, b), (c, d)) we say that q is satisfied by P if
some part contains precisely a and b, or some part
contains precisely c and d. It is violated by P if at
least one of the pairs a, c or a, d or b, c or b, d are in
the same part, and the other two are not in that part.
Otherwise, we have that one part contains only one
of {a, b, c, d} and some other part contains the other
three. In this case we say that q is deferred. At every
step of the algorithm, some quartets are satisfied, some
are violated, and some continue to the next steps (i.e.
either deferred or unaffected). A plausible strategy is
to maximize the ratio between satisfied and violated
quartets at every step. We will show that this strategy
has guaranteed performance.

Given the set of quartets Q over a taxa set
X , we build the following weighted (multi) graph
G = G(Q) = (V,E) with V = X and E as fol-
lows: For every q = ((a, b), (c, d)) ∈ Q we add
the six edges {(a, c), (a, d), (b, c), (b, d), (a, b), (c, d)} to
E. We distinguish between the edges and denote
the edges {(a, c), (a, d), (b, c), (b, d)} as good edges and
{(a, b), (c, d)} as bad edges. Observe that between two
vertices in G(Q) there can be good and bad edges si-
multaneously, originating from different quartets (see
Figure 2). We denote by Eg and Eb the set of good and
bad edges respectively.

We note that a cut in G corresponds to a partition
of the taxa set into two parts. Given a cut C = (S, S̄)
in the graph G(Q) we notice:

Observation 2.1. For an affected quartet q ∈ Q
1. q contributes 4 good edges to the cut if q is satisfied.
2. q contributes 2 good edges and 1 bad edge to the cut
if q is deferred.
3. q contributes 2 good edges and 2 bad edges to the cut
if q is violated.

Figure 2 shows graphically the effect of a cut in a
graph on the two quartets generating that graph. The
above observation links between the number of quartets
satisfied/violated/deferred and the number of good/bad
edges in the cut. Once we have defined G(Q) we seek

Figure 2: Left: The graph induced by the quartets
((1, 2), (3, 4)) and ((1, 3), (4, 5)) from Figure 1. Right: A cut
separating {1, 2, 5} from {3, 4}, therefore satisfies quartet
((1, 2), (3, 4)) but violates ((1, 3), (4, 5)) and hence contains
6 good and 2 bad edges.

to find a cut C maximizing

|Eg ∩ EC | − α|Eb ∩ EC |(2.1)

where α > 0 is a weight ratio parameter between good
and bad edges.

Solving (2.1) is equivalent to finding a maximum cut
(solving MaxCut) in a graph in which good edges have
unit weight and bad edges have weight −α. However,
since MaxCut is NP-hard [6], we use the seminal ap-
proximation algorithm of Goemans and Williamson [7]
(denoted here by GW). The principle in GW is to em-
bed the vertices on the unit n-dimensional sphere and
effectively solve a relaxed semidefinite program.

3 A general approximation algorithm

We present a polynomial time approximation algorithm
whose expected approximation ratio is 0.425 when the
input is consistent and, more generally, an expected
approximation ratio of 0.425 − 0.26η when a fraction
1 − η of the input is non-conflicting. In both cases
it is assumed that the m input quartets are generated
uniformly at random from the set of all

(
n
4

)
quartets.

3.1 A 0.425 approximating algorithm for con-
sistent input We assume a set Q of m quartets over
a taxa set X with |X | = n are generated as follows.
Four taxa are chosen randomly and the correct quartet
induced by them is taken. This process is repeated m
times, independently.

Notice that since our quartets are consistent there
exists some tree T which satisfies all the input quartets
(the problem is, of course, that we don’t know T , we
just know it exists). A well known property [12] is that
any binary tree, such as T , contains an edge s0 that
induces a (X1,X \ X1) partition over the leaves where

1037 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

|X1| = β and 1
3 ≤ β ≤ 1

2 . We denote it as the (1
3 ,

2
3)-

property. We also set the weight ratio parameter from
Equation (2.1) to α = 2, as this choice maximizes our
performance guarantee. Let w(s0) denote the weight of
the cut in G(Q) corresponding to the cut (X1,X \ X1)
induced by s0. The following lemma establishes a lower
bound on the expectation E[w(s0)] of w(s0).

Lemma 3.1. E[w(s0)] ≥ 32m
27 .

Proof. Let us define three disjoint sets as follows:
Qu(s0) - the set of quartets unaffected by s0. Denote
|Qu(s0)| by mu(s0),
Qd(s0) - the set of quartets deferred by s0. Denote
|Qd(s0)| by md(s0),
Qs(s0) - the set of quartets satisfied by s0. Denote
|Qs(s0)| by ms(s0).
When it is clear from the context, we will remove the
split indication (s0). We also note that since Q is
consistent, no quartets are violated by s0 and we get:
Q = Qu ∪Qd ∪Qs.

Now, the weight of a cut is the sum of contributions
of all quartets affected by it. In particular, at s0 we get:

w(s0) = 0mu + (2− α)md + 4ms = 4ms .(3.2)

We claim that:
E[mu] = m(β4 + (1− β)4).
E[md] = 4m(β3(1− β) + β(1− β)3).
E[ms] = 6m(β2(1− β)2).

Indeed, for a quartet to be unaffected by s0 all its
taxa must “fall” in the same partition. The probability
of all taxa falling in the smaller side is β4 and the
probability of all taxa falling at the bigger side is
(1− β)4. For a quartet to be deferred by s0 one taxa
must fall at one part and all the other taxa at the other
part. There are four possibilities to choose this single
taxa, so the probability of a single taxa falling at the
smaller part is 4β (1− β)3 and at the bigger part the
probability is 4 (1− β)β3. For a quartet to be satisfied
by s0 two of its taxa must fall at one part and the other
must fall at the other part. There are six possibilities to
choose a pair of taxa for the smaller part and hence the
probability is 6β2(1 − β)2. The claim on expectations
now directly follows by linearity of expectation as there
are m quartets.

Together with (3.2) and with α = 2 we have:

E[w(s0)] = 24m(β2(1− β)2) .(3.3)

(3.3) has two extremal points at 1
2 and 0, so in the

interval [13 ,
1
2] the minimum is obtained on the boundary

1
3 and the lemma follows.

We note that all claims on expectations in the
last lemma and anywhere else in this paper can be

also phrased in terms of high concentration, using a
standard large deviation Chernoff estimate (see, e.g.,
[1], Appendix A). For example, one can easily obtain
that for every ε > 0, Pr[w(s0) < (32

27 − ε)m] < e−ε
2m/32.

However, for clarity of exposition, we state and prove
all our results in terms of expectations.

The lower bound on the weight of s0 (Lemma 3.1)
serves as a lower bound for a maximum cut C∗ in G(Q).
Let CGW denote the cut returned by the GW algorithm.

Lemma 3.2. E[w(CGW)] ≥ 0.552m.

Proof. GW achieves an approximation ratio of 0.878
if all weights are non-negative. However, GW has a
special consideration for negative weights: In this case
CGW satisfies w(CGW) ≥ 0.878w(C∗)− 0.122w− where
w− is the absolute sum of the negative weights in the
graph. In our case we have |Q| = m quartets, each one
has two negative edges with weight −2. Therefore we
obtain:

E[w(CGW)] ≥ 0.878E[w(C∗)]− 0.122w−(3.4)

≥ 0.878
32m
27
− 0.122 · 4m = 0.552m .

Recall that we are interested in satisfying the maxi-
mum number of quartets and not necessarily finding the
optimal cut in G(Q). Moreover, while s0 corresponds to
a real split in T and therefore no quartets are violated
at s0 this is not necessarily true for CGW .

Definition 3.1. Qv(CGW) denotes the set of quartets
violated by CGW and mv(CGW) = |Qv(CGW)|.

Observation 3.1.

E[mv(CGW)] ≤ 2E[ms(CGW)]− 0.276m.(3.5)

Proof. By Observation 2.1 we get that a quartet
violated by CGW contributes two bad and two good
edges. Now since α = 2 we get:

w(CGW) = 4ms(CGW)− 2mv(CGW).(3.6)

By Lemma 3.2 the result follows.
So far we have dealt with quartets that are either

satisfied or violated by the first cut. However, we are left
with the sets of quartets deferred by CGW , denoted by
Qd(CGW), and quartets unaffected by CGW , denoted by
Qu(CGW). The cut CGW partitions the taxa set X into
{X1,X2}. We thus have that each quartet in Qu(CGW)
is either a quartet whose leaves are in X1 or else its leaves
are in X2. Similarly, each quartet in Qd(CGW) now
corresponds to a rooted triplet in X1 (in the case where
the quartet has a single taxa in X2) or to a rooted triplet

1038 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

in X2 (in the case where the quartet has a single taxa in
X1). As in Lemma 2.1 we can construct labeled rooted
trees T1 and T2 where the leaves of Ti are labeled by Xi
and so that at least 1/3 of these triplets and quartets
are satisfied. This yields the following approximation
algorithm for quartet consistency - MaxCut Approx:

MCA(Q)
1. Construct G(Q) with α = 2.
2. Apply GW MaxCut on G(Q) and obtain a

partition {X1,X2} over the taxa set X .
3. Construct a random tree T1 with root ρ1

over X1 and similarly T2 over X2.
4. Let T be the tree obtained by connecting

ρ1 andρ2.
5. Return T .

Theorem 3.1. Let TMCA be the tree returned by the
MCA algorithm applied on a consistent set of randomly
chosen quartets Q with m = |Q|. Then we have
E[|Qs(TMCA)|] ≥ 0.425m.

Proof. Recall that Q = Qu(CGW) ∪ Qd(CGW) ∪
Qs(CGW) ∪ Qv(CGW). Also note that the total set
of satisfied quartets, Qs(T) is the union of the three
disjoint sets Qs(CGW) ∪ Qs(T1) ∪ Qs(T2) (we slightly
abuse notation here since Qs(Ti) actually consists of
quartets and triplets, but recall that each satisfied
triplet corresponds to a deferred quartet of CGW that
was eventually satisfied). Now, by Lemma 2.1,

|Qs(TMCA)|
= |Qs(CGW) ∪Qs(T1) ∪Qs(T2)|

= ms(CGW) +
1
3

(mu(CGW) +md(CGW))

= ms(CGW) +
1
3

(m− (ms(CGW) +mv(CGW)))

=
1
3
m+

2
3
ms(CGW)− 1

3
mv(CGW).

Hence, when we take expected values we get that
E[|Qs(TMCA)|] = m

3 + 2
3E[ms(CGW)]− 1

3E[mv(CGW)].
However, recall that by Observation 3.1 we know that
2E[ms(CGW)]− E[mv(CGW)] ≥ 0.276m. Therefore we
obtain:

E[|Qs(TMCA)|] ≥ m

3
+

0.276m
3

.(3.7)

3.2 Noisy input analysis The analysis in the previ-
ous subsection assumes an error free data. However, re-
alistic inputs are sometimes subject to noise and there-
fore we cannot always expect all quartets to be consis-
tent. Our algorithm MCA can be adapted to achieve

performance guarantee when a bounded fraction of the
quartets are erroneous.

Theorem 3.2. When a fraction 1 − η of the set of m
quartets agree with T , the expected number of quartets
satisfied by the tree returned by algorithm MCA is at
least 0.425m− 0.26ηm.

Proof. Notice that the case η = 0 coincides with the
analysis in the noise-free case. In fact, the proof proceed
along the lines of the analysis of the noise-free case, and
generalizes it. Recall the split s0 in T that partitions
the taxa set into two parts where each part is of size
at least n

3 . In the current case however, in addition
to the three disjoint sets Qu(Cs0),Qd(Cs0),Qs(Cs0) we
also have Qv(Cs0) - the set of quartets violated at s0
and equivalently we denote them as mv(s0). As in the
proof of Lemma 3.1 we have:

E[mu] = m(β4 + (1− β)4),
E[md] = 4m(β3(1− β) + β(1− β)3),
E[ms] = 6(1− η)m(β2(1− β)2),
E[mv] = 6ηm(β2(1− β)2).

Similarly we obtain:

E[w(s0)] ≥ 4 ·6(1−η)m
4
81
−2 ·6ηm 4

81
= m

16
27

(2−3η) .

Again we use this value as lower bound for the
maximum cut in G(Q). Recall that the cut returned
by the GW, CGW satisfies

E[w(CGW)](3.8)

≥ 0.878
(

16m
27

(2− 3η)
)
− 0.122 ∗ 4m

= 4E[ms(CGW)]− 2E[mv(CGW)] .

Similarly to the noise-free case, the two random trees at
both sides of CGW satisfy 1/3 of the quartets either
deferred or unaffected by the MaxCut step. Since
the total number of satisfied quartets by the MCA
algorithm is the sum of the quartets satisfied at the
MaxCut stage and the random tree stage, we obtain:

|Qs(TMCA)|

= ms(CGW) +
1
3

(mu(CGW) +md(CGW))

= ms(CGW) +
1
3

(m−ms(CGW)−mv(CGW))

=
m

3
+

1
3

(2ms(CGW)−mv(CGW)) .

By (3.8) we obtain that E[|Qs(TMCA)|] ≥ m
3 + 1

3 ·
1
2

(
0.878

(
16m
27 (2− 3η)

)
− 0.122 ∗ 4m

)
.

1039 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

4 Improved approximations for mildly dense
instances

As in the previous section, we assume a set Q of m
quartets are generated randomly from a tree T over X
leaves with |X | = n. The previous section assumed
nothing about m (the density of the input). In this
section we prove that if the input is mildly dense, then
a better approximation algorithm can be obtained. By
mildly dense we require that each pair of taxa appear
together in more than a constant number of quartets.
For our purposes it would suffice that m ≥ Cn2 log n
for some suitable absolute constant C. Notice that such
instances may still be very far from dense instances as
the latter have m = Θ(n4).

Our improved algorithm is based upon two non-
trivial ingredients that we add to the quartets Max-
Cut algorithm, each contributing its own improvement
to the approximation ratio. We call them the exact-3-
cut method and the negative edge cancellation method.
Already the exact 3-cut method yields the claimed
improvement to 0.468 mentioned in the introduction.
The negative edge cancellation method improves this
slightly more to at least 0.472. Due to space limitations
we will only describe in full the exact 3-cut method,
while the negative edge cancellation method will be
more briefly sketched.

4.1 Exact 3-cut We design an approximation algo-
rithm that satisfies an expected number of 0.4689m
quartets whenever m > Cn2 log n.

Consider an edge of T whose removal from T
partitions the leaves to sets of size zn and (1−z)n which
are as balanced as possible (namely z ≤ 1/2 ≤ 1−z and
z is maximal). Recall also that by the (1

3 ,
2
3)-property,

z ≥ 1/3.

Observation 4.1. When z ≥ 6/13 − δ, where δ is a
sufficiently small absolute constant, the algorithm from
Section 3 achieves approximation ratio of 0.4689m.

Proof: Using the same analysis an in the Section 3,
with β = 6/13 − δ instead of β = 1/3 in (3.3), yields,
in Lemma 3.1, that E[w(s0)] ≥ 1.4823m. Lemma 3.2
gives, in turn, that E[w(CGW)] ≥ 0.8134m. This,
in turn, gives in (3.7) that E[|Qs(TMCA)|] ≥ m

3 +
0.8134m/2

3 ≥ 0.4689m.
We therefore proceed as follows. We run the MCA

algorithm and see if the tree it constructs gives us at
least 0.4689m satisfied quartets. If yes, then we are
done. Otherwise, we know that any edge of T splits
the leaves to two sets where the smaller set has at most
6n/13 − δn elements in it. We may now suppose that
1/3 ≤ z < 6/13− δ.

Lemma 4.1. There is an internal vertex x of T whose
removal from T creates three sub-trees that partition the
set of leaves into three parts of sizes αn, βn, γn where
α ≤ β ≤ γ, α + β + γ = 1, and α ≥ 1/13 + 2δ and
γ ≤ 6/13− δ.

Proof: Consider an edge e = (x, y) that partitions
the leaves optimally as above into sets of size zn and
(1 − z)n. We know that z ≤ 6/13 − δ and 1 − z ≥
7/13 + δ. Suppose that x belongs to the part with at
least (1−z)n ≥ (7/13+δ)n leaves. If we remove x from
the tree we get one part with at most (6/13−δ)n leaves
and two other parts having sum at least (7/13 + δ)n.
None of these two other parts can have size smaller than
(1/13 + 2δ)n as otherwise this would have contradicted
the optimality of the partitioning edge e.

Let, therefore (A,B,C) be some partition of the
leaves obtained by removing an internal vertex of T ,
so that |A| = αn, |B| = βn and |C| = γn and α, β, γ
satisfy the conditions of Lemma 4.1. We know that such
a partition exists, so let’s fix one. We will describe a
polynomial time algorithm that, in each step, generates
a partition of the leaves, and that with high probability,
one of the partitions it generates is precisely (A,B,C).

Before describing the details of the algorithm, we
need a definition and a lemma. Let q = 12m/n2

and notice that q is the expected number of quartets
containing a given pair of taxa. For a vertex x ∈ A we
say that x is A-interior, if for all y ∈ B ∪ C, there are
at least (2/3)(α2−δ)q quartets in which (x, y) is a good
edge.

Lemma 4.2. With very high probability there exists an
A-interior vertex.

Proof: Fix y ∈ B ∪ C. Since in each quartet that
contains y and three vertices of A, two of these three
vertices have a good edge with y, it follows that there
exists x ∈ A that in at least 2/3 of the quartets that
contain x, y and two additional vertices of A, (x, y) is
a good edge. But for such an x and y, the expected
number of such quartets is α2q. Since q > C log n, a
standard Chernoff large deviation inequality shows that
with very high probability, there are at least (α2 − δ)q
such quartets. Thus, we have proved that for this
specific y, there exists with very high probability an
x ∈ A so that there are at least (2/3)(α2 − δ)q quartets
in which (x, y) is a good edge. But notice that if in
any quartet (x, u, v, y) with u, v ∈ A we have that (x, y)
is a good edge, then in any quartet (x, u, v, y′) with
y′ ∈ B ∪ C we also have that (x, y′) is a good edge.
Hence, this property of x is guaranteed to hold with
high probability for all y ∈ B ∪ C. Hence, such an x is
A-interior.

1040 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Similarly, we define a vertex x ∈ B as B-interior,
if for all y ∈ A ∪ C, there are at least (2/3)(β2 − δ)q
quartets in which (x, y) is a good edge. Similarly, with
very high probability there exists a B-interior vertex.

Our algorithm proceeds as follows. Consider all
possible quintuples (x, y, a, b, c) where x and y are
distinct leaves, and a, b, c are positive integers satisfying
a+ b+ c = n, (1/13 + 2δ)n ≤ a ≤ b ≤ c ≤ (6/13− δ)n.
Notice that there are O(n4) possible quintuples. Our
goal is to let x play the role of an A-interior vertex,
let y play the role of a B-interior vertex, and let a, b, c
play the roles of the cardinalities of A,B,C respectively.
Since we are scanning all possible quintuples, we know
from Lemma 4.1 and Lemma 4.2 that with very high
probability, at least one quintuple matches these roles.

So fix a quintuple (x, y, a, b, c) for which x is A-
interior, y is B-interior, and a, b, c are the correct cardi-
nalities. We now show that when our algorithm exam-
ines this quintuple, it will, with very high probability,
precisely construct A,B,C.

What can we say about the edges (x, u) whenever
u ∈ B ∪ C? The expected number of quartets in
which such an edge is good is, by Lemma 4.2 at least
q(2αβ+2αγ+2βγ+(2/3)(α2−δ)). On the other hand,
if u ∈ A then the expected number of quartets in which
such an edge is good is at most q(1 − (1 − α)2). Now,
there is a clear separation between these two values.
Indeed,

[2αβ + 2αγ + 2βγ + 2/3(α2 − δ)]− [1− (1− α)2] =
2βγ − (1/3)α2 − (2/3)δ2 > 1/9 .

This implies that A can be constructed precisely; we
will place in it precisely those u for which the number
of quartets in which (x, u) is good is at most q(1− (1−
a/n)2) + δq. We write a/n instead of α to stress the
point that the algorithm does not know the value of
α, but when scanning the “correct” quintuple it will
be the case that αn = a. Notice that we also added
a “confidence” of δq since q(1 − (1 − α)2) is only an
expectation, and hence with very high probability we
do not deviate from it by more than δq.

Similarly, when y is B-interior, what can we say
about the edges (y, u) whenever u ∈ A ∪ C? The
expected number of times such an edge is good is at
least q(2αβ+ 2αγ+ 2βγ+ (2/3)(β2− δ)). On the other
hand, if u ∈ B then the expected number of times such
an edge is good is at most q(1 − (1 − β)2). Again, we
can show that there is a clear separation between these
two values. Indeed,

[2αβ + 2αγ + 2βγ + 2/3(β2 − δ)]− [1− (1− β)2] =
2αγ − (1/3)β2 − (2/3)δ2 > 1.5δ .

(Here we use the fact that α ≥ 1/13 + 2δ and γ ≤
6/13 − δ). This implies that B can be constructed
precisely. But this also means that with very high
probability, when scanning the “correct” (x, y, a, b, c),
then also the correct (A,B,C) is constructed. Notice
that non-correct quintuples may either fail to construct
a 3-cut (since a vertex u may “want” to be both in
A and in B) or may construct a 3-cut for which some
quartets are violated. But the point is that we are
guaranteed that some quintuple (namely, the correct
one) will generate a cut (A,B,C) for which no quartet
is violated. Moreover, for this cut, any quartet that
does not have three or more leaves in the same part is
satisfied by the partition. This means that we satisfy
all but a fraction of

α4+β4+γ4+4(α3β+β3α)+4(α3γ+γ3α)+4(γ3β+β3γ)

quartets. If we now construct random trees on each
of the three parts we satisfy an expected amount of
1/3 of these deferred and unaffected quartets. Overall,
the expected number of satisfied quartets is at least a
fraction of

1− (2/3)(α4 + β4 + γ4 + 4(α3β + β3α) +
4(α3γ + γ3α) + 4(γ3β + β3γ))

of the quartets, and this value is much larger than
0.4689, as required.

4.2 Negative edge cancellation When we applied
Lemma 3.2, we have assumed the worst case scenario
that the total sum of the negative weights is 4m. This,
of course, is always true if we think of G(Q) as a
multigraph; it has precisely 2m bad edges with weight
−2 each. However, the MaxCut algorithm treats G(Q)
as a weighted graph. That is, if u, v have x good edges
between them and y bad edges between them then the
weight of that edge is x − 2y. In other words, the x
good edges cancel some (or maybe all) of the negative
weights incurred by the pair u, v. Now, if the number
of input quartets is small (say m = o(n2)) then most
pairs u, v have only a single edge between them, and
indeed the total negative weight is 4m(1− o(1)). This,
however, ceases to be the case when m = ω(n2). In this
case, the expected multiplicity of the edge (u, v) in the
multigraph G(Q) is larger than a constant. Moreover, if
u, v are a pair of vertices corresponding to pair of taxa
that are sufficiently far apart in the tree T , then, in fact,
we can quantify the amount of negative cancellation
that we obtain in the pair u, v.

Let us be slightly more concrete. Let eA be an
edge separating the tree into two subtrees T1 and T2

where L(T1) has size αn and L(T2) has size (1 − α)n,

1041 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

where 1/3 ≤ α ≤ 1/2. Furthermore, let eB be an edge
separating T2 into two subtrees T3 and T4 where the
respective sizes of L(T3) and L(T4) are (1 − α)βn and
(1 − α)(1 − β)n, and 1/3 ≤ β ≤ 2/3. Assume w.l.o.g.
that eA is incident with a vertex in T3. Let u ∈ L(T1)
and v ∈ L(T3). Now consider two types of quartets that
contain u and v. The first one (we call q1-type), is of
the form ((u, v), (i, j)) where i, j ∈ L(T4); these quartets
contribute a bad edge between u and v. The expected
number of such quartets is

12m
n2

((1− α)(1− β))2 + o(m/n2) .(4.9)

The second one (q2-type) is of the form ((i, u), (v, j))
where i ∈ L(T1) and j ∈ L(T2); these quartets
contribute a good edge between u and v. The expected
number of such quartets is

24m
n2

α(1− α) + o(m/n2) .(4.10)

Since bad edges have negative weight (−2), while good
edges have positive weight (+1), and since taking (4.9)
twice is still much smaller than taking (4.10) once, we
have that all negative weight between u, v is canceled.
As there are α(1−α)βn2−o(n2) possible pairs u, v with
u ∈ L(T1) and v ∈ L(T3) we have that the expected
negative weight cancellation is

α(1− α)βn2 24m
n2

(1− α)2(1− β)2 − o(m) .(4.11)

Similarly and symmetrically, we could have done the
same thing by splitting T1 into two subtrees T5 and T6

via an edge eC , with respective sizes of L(T5) and L(T6)
being αγn and α(1− γ)n, and 1/3 ≤ γ ≤ 2/3. Assume
w.l.o.g. that eC is incident with a vertex in T5. This
time, however, we will only consider pairs u ∈ L(T4)
and v ∈ L(T5) (we cannot allow u to be in L(T3)
since such pairs have already been accounted for in the
previous case). We will obtain an analogous expression
to expression (4.11) for expected cancellation of bad
edges resulting from quartets of types q3 (analogous to
q1) by good edges resulting from quartets of type q4
(analogous to q2):

α(1− α)γ(1− β)n2 24m
n2

α2(1− γ)2 − o(m) .(4.12)

We thus have that the expected cancellation is the sum
of (4.11) and (4.12).

It now just remains to minimize (4.11) + (4.12)
subject to 1/3 ≤ α ≤ 1/2 and 1/3 ≤ β, γ ≤ 2/3, in
order to get a lower bound on the expected negative edge
cancellation. Clearly (4.11) is minimized when β = 2/3
and (4.12) is minimized when γ = 2/3 and β = 2/3.

Their sum (up to the o(m) term) now becomes only
m 16

27 (3α(1−α)3+α3(1−α)) whose minimum in [1/3, 1/2]
is attained at α = 1/2, in which case it is 4m/27. In any
case, we see that when m = ω(n2) we can replace 4m
in Lemma 3.2 with (4 − 4/27)m − o(m), and, together
with the 3-cut method, this yields an improvement of
the approximation algorithm to 0.472.

5 A randomized PTAS for dense instances

We present a randomized PTAS for MQC whenever the
set of input quartets Q contains Θ(n4) quartets. For
every fixed ε > 0, if the solution to MQC is Qopt, our
algorithm will construct, with very high probability, a
tree T so that |Qs(T)| ≥ |Qopt|(1 − ε), in polynomial
time.

Our proof is based upon a randomized reduction to
Complete MQC (the case where |Q| =

(
n
4

)
) for which a

PTAS has been provided by Jiang at al. [10].

Theorem 5.1. Let α > 0 and ε′ > 0 be fixed. There
is a polynomial time algorithm that, given an instance
of Q of size at least α

(
n
4

)
, constructs with very high

probability a tree T such that Qs(T) ≥ (1− ε′)|Qopt|.

Proof. Given an input set Q of m quartets on the taxa
set {1,. . . ,n}, we extend it into an instance of complete
MQC as follows. For each 4-set {a, b, c, d} of taxa that
does not induce an element of Q, we randomly construct
a quartet on {a, b, c, d} where each of the three choices
is equally likely. We do this, independently, for all(
n
4

)
−m 4-sets. Let Q∗ denote the set of s =

(
n
4

)
−m

randomly constructed quartets, and notice that Q∪Q∗
is an instance of complete MQC.

Lemma 5.1. With very high probability, there is no tree
on labeled leaves {1, 2, . . . , n} that satisfies more than
s(1/3 + ε/2) elements of Q∗.

Proof. Fix any tree T whose leaves are labeled with
{1, . . . , n}. The expectation of |Q∗s(T)| is precisely s/3.
We claim that, with very high probability, |Q∗s(T)| <
s/3+sε/2. Since each quartet in Q∗ is chosen randomly
and independently of all others, the random variable
|Q∗s(T)| is just a sum of s indicator random variables,
each having probability 1/3. By a Chernoff large
deviation inequality (see, e.g., [1], Appendix A),

Pr[|Q∗s(T)| − s/3 > εs/2] < e−2(εs/2)2/s = e−ε
2s/2 .

It is well know (and easy) that the number of labeled
trees with 2n−2 vertices is at most (2n)2n−4, and this is
more than the number of possible trees T in our case. It
follows from the union bound that the probability that
some tree T has |Q∗s(T)| ≥ s/3 + sε/2 is at most

(2n)2n−4e−ε
2s/2 = o(1)

1042 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

where we have used the fact that s = Θ(n4) (in fact,
the last claim works even if s = ω(n log n)).

Lemma 5.2. With very high probability, there exists a
tree T for which |(Q∪Q∗)s(T)| > |Qopt|+ s(1/3− ε/2).

Proof. Consider any tree T that is optimal for Q. For
such a tree we have |Qs(T)| = |Qopt|. As in the previous
lemma, the expectation of |Q∗s(T)| is s/3. Again, using a
Chernoff large deviation inequality (this time, however,
we need to bound the deviation from the expectation
from below):

Pr[|Q∗s(T)| − s/3 < −εs/2]

< e−(εs/2)2/(2s/3)

= e−(3/8)ε2s = o(1) .

In particular, with probability 1− o(1) for this tree we
have |(Q∪Q∗)s(T)| > |Qopt|+ s(1/3− ε/2).

Completing the proof of Theorem 5.1: We con-
struct a random Q∗ as above, and feed Q ∪ Q∗ an
an input to complete MQC, for which the algorithm
from [10] outputs, in polynomial time, a tree T0 so that
|(Q ∪ Q∗)s(T0)| ≥ (1 − ε)|(Q ∪ Q∗)opt|. By Lemma 5.1
we know that with very high probability, |Q∗s(T0)| ≤
s/3+ εs/2. By Lemma 5.2 we know that with very high
probability, |(Q ∪ Q∗)opt| > |Qopt| + s(1/3 − ε/2). It
follows that, for ε sufficiently small (as a function of α
and ε′), |Qs(T0)| ≥ (1− ε′)|Qopt|, as required.

6 Concluding remarks

Although the MQC problem is open for almost twenty
years, the only general result achieved so far is a PTAS
for a complete input set of

(
n
4

)
quartets. We extended

this algorithm to handle arbitrary inputs of size Θ(n4).
We then introduced a new approximation algorithm
for the MQC problem for arbitrary size inputs that
originate from a uniform random distribution. The
algorithm is based on solving a MaxCut problem in a
certain weighted graph induced by the input quartets.
In its most general form, the algorithm achieves an
approximation ratio of 0.425 for consistent input. For
mildly dense inputs, this ratio can be further improved
to 0.468 using additional non-trivial techniques and
structural properties of the induced graph.

An important observation is that the 3-cut method
in Subsection 4.1 actually yields a PTAS for MQC for
some tree topologies: it follows from that method that
these are the tree topologies that have the property that
there exists an internal vertex whose removal splits the
tree into three parts where each part contains between
a 1/13 + o(1) and a 6/13 − o(1) fraction of the leaves,
and the same property holds recursively in each of the

separated parts. For example, the complete binary tree
in which all leaves are in the same level has this property.

The issue of random quartets deserves some treat-
ment. Indeed in some settings it is possible to obtain all(
n
4

)
quartets and then employ the PTAS of Jiang et al.

[9]. However, such an approach is very time costly (not
to say prohibitive) even for not too large datasets (say
1000 taxa). The applicability of this approach has been
demonstrated in [14] where a subset of the complete
data set was used for the MaxCut approach and yielded
better results than other reconstruction methods.

7 Acknowledgments

We thank Tandy Warnow for her very helpful comments
and Benny Chor for insightful discussions.

References

[1] N. Alon and J. Spencer. The Probabilistic Method.
John Wiley, 1992.

[2] Constantinos Daskalakis, Cameron Hill, Alexander
Jaffe, Radu Mihaescu, Elchanan Mossel, and Satish
Rao. Maximal accurate forests from distance matri-
ces. In RECOMB, pages 281–295, 2006.

[3] Constantinos Daskalakis, Elchanan Mossel, and
Sébastien Roch. Optimal phylogenetic reconstruction.
In STOC, pages 159–168, 2006.

[4] P. Erdös, M. Steel, L. Szekely, and T. Warnow. A
few logs suffice to build (almost) all trees (i). Random
Structures and Algorithms, 14:153–184, 1999.

[5] P. Erdös, M. Steel, L. Szekely, and T. Warnow. A few
logs suffice to build (almost) all trees (ii). Theoretical
Computer Science, 221:77–118, 1999.

[6] M. R. Garey and D. S. Johnson. Computers
and Intractability; A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[7] M.X. Goemans and D.P. Williamson. Improved ap-
proximation algorithms for maximum cut and sat-
isfiability problems using semidefinite programming.
Journal of the Association for Computing Machinery,
42(6):1115–1145, November 1995.

[8] I. Gronau, S. Moran, and S. Snir. Fast and reliable
reconstruction of phylogenetic trees with very short
branches. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 379–388, 2008.

[9] T. Jiang, P. Kearney, and M. Li. Orchestrating
quartets: approximation and data correction. In IEEE
Symp. Foundation of Computer Science (FOCS), pages
416–425, Palo Alto, California, November 1998.

[10] T. Jiang, P. E. Kearney, and M. Li. A polynomial time
approximation scheme for inferring evolutionary trees
from quartet topologies and its application. SIAM J.
Comput., 30(6):1942–1961, 2000.

[11] K. St. John, T. Warnow, B. M. E. Moret, and
L. Vawter. Performance study of phylogenetic meth-

1043 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

ods: (unweighted) quartet methods and neighbor-
joining. In Proceedings of the Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, 2001.

[12] C. Semple and M.A. Steel. Phylogenetics. Oxford
University Press, 2003.

[13] S. Snir and S. Rao. Using max cut to enhance
rooted trees consistency. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB),
3(4):323–333, 2006. Preliminary version appeared in
WABI 2005.

[14] S. Snir, T. Warnow, and S. Rao. Short quartet puz-
zling: A new quartet-based phylogeny reconstruction
algorithm. Journal of Computational Biology (JCB),
1(15):91–103, 2008.

[15] M. Steel. The complexity of reconstructing trees
from qualitative characters and subtress. Journal of
Classification, 9(1):91–116, 1992.

1044 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

