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Abstract

Phylogenetic tree reconstruction is a fundamental biological problem. Quartet amalgamation
- combining a set of trees over four taxa into a tree over the full set - stands at the heart of
many phylogenetic reconstruction methods. This task has attracted many theoretical as well
as practical works. However, even reconstruction from a consistent set of quartet trees, i.e. all
quartets agree with some tree, is NP-hard, and the best approximation ratio known is 1/3. For a
dense input of Θ(n4) quartets that are not necessarily consistent, the problem has a polynomial
time approximation scheme.

When the number of taxa grows, considering such dense inputs is impractical and some
sampling approach is imperative. It is known that given a randomly sampled consistent set of
quartets from an unknown phylogeny, one can find, in polynomial time and with high probability,
a tree satisfying a 0.425 fraction of them, an improvement over the 1/3 ratio.

In this paper we further show that given a randomly sampled consistent set of quartets from
an unknown phylogeny, where the size of the sample is at least Θ(n2 log n), there is a randomized
approximation scheme that runs in linear time in the number of quartets. The previously known
polynomial approximation scheme for that problem required a very dense sample of size Θ(n4).
We note that samples of size Θ(n2 log n) are sparse in the full quartet set. The result is obtained
by a combinatorial technique that may be of independent interest.

keywords: phylogenetic reconstruction, quartet amalgamation, approximation scheme.

1 Introduction

The study of evolution and the construction of phylogenetic (evolutionary) trees are classical sub-
jects in biology. Existing accurate phylogenetic techniques are capable of coping with a relatively
small amount of data. DNA sequences from a variety of organisms are rapidly accumulating, chal-
lenging current approaches of phylogenetics. The supertree approach works by constructing small
trees over overlapping sets of taxa, and subsequently, amalgamating these trees into a big tree over
the full set.

We distinguish between rooted and unrooted phylogenetic trees. In the rooted setting a rooted
triplet tree (Figure 1:a) is the basic unit of information. We denote a triplet over the taxa a, b, c

∗Department of Evolutionary Biology, University of Haifa, Haifa 31905, Israel.
E–mail: ssagi@math.haifa.ac.il
†Department of Mathematics, University of Haifa, Haifa 31905, Israel.

E–mail: raphy@math.haifa.ac.il

1



by ab|c meaning that, in the underlying tree, the lowest common ancestor of a and b (lca(a, b))
is a descendant of lca(a, c) = lca(b, c). Given a set of rooted triplets, there exists a polynomial
time algorithm that constructs a tree consistent with the given set, or reports that no such tree
exists [1, 8]. In the unrooted setting, the notion of lca is meaningless and therefore the basic
unit of information is a quartet tree (Figure 1:b) - ab|cd - meaning that there is a path in the
underlying tree separating a and b from c and d. Quartet-based reconstruction methods have
been extensively studied. For example, [15] describe the most used algorithm for inference from
quartets, and another important heuristic is the quartet cleaning technique for correcting quartet
errors [3, 4, 6, 9] The decision problem of whether there exists a tree satisfying all the quartets in
an arbitrary given set is NP-complete [14]. This raises the problem of finding a tree maximizing
the number of consistent quartets - maximum quartet consistency (MQC) [14].
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(a) (b)

Figure 1: In a rooted setting, a rooted triplet is the smallest informative tree versus an unrooted
quartet in the unrooted setting. (a) - a rooted triplet tree 12|3. (b) - an unrooted quartet tree
12|34.

The MQC problem is central in many phylogenetic problems that reduce to solving MQC at
some stage (see [11], Chapter 6, for an introduction). The complexity of approximating MQC is a
longstanding open problem. At present, the best known polynomial time approximation algorithm
has an approximation ratio of 1/3 (see Section 1.1). There are also a few results that assume
some constraint either on the correctness or the density of the input. Most notably, Jiang et al. [9]
designed a polynomial time approximation scheme (PTAS) for MQC when the input consists of all(n
4

)
possible quartets. This was later generalized by the authors in [13] for inputs of size Θ(n4). We

mention here that the dual problem of Min Quartet Inconsistency (MQI), where one wants to find
a phylogeny minimizing the number of input quartets that are inconsistent with such phylogeny
has also been extensively studied [5, 18, 19].

The requirement that the input consists of Θ(n4) quartets as in [9, 13] becomes prohibitive
when the number of taxa grows even to moderate sizes. A faster approach is to sample a relatively
small number of m �

(n
4

)
four-taxa sets, providing as input the corresponding m quartets they

define, and try to solve MQC on this input. This version of the problem is sampled-MQC.
In a recent paper [13], the authors devised a new polynomial time approximation algorithm

for sampled-MQC. Given a set of quartets sampled uniformly from the set of all
(n
4

)
quartets of

an unknown phylogeny, the algorithm achieves an approximation ratio of roughly 0.425. Observe
that since it is assumed that the quartets are sampled from some unknown phylogeny, the input
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contains no errors. More generally, if the input contains at most an η fraction of errors, then the
algorithm achieves an approximation ratio greater than 0.425 − 0.26η. The result is obtained by
constructing a weighted quartet graph and approximating a maximum weight cut in that graph.

The main result of this paper is that sampled-MQC from an unknown phylogeny admits a
linear time randomized approximation scheme for sparse inputs. We prove that already for m =
Θ(n2 log n), sampled-MQC from an unknown phylogeny admits an EPRAS (efficient polynomial
time randomized approximation scheme [17]) that runs in O(m) time. In other words, we compute,
in O(m) time, an n-taxa phylogenetic tree that satisfies, with high probability, at least (1− ε)m of
the input quartets. This is an improvement over the input density of the other PTAS algorithms
of [9, 13], but at the cost of assuming a uniform error-free (consistent) sampled input. It also
improves significantly the previous 0.425 approximation, but at the cost of Ω(n2 log n) quartets.
As we discuss in the final section, our algorithm also allows that a small fraction (the fraction
depending on ε) of the supplied sampled quartets are erroneous.

1.1 Preliminaries

An (unrooted) phylogenetic tree is a tree whose internal vertices each have degree 3, and whose
leaves are labeled by some taxa set (representing existing species). Throughout this paper all trees
are phylogenetic trees, unless stated otherwise. For a tree T , we denote by L(T ) the taxa set
corresponding to the leaves of T .

Let T be a tree and A ⊆ L(T ) a subset of the leaves of T . We denote by TA, the subtree of T
induced by A. Namely, TA is the tree obtained from T by removing all leaves in L(T )\A and paths
leading exclusively to them, and subsequently internal vertices with degree two are contracted.

For two trees T and T ′, we say that T ′ is satisfied by T , if L(T ′) ⊆ L(T ) and TL(T ′) = T ′.
Otherwise, T ′ is violated by T . For a set of trees T = {T1, . . . , Tk} with possibly overlapping leaves,
we denote by Ts(T ) the set of trees in T that are satisfied by T . We say that T is consistent if
there exists a tree T ∗ over the set of leaves ∪iL(Ti) that satisfies every tree Ti ∈ T (see Figure 2).
Otherwise, T is inconsistent. When T is inconsistent, it is desirable to find a tree T ∗ over ∪iL(Ti)
that maximizes some objective function. T ∗ is called a supertree and the problem of finding T ∗ is
the supertree problem.

(a) (b)

Figure 2: (a) A phylogenetic tree over five leaves. (b) Two quartets, 12|34 and 13|45 satisfied by the tree
on the left.

A quartet tree (or simply quartet), is an undirected phylogenetic tree over four leaves {a, b, c, d}.
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We write a quartet over {a, b, c, d} as ab|cd if the removal of the unique edge connecting the two
internal vertices partitions the quartet into two components, one containing a, b and the other
containing c, d, as in Figure 2. An important case of the supertree problem is when the set of
input trees is a set of quartet trees Q and the task is to find a tree T that maximizes |Q ∩ Q(T )|
where Q(T ) is the set of all quartets induced by T (its full quartet set). The problem is denoted
as maximum quartet consistency (MQC). We note that MQC is NP-hard already as a decision
problem. Namely, it is NP-Complete to decide if a given set of quartets is consistent [14].

Notice that for every tree T with |L(T )| = n, its full quartet set Q(T ) consists of
(n
4

)
quartets,

as each subset of four leaves defines a unique quartet satisfied by T . Consider the following trivial
approximation algorithm for MQC. Take any tree T ∗ with n leaves, and randomly label them with
the elements of L(T ). As any four leaves a, b, c, d define one of three possible quartets (either ab|cd
or ac|bd or ad|bc), only one of which is satisfied by T , we have that T ∗ satisfies an expected number
of 1/3 of the input quartet set. Surprisingly, no algorithm is known that improves upon the naive
1/3 approximation, although the problem has been raised over two decades ago. In fact, even if we
are guaranteed that the input Q satisfies Q ⊂ Q(T ) (namely, we are guaranteed that the optimal
solution to MQC is |Q|), no algorithm is known to achieve an outcome that is asymptotically better
than |Q|/3. As mentioned in the introduction, the MQC problem has a PTAS when |Q| = Θ(n4)
[9, 13].

We now turn to sampled-MQC. As described in the introduction, we know the set of taxa L(T )
of some unknown tree T , and given any four taxa we can (using biological information) infer the
correct quartet. Clearly, if we have unlimited time and resources, we can generate all

(n
4

)
elements

of Q(T ) and solve the problem, as we have complete information, and the input is consistent. This,
however, is unrealistic for very large n.

Motivated by this problem, sampled-MQC consists of an input Q of m�
(n
4

)
quartets sampled

uniformly (say, with replacement), from Q(T ). Recently, the authors [13] obtained an approxima-
tion algorithm for sampled-MQC that improves upon the naive 1/3 approximation. They describe
a randomized approximation algorithm that constructs a tree T ∗ satisfying an expected number of
more than 0.425m elements of Q, when the input is error-free. More generally, if the input contains
at most an η fraction of errors, then the algorithm achieves an approximation ratio greater than
0.425− 0.26η.

The main result of this paper is a significant strengthening of the result of [13], for the case
where the sample size is at least Θ(n2 log n). Notice that such a sample is very sparse in Q(T ),
as the size of the latter is

(n
4

)
. We construct a linear time randomized approximation scheme for

error-free sampled-MQC. The exact statement of our result follows.

Theorem 1.1. Let ε > 0 be fixed. Suppose that Q is a set of m ≥ Θ(n2 log n) quartets sampled
uniformly from the full quartet set Q(T ) of some unknown tree T . Then there is an O(m) time
randomized algorithm that constructs a tree T ∗ that satisfies an expected number of (1−ε)m elements
of Q.

It should be noted that the O(m) term hides a large constant that depends on ε. The constant
is of the form (1/ε)O(1/ε). As mentioned earlier, the proof of Theorem 1.1 can be made slightly
more general. One does not need to assume that all m sampled quartets are error-free. As shown
in the final section, our proof stays intact as long as the number of errors is a small fraction that
depends quadratically on ε. The general (extremely high level) idea of the algorithm is to consider
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relatively small models of phylogenetic trees. By scanning constantly many such models, we prove
that one of them is guaranteed to be a model M of our unknown tree T . Given that model M , we
prove how to expand it to a tree T ∗ which is also modeled by M . We prove that with small constant
probability, T ∗ satisfies many quartets of Q. By repeating this process a constant number of times,
we eventually obtain, with high probability, a tree T ∗ which indeed satisfies many quartets of Q.

The rest of this paper is organized as follows. In the next section we state and prove several
notions and lemmas that are useful for the description of the algorithm. The algorithm and its
proof of correctness are given in Section 3. The final section contains some concluding remarks.

2 Tree models

For the remainder of this paper, we assume that T is some (unknown) phylogenetic tree with n
leaves. The leaves are labeled by a set L(T ) of known labels, and Q ⊂ Q(T ) is a set of quartets
obtained by sampling uniformly (with replacement) m elements of Q(T ). The error parameter
ε > 0 is fixed, and we assume that m ≥ Cn2 log n where C is some constant depending only on ε,
whose value is set in the proof as a result of optimization. Our goal is to construct a tree T ∗ that
satisfies, with high probability, at least (1− ε)m quartets of Q.

2.1 Tree models of constant size

Since all internal vertices of T have degree 3, it is a well-known fact that there is always an edge
of T , whose removal partitions T into two components, each having at least n/3 of the leaves.
Indeed, take an edge (x, y) whose removal partitions T to two components Cx and Cy, such that
||L(Cx)| − |L(Cy)|| is minimized. If one of the components, say Cx, has more 2n/3 leaves, then one
of the edges incident with x in Cx, say an edge (x, z), has the property that its removal creates
a component Cz with more than n/3 leaves, and hence choosing (x, z) instead of (x, y) causes a
smaller imbalance, contradicting the choice of (x, y). So, we may now assume that e = (x, y) has
the stated property. It will be convenient to view T as a rooted tree. Subdivide e by introducing a
new vertex r in its middle and make r the root. Hence, now T is a full binary tree, the children of r
are x and y, and each of them is an ancestor of at least n/3 leaves (see Figure 3). Unless otherwise
specified, we refer to this rooted version of T .

Figure 3: An unrooted phylogenetic tree on the left, and its rooted version on the right.

Let I(T ) denote the set of internal vertices of T (including the root r), and notice that since
|L(T )| = n and T is a full binary tree, then |I(T )| = n− 1.
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Recall that a lowest common ancestor of two vertices in a rooted tree is a vertex z that is a
common ancestor of both x and y, and any other common ancestor of x and y is an ancestor of z.
Denote by lca(x, y) the lowest common ancestor of x and y. In particular, if x is an ancestor of y,
then lca(x, y) = x. We say that a subset K ⊂ I(T ) is LCA-closed if whenever x, y ∈ K then also
lca(x, y) ∈ K. We further demand that r ∈ K. Observe that every set of k vertices of a rooted tree
can be made LCA-closed by adding to it at most k additional vertices.

There is a natural correspondence between an LCA-closed subset K, a topological minor of T
it defines, and a partition it defines on L(T ). We now state this correspondence formally.

Definition 1. Let K ⊂ I(T ) be LCA-closed. Let MT (K) be the rooted binary tree whose vertex
set is K, and u is the parent of v in MT (K) if and only if u is the lowest among all ancestors of v
in K. We call MT (K) a tree model of T .

Notice that r is the root of MT (K), since it is the only vertex of K with no ancestor in K.
Observe also that MT (K) is a contraction (in fact, a topological minor) of T .

For v ∈ K, let

Av = {x ∈ L(T ) | v is the lowest ancestor of x in K} .

Let v0 and v1 be the two children of v in T (and notice that v0 and v1 are not necessarily in K and
may or may not be in L(T )). Then Av is further divided into two parts, Av,0 are those leaves that
have v0 as their ancestor while Av,1 have v1 as their ancestor.

Definition 2. The set PT (K) = {Av,0 | v ∈ K}∪{Av,1 | v ∈ K} is the leaf partition of the model.

Notice that PT (K) is a partition of L(T ) into 2|K| parts. It may be the case that some parts
are empty; for example, if v ∈ K and its child v0 ∈ K then Av,0 = ∅. See Figure 4 for an example
of a model and its corresponding leaf partition.

Figure 4: A tree with L(T ) = {a, b, c, d, e, f, g, h} and its model formed by the LCA-closed set {1, 2, 3, 4}.
The corresponding leaf partition is: A1,0 = {d}, A1,1 = {e}, A2,0 = ∅, A2,1 = {c}, A3,0 = {f}, A3,1 = {g, h},
A4,0 = {a}, A4,1 = {b}.

Definition 3. A tree model MT (K) of a tree T is a δ-model if every element of PT (K) has size
at most δn.

The next lemma proves that there are δ-models with O(1/δ) vertices.

Lemma 2.1. There is a δ-model of T with at most 4/δ vertices.
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Proof. We prove that there exists a (not necessarily LCA-closed) subset K ′ ⊂ I(T ) with r ∈ K ′,
so that for each v ∈ K ′, the set of leaves Av has δn/2 ≤ |Av| ≤ δn. (Notice that since r ∈ K ′

then Av is well-defined even if K ′ is not LCA-closed.) Since P ′ = PT (K ′) is a partition of L(T ),
this implies that |K ′| ≤ n/(δn/2) = 2/δ. Now, since K ′ can be made into an LCA-closed set K
by adding to K ′ at most |K ′| additional vertices, we have that |K| ≤ 4/δ. Since P = PT (K) is a
refinement of P ′, then every element of P also has size at most δn, and the lemma follows.

We construct K ′ as follows. We initially set all the leaves in L(T ) as unmarked. Next, we
perform a postorder traversal of T . Whenever we reach a vertex v ∈ I(T ), let Uv denote the set
of yet unmarked leaves in the subtree rooted at v. If |Uv| ≥ δn/2 then we add v to K ′, mark all
elements of Uv, and notice that Av = Uv. Observe that we must have |Uv| ≤ δn. Otherwise, one of
the two children of v, say w, would have had at least δn/2 unmarked leaves in Uw. But since w has
already been traversed, we should have already added w to K ′ and marked all elements of Uw.

2.2 Constant size nets for constant size models

Let MT (K) be a δ-model, and let PT (K) be its leaf partition, consisting of subsets Av,j for v ∈ K
and j = 0, 1.

Definition 4. The function fT (K) : K × {0, 1} → [0, δ] where fT (K)(v, j) = |Av,j |/n is called the
size vector of the model.

We say that a function f ′ : K × {0, 1} → [0, δ] is an α-approximation of fT (K) if f ′(v, j) ≤
fT (K)(v, j) ≤ f ′(v, j) + α for all v ∈ K and j = 0, 1.

Given |K| and δ, a family of functions F is called a (|K|, δ, α)-net if for every possible function
f : K × {0, 1} → [0, δ], there exists an α-approximation of f in F .

For constants |K| and δ, it is not difficult to construct a (|K|, δ, δ4)-net of constant size, and
in constant time. This is analogous to constructing the set of all vectors of length 2|K| whose
coordinates are of the form iδ4 for i = 0, . . . , bδ−3c. As there are at most (1+δ−3)2|K| such vectors,
the claimed construction follows.

3 Proof of the main result

In our proof we will use

δ =
ε

5000
. (1)

For the proof of our algorithm we need to fix and reference the following objects.

1. A rooting of T from some vertex r as described in Section 2.1. Recall that this makes T into
a full binary tree, and each child of r is an ancestor of at least n/3 leaves.

2. A δ-model MT (K) of T with at most 4/δ vertices, guaranteed to exist by Lemma 2.1. Label
the vertices of MT (K) with {1, . . . , |K|}.

3. The leaf partition PT (K) of the model MT (K). Recall that PT (K) is a partition of L(T ) into
2|K| parts, denoted by Av,j for v ∈ K and j = 0, 1.

4. The size vector fT (K) of the model. Recall that fT (K)(v, j) = |Av,j |/n.
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Generally speaking, our algorithm will enumerate all possible δ-models, it will “guess” a close
approximation of fT (K), and it will try to generate a partition of L(T ) defined by a pair of a
model and an approximation of fT (K). We will show that after guessing a constant number of
times (a constant depending on δ and hence on ε) we are guaranteed that one of our trials forms a
“correct” partition of L(T ). We will then show that, under the assumption of a correct partition,
the generated partition is close to the actual partition PT (K). We will then show how to construct
a phylogenetic tree T ∗ using the generated partition, which satisfies many quartets of Q. We
mention here an algorithm of Giotis and Guruswami [7] which gives a randomized PTAS for a
different problem where the goal is also to compute some partition, and the main idea there is to
guess a “sketch” of the solution and then to extend such sketch. The details of their algorithm,
however, are completely different from ours.

We describe a general procedure PARTITION(M,f). The first parameter is a labeled binary
tree M with k vertices, and the second parameter is a function f : {1, . . . , k} × {0, 1} → [0, δ].
We call PARTITION a constant number of times. For all integers k satisfying 1/δ ≤ k ≤ 4/δ we
construct a (k, δ, δ4)-net Fk. This is done as explained in Section 2.2. As shown there, the number
of elements in Fk is at most (1/δ)O(1/δ). We also construct the setMk of all possible labeled binary
trees with k vertices. The number of such trees is trivially less than kk = (1/δ)O(1/δ) and there
are several classical ways to generate them, perhaps the simplest is by using the classical bijection
between labeled trees and Prüfer codes. For each k, for each f ∈ Fk and for each M ∈Mk we call
PARTITION(M,f). Hence, at some point we are guaranteed to call it with parameters (M0, f0)
where M0 is label-isomorphic to MT (K) and f0 is a δ4-approximation of fT (K).

What follows is a description of PARTITION assuming that the parameters are instantiated by
(M0, f0). Its behavior in other calls is of no interest to us (it may return a partition that is not
close to PT (K)).

3.1 PARTITION(M0, f0)

PARTITION tries, using f0 and M0, to construct a partition P∗ of L(T ) that is close (in a well
defined sense) to PT (K). We will show that with constant positive probability, it is guaranteed to
succeed.

The main problem, of course, is that although we have M0 and f0 (and thus we assume from
now on that we know MT (K) and have a good approximation of fT (K)), we do not know the
actual leaf partition PT (K). However, we do know a close approximation of the cardinality of each
element of PT (K), since f0 is close to fT (K).

We define:

1. yv,j to be the child of v in T that is the ancestor of all elements of Av,j ;

2. Sv,j ⊂ L(T ) to be all the leaves that have yv,j as their ancestor. Notice that Av,j ⊂ Sv,j .

For example, in Figure 4, we have that y1,0 is the left child of the root 1, and S1,0 = {a, b, c, d}.
If v is an ancestor of u, we say that u is below v and use the notation u < v. The notation

u ≤ v is used when we allow u = v.

Definition 5. We say that a partition P∗ of L(T ) is close to PT (K) if the following conditions
hold.
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1. P∗ = {Bv,j |v ∈ K , j = 0, 1} ∪ {B∗}. We call B∗ the exceptional part. Hence, B∗ =
L(T ) \

⋃
(v,j)∈K×{0,1}Bv,j.

2. For all v ∈ K and j = 0, 1 we have |Av,j \Bv,j | ≤ 50δ2n.

3. For all v ∈ K and j = 0, 1 we have Bv,j ⊂ Sv,j.

4. For all v ∈ K and j = 0, 1 we have |Sv,j \
⋃
u≤v(Bu,0 ∪Bu,1)| ≤ 50δ2n.

In fact, notice that the second requirement (which is the one we are after) is actually a conse-
quence of the third and fourth requirements. We will show how to construct, with constant positive
probability, a partition P∗ that is close to PT (K).

By performing a postorder traversal of M0, we may assume that whenever we reach v, we have
already defined sets Bu,i for all pairs (u, i) such that u < v, and, furthermore, the sets already
defined satisfy the desired properties. We will show how to define Bv,j so that with constant
probability, it also satisfies the properties above. Since the number of possible pairs (v, j) is only
2|K|, this yields that, with constant positive probability, the constructed P∗ is close to PT (K).

3.1.1 Constructing Bv,j

Assume that we have reached vertex v in our postorder traversal and wish to construct Bv,j .
Consider the set of leaves X = Sv,j \

⋃
u<v(Bu,0 ∪ Bu,1). Namely, X consists of the elements of

Av,j together with all other elements of Sv,j that have not been assigned to sets Bu,i. Although the
algorithm does not know the set X (since it does not know Sv,j), it does know a good approximation
for its cardinality. Since f0 is a δ4-approximation, we know each |Au,i| up to δ4n. Namely, f0(u, i) ≤
|Au,i|/n ≤ f0(u, i) + δ4. As there are at most 2|K| ≤ 8/δ possible pairs (u, i), the overall error in
estimating |Sv,j | is at most 8δ3n, since Sv,j =

⋃
u≤v(Au,0 ∪Au,1). Hence, our estimate for X, which

is just our estimate for |Sv,j | minus the already computed size |
⋃
u<v(Bu,0 ∪ Bu,1)| is also correct

up to an error of 8δ3n.
Consider first the case where our estimate for |X| is less than 49δ2n. In particular, we are

guaranteed that |X| ≤ 49δ2n+ 8δ3n ≤ 50δ2n. In this case, we simply define Bv,j = ∅. Notice that
since X contains Av,j , this still satisfies the conditions required of Bv,j in Definition 5.

So, we may now assume that |X| ≥ 49δ2n. Now, consider the tree TX whose root is yv,j and
whose leaf set is X. Again, the algorithm does not know TX , but it can guess, with constant
positive probability, some important information regarding its structure.

Each vertex t of TX , when removed from TX , partitions TX−t, and hence also partitions X, into
three parts (some of which may be empty). One part is the component containing the parent of t
(if t = yv,j then this part is empty). The two other parts contain each a child of t (if t does not have
two children then these parts could possibly be empty). So, denote the corresponding partition of
X by X0(t), X1(t), X2(t) where X0(t) are the leaves of the part of TX − t that contain yv,j (see
Figure 5). In particular X0(yv,j) = ∅ and if t ∈ X (namely t a leaf of TX) then X1(t) = X2(t) = ∅
while X0(t) = X − t.

Lemma 3.1. There exists t ∈ TX for which |X0(t)| ≤ 16δ2n but |X0(t) ∪ X1(t)| > 16δ2n and
|X0(t) ∪X2(t)| > 16δ2n.
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Figure 5: A vertex t of TX and the corresponding Xj(t) for j = 0, 1, 2.

Proof. Let t be a furthest vertex from yv,j in TX for which |X0(t)| ≤ 16δ2n. Clearly t is not a
leaf of TX since for leaves we have |X0(t)| = |X| − 1 ≥ 49δ2n − 1 > 48δ2n. Also, t must have
two children in TX since otherwise, if t1 is its only child then X0(t1) = X0(t), and t1 is further
than t from yv,j . So, let t1 and t2 be the two children of t, where tj belongs to the subtree of
TX − t whose leaves are Xj(t) for j = 1, 2. If |X0(t) ∪ X1(t)| ≤ 16δ2n then observe that since
X0(t2) = X0(t)∪X1(t), then t2 would have been furthest. Therefore, |X0(t)∪X1(t)| > 16δ2n, and
symmetrically, |X0(t) ∪X2(t)| > 16δ2n.

We call a vertex t satisfying Lemma 3.1 a center of TX . So fix some center t, and consider the
cardinalities, |Xj(t)| = αjn for j = 0, 1, 2. Our algorithm guesses values α∗j for j = 0, 1, 2 that
approximate the αj . We say that the guess is valid if |α∗j − αj | ≤ δ3 for j = 0, 1, 2. As there are
three values to guess in the range [0, 1], the probability of a valid guess is (δ3)3 = δ9, which is a
constant positive probability depending on δ.

We may now assume that the α∗j are a valid guess for j = 0, 1, 2. Now, if α∗1 ≥ 16δ2, we also
guess a leaf w1 ∈ X1(t). The probability that we have guessed correctly a leaf in X1(t) is therefore
at least 16δ2 − δ3, hence a constant positive probability. Similarly, if α∗2 ≥ 16δ2, we guess a leaf
w2 ∈ X2(t). So, assume that we have guessed correctly.

The construction of Bv,j is done by considering three cases. The first case is when α∗1 < 16δ2.
The second case is when α∗2 < 16δ2. The third case is when both are at least 16δ2. Since the first
and second case are symmetric, we consider, without loss of generality, only the first case and third
case.

Before describing these cases, we fix some notation. Let B =
⋃
u<v(Bu,0 ∪ Bu,1). Let D =

L(T )−Sv,j . Namely, D is the set of leaves that do not have yv,j as their ancestor. Since yv,j is not
the root of T (it may be a child of the root in the case where v = r is the root), then D contains all
the leaves of some child of the root of T , so |D| ≥ n/3. Notice that D,B,X are pairwise disjoint
and

D ∪B ∪X = L(T ) .

Consider a sample of Cn2 log n quartets where C is a sufficiently large constant. Eliminate from
this sample all quartets that contain an element of B. As |D| ≥ n/3, we still have a completely
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random sample Q of q ≥ C ′n20 log n0 quartets over D ∪X where n0 = |D ∪X| > n/3, and C ′ is a
suitably large constant. Observe that, indeed, the probability that a sampled quartet has no taxa
in B is at least (1/3)4 so it suffices to pick C ≈ 81C ′. Notice that for two leaves a, b ∈ D ∪X, the
probability that they appear in a specific element of Q is denoted by p and is precisely

p =
12

n0(n0 − 1)
.

For simplicity, denote |D| = ηn0, |Xi(t)| = αin = βin0. Observe that

η + β0 + β1 + β2 = 1 . (2)

Finally, let β∗i = α∗in/n0, and observe that as n/n0 < 3 we have |βi − β∗i | ≤ 3δ3.

3.1.1.1 The case α∗1 < 16δ2. Since |X| ≥ 49δ2n, we have that α0 + α1 + α2 ≥ 49δ2. As t is
a center we have α0 ≤ 16δ2. Since |α∗j − αj | ≤ δ3 we surely have α∗2 > 16δ2 so we are in the case
where we have guessed w2 ∈ X2(t).

We construct Bv,j as follows: Given z ∈ L(T ) \B = X ∪D, we count the number of quartets of
Q in which w2 and z are in opposite sides. If this number is at most qp(2β∗2 − (β∗2)2 + 6δ3 + δ2/2)
then we place z in Bv,j . Otherwise, we don’t.

The next three lemmas prove that, with high probability, the constructed set Bv,j satisfies
X2(t) ⊂ Bv,j ⊂ X. These lemmas show that for a z ∈ D ∪ X, we can, with high probability,
differentiate between the case z ∈ D and the case z ∈ X2(t). For those z ∈ X0(t) ∪ X1(t) we
will not be able to differentiate. Using this differentiation, we can find a subset Bv,j so that
X2(t) ⊂ Bv,j ⊂ X, as required.

Lemma 3.2. With probability at least 8/9, for all z ∈ D, the number of elements of Q in which
w2 and z are on opposite sides is at least

qp(2β2 − 2β22 + 2η(β0 + β1)− δ2/2) . (3)

Proof. Consider some z ∈ D. Given that w2 and z are in the same quartet of Q, what is the
probability that they are on opposite sides? Let a, b denote the other two elements of the quartet.
Clearly, if a ∈ X2(t) and b /∈ X2(t) then the quartet must be aw2|zb. Similarly, if b ∈ X2(t) and
a /∈ X2(t) then the quartet must be bw2|za. Also, if a ∈ D and b ∈ X0(t) ∪ X1(t) we must have
bw2|za. Similarly, if b ∈ D and a ∈ X0(t) ∪X1(t) we must have aw2|zb. It follows that, given that
w2 and z are in the same quartet of Q, they are on opposite sides with probability at least

2β2η + 2β2(β0 + β1) + 2η(β0 + β1)− on(1) = 2β2 − 2β22 + 2η(β0 + β1)− on(1)

where the r.h.s. uses (2) (the term on(1) denotes a quantity that goes to zero with n, and is due
to the fact that a and b are sampled without replacement, as they must be distinct). Hence, the
expected number of elements of Q in which w2 and z are on opposite sides is greater than

qp(2β2 − 2β22 + 2η(β0 + β1)− δ2/4) .

But q ≥ C ′n20 log n0 and hence qp > C ′ log n. Since each element of Q is sampled uniformly and
independently, we have, using a standard large deviation inequality (see [2], Theorem A.1.13), that
the probability of being below the expectation by more than qpδ2/4 is smaller than

exp(−(qpδ2/4)2/(2qp(2β2 − 2β22 + 2η(β0 + β1)− δ2/4))) .
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As this expression is trivially less than exp(−qpδ4/128) and since qp > C ′ log n we get that by
choosing C ′ = 256/δ4, the probability of being below the expectation by more than qpδ2/4 is less
than 1/(9n). Hence, by the union bound, with probability at least 8/9, for all z ∈ D we have that
the number of elements of Q in which w2 and z are on opposite sides is at least qp(2β2 − 2β22 +
2η(β0 + β1)− δ2/2), as claimed.

Lemma 3.3. With probability at least 8/9, for all z ∈ X2(t), the number of elements of Q in which
w2 and z are on opposite sides is at most

qp(2β2 − β22 + δ2/2) . (4)

Proof. Consider some z ∈ X2(t). Given that w2 and z are in the same quartet of Q, what is the
probability that they are on the same side? Let a, b denote the other two elements of the quartet.
Clearly, if both a and b are not in X2(t) then the quartet must be zw2|ab. Hence, given that w2

and z are in the same quartet of Q, they are on opposite sides with probability at most

1− (1− β2)2 + on(1) = 2β2 − β22 + on(1) .

Hence, the expected number of elements of Q in which w2 and z are on opposite sides is less than

qp(2β2 − β22 + δ2/4) .

Again, the probability of being above the expectation by more than qpδ2/4 is smaller than 1/(9n)
using C ′ = 256/δ4 (this time we use the large deviation inequality from [2], Theorem A.1.11, as we
need to bound the expectation from above). Hence, with probability at least 8/9, for all z ∈ X2(t)
we have that the number of elements of Q in which w2 and z are on opposite sides is at most
qp(2β2 − β22 + δ2/2), as claimed.

Lemma 3.4. Let Bv,j consist of all z ∈ X ∪D for which the number of quartets containing w2 and
z in opposite sides is at most qp(2β∗2 − (β∗2)2 + 6δ3 + δ2/2). Then, with probability at least 7/9 we
have X2(t) ⊂ Bv,j ⊂ X.

Proof. Recall that |β∗2 − β2| ≤ 3δ3. Hence,

qp(2β2 − β22 + δ2/2) ≤ qp(2β∗2 − (β∗2)2 + 6δ3 + δ2/2) .

Thus, by (4), with probability at least 8/9, we have that X2(t) ⊂ Bv,j .
It remains to prove that with probability at least 8/9 we have that Bv,j ⊂ X, or, equivalently,

that Bv,j ∩D = ∅. By (3) it suffices to prove that

2β2 − 2β22 + 2η(β0 + β1)− δ2/2 > 2β∗2 − (β∗2)2 + 6δ3 + δ2/2 .

As |β∗2 −β2| ≤ 3δ3 it suffices to prove that 2β2− 2β22 + 2η(β0 +β1)− δ2/2 > 2β2−β22 + 12δ3 + δ2/2
which is equivalent to showing that

2η(β0 + β1)− β22 > δ2 + 12δ3 . (5)

Recall that η = |D|/n0 and |D| ≥ n/3 so η ≥ 1/3. As t is a center we have, by Lemma 3.1, that
α0 + α1 ≥ 16δ2 so β0 + β1 > 16δ2. Since |Av,j | ≤ δn and since X consists of Av,j and at most
50δ2n additional vertices from sets corresponding to pairs (u, j) where u is below v we have, in
particular, that α2 ≤ δ + 50δ2. Thus, β2 ≤ 3δ + 150δ2 < 3.1δ. Hence the left hand side of (5) is at
least 2

3 · 16δ2 − 9.61δ2 > 1.056δ2, proving (5).
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Notice that by Lemma 3.4, with high probability (at least 7/9), the constructed Bv,j misses
at most |X1(t) ∪X0(t)| < 49δ2n vertices of X, and in particular satisfies the requirements in the
definition of a close partition.

3.1.1.2 The case α∗1 ≥ 16δ2 and α∗2 ≥ 16δ2. In this case we have selected w1 ∈ X1(t) and
w2 ∈ X2(t).

We construct Bv,j as follows. As in Section 3.1.1.1 we use the same rule stated there to distin-
guish between z ∈ D and z ∈ X2(t). Namely, given z ∈ X ∪D, we count the number of quartets of
Q in which w2 and z are in opposite sides. If this number is at most qp(2β∗2 − (β∗2)2 + 6δ3 + δ2/2)
then we place z in a set U2. Symmetrically, we count the number of quartets of Q in which w1 and
z are in opposite sides. If this number is at most qp(2β∗1 − (β∗1)2 + 6δ3 + δ2/2) then we place z in a
set U1. Finally, we define Bv,j = U1 ∪ U2.

Lemma 3.5. Let U2 consist of all z ∈ X ∪D for which the number of quartets containing w2 and z
in opposite sides is at most qp(2β∗2−(β∗2)2+6δ3+δ2/2), let Let U1 consist of all z ∈ X∪D for which
the number of quartets containing w1 and z in opposite sides is at most qp(2β∗1−(β∗1)2+6δ3+δ2/2),
and let Bv,j = U1 ∪U2. Then, with probability at least 5/9 we have that X1(t)∪X2(t) ⊂ Bv,j ⊂ X.

Proof. By the proof of Lemma 3.4 we have that with probability at least 7/9, X2(t) ⊂ U2 ⊂ X.
Symmetrically, with probability at least 7/9, X1(t) ⊂ U1 ⊂ X. Hence, Bv,j = U1 ∪ U2 satisfies,
with probability at least 5/9, that X1(t) ∪X2(t) ⊂ Bv,j ⊂ X, as claimed.

Notice that by Lemma 3.5, with high probability (at least 5/9), the constructed Bv,j misses at
most |X0(t)| ≤ 16δ2n vertices of X, and in particular satisfies the requirements in the definition of
a close partition.

3.1.2 Analysis

We have proved that PARTITION, when called with the arguments (M0, f0), returns a partition
P∗ that is close to PT (K) with constant positive probability. We have shown in Section 3.1.1 that,
the probability of constructing a particular Bv,j correctly (by correctly we mean that it satisfies
the requirements of a close partition) is composed of the following ingredients. First we need to
correctly choose a valid guesses α∗j for j = 0, 1, 2 that approximate the αj . We have shown that this
happens with probability at least δ9. We then need to guess a leaf w1 ∈ X1(t) or a leaf w2 ∈ X2(t)
(or both). We have shown that the probability that this occurs is at least 16δ2− δ3 for each. Once
this is done, Lemma 3.4 and Lemma 3.5 show that Bv,j is constructed correctly with probability at
least 5/9. Hence, the probability to construct Bv,j correctly is at least δ9 · (16δ2− δ3)2 · (5/9) > δ13.

In order for PARTITION(M0, F0) to return a partition P∗ that is close to PT (K), a correct
Bv,j must be generated for all v ∈ K and for all j = 0, 1. Thus, the generated P ∗ is close to PT (K)
with probability at least (δ13)2|K|. Since |K| ≤ 4/δ, this probability is at least (δ13)8/δ.

The running time of a call to partition is O(m) as it simply scans the input quartets one by
one, and performs a decision in constant time per quartet. When constructing Bv,j , each scanned
quartet is first checked to have all its four elements in L(T ) \B. If this is not the case, the quartet
is ignored. If all the elements are in L(T ) \ B, then in the case of Section 3.1.1.1, for example, if
w2 is an element of the quartet then we increase the count for the leaves on the opposite side of
w2. At the end of the scan we therefore know for each z ∈ L(T ) \B, the number of quartets of Q
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in which w2 and z are in opposite sides. As shown in Section 3.1.1.1, we use this count to decide
whether to place z in Bv,j or not. A similar sequential scan in performed in the other cases.

3.2 Constructing a tree from a close partition

In Section 3.1 we have proved that PARTITION, when called with the parameters (M0, f0), con-
structs, with constant positive probability, a partition P∗ of L(T ) that is close to PT (K). Hence,
if we run PARTITION(M0, f0) a constant number of times, we are guaranteed that, with high
probability, it will construct a P∗ that is close to PT (K). To complete the proof of Theorem 1.1,
it suffices to show that with high probability, a P∗ that is close to PT (K) can be used to construct
a tree T ∗ that satisfies a fraction of (1− ε) elements of a random sample of size at least Cn2 log n.

So, for the remainder of this section we assume that P∗ is close to PT (K). Recall that P∗ =
{Bv,j |v ∈ K , j = 0, 1} ∪ {B∗}. For each Bv,j we construct a tree Tv,j as follows. Tv,j is an
arbitrary rooted full binary tree, except for the root which has a unique child, and whose set of
leaves is precisely Bv,j . In the event that Bv,j = ∅ then we also define Tv,j to be an empty tree.
Notice that Tv,j has precisely 2|Bv,j | vertices.

We construct a tree T ∗ by attaching to M0 the 2|K| trees Tv,j at appropriate places as follows.
There are three cases. If Bv,j = ∅ we do nothing with Tv,j as it is an empty tree. So assume that
Bv,j 6= ∅. If v is a leaf of M0 then we attach Tv,j to M0 by identifying the root of Tv,j with v.
Notice that both trees Tv,0 and Tv,1 are attached at v so v has two children in T ∗. If v is an internal
vertex of M0, then it has two emanating edges, leading towards its children. Denote these edges
by e0 and e1. We subdivide the edge ej for j = 0, 1, introducing a new vertex and identify this new
vertex with the root of Tv,j .

Notice that, considered as an unrooted tree (we can simply put an edge connecting the two
children of the root of T ∗, which is also the root of M0, and eliminate the root, thereby making T ∗

unrooted), T ∗ is a phylogenetic tree. Furthermore L(T ∗) = L(T ) − B∗. We now prove that, with
high probability, T ∗ satisfies a large fraction of the input quartet set.

Lemma 3.6. For a random sample of m quartets, the expected number of quartets satisfied by T ∗

is at least m(1− ε/3). Hence, by Markov’s Inequality, with probability at least 2/3 we have that T ∗

satisfies at least (1− ε)m quartets.

Proof. By linearity of expectation, it suffices to prove that a single randomly sampled quartet is
satisfied by T ∗ with probability at least 1− ε/3.

Let Ev,j = Av,j ∩Bv,j . Call the sets Ev,j the essential sets. The construction of T ∗ guarantees
that if a, b, c, d are in pairwise distinct essential sets then the quartet they induce in T is identical
to the quartet they induce in T ∗. On the other hand, if one of a, b, c, d is not in an essential set, or
if two of them are in the same essential set, this need not be the case.

Now, observe first that since P∗ is close to PT (K) then we have |Ev,j | ≥ |Av,j | − 50δ2n. As
there are 2|K| ≤ 8/δ possible sets Av,j we have that

|
⋃

(v,j)∈K×{0,1}
Ev,j | ≥ |

⋃
(v,j)∈K×{0,1}

Av,j | − 400δn = n(1− 400δ).

Thus, a randomly chosen leaf is not in an essential set with probability at most 400δ.
What is the probability that two leaves of a randomly sampled quartet ab|cd are in the same

part of PT (K)? As each part contains at most a δ fraction of the leaves, this probability is at most
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δ. As there are 6 pairs in a, b, c, d, with probability at least 1− 6δ each leaf of ab|cd is in a distinct
part. Overall, using (1), we have that with probability at least

1− 6δ − 4 · (400δ) = 1− 1606δ > 1− ε/3

each element of a randomly sampled quartet is in a distinct essential set. Hence, a randomly
sampled quartet is also a quartet of T ∗ with probability at least 1− ε/3.

4 Discussion

The problem of establishing an approximation value for maximum quartet consistency problem
(MQC) that is better than the trivial 1/3 approximation is open for nearly two decades. MQC is
a central problem in phylogenetics and has become even more so with the exponential growth of
molecular data and the emergence of the supertree approach for large scale phylogenetic reconstruc-
tion [10]. This work extends the current knowledge in the two fronts: the type of approximation
- from a constant factor to any ε, and the density of the input - from Θ(n4) to Ω(n2 log n). On
the other hand, it relies on the assumption that the input is a random sample of consistent quar-
tets. As sampled input appears to be inevitable [12, 16], we believe this contribution is important.
Furthermore, our algorithm can be easily generalized to allow for a small fraction of errors in the
sampled input. To see this, observe that by increasing the value of the constant C ′ in Lemma 3.2
and Lemma 3.3 from 256/δ4 to, say, 1000/δ4 we can bound the deviation from the expectations
stated in these lemmas to a value less than qpδ2/8 instead of the value qpδ2/4 used in these lemmas.
Hence, even if we allow for a fraction of δ2/8 = Θ(ε2) errors, the statements of these lemmas stay
intact.

The issue of whether MQC should serve as a reconstruction quality measurement was discussed
in the past and naturally arises here. Indeed in simulation studies it is possible to compare the
resulting tree to the model tree. The recent result of [16] shows that, in the supertree realm, this
is not always optimal. Moreover, in real life situations, this tree is not known, or possibly does not
exist (in case of conflicting input subtrees). Finally, we note that with the sparsity of the inputs
handled in this paper, it is likely that an optimal tree is not unique.
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