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Abstract

Let P be a graph property. For k ≥ 1, a graph G has property Pk iff every induced k-vertex

subgraph of G has P. For a graph G we denote by NPk(G) the number of induced k-vertex

subgraphs of G having P. A property is called spanning if it does not hold for graphs that

contain isolated vertices. A property is called connected if it does not hold for graphs with more

than one connected component. Many familiar graph properties are spanning or connected. We

also define the notion of simple properties which also applies to many well-known monotone

graph properties. A property P is recursive if one can determine if a graph G on n vertices has

P in time O(fP (n)) where fP (n) is some recursive function of n. We consider only recursive

properties. Our main results are the following.

• If P is spanning and k ≥ 1 is fixed, deciding whether a graph G = (V,E) has Pk can be

done in O(V + E) time.

• If P is spanning, fP (n) = O(2n
3

) and k = O((log n/ log log n)1/3), deciding whether G has

Pk can be done in polynomial time. Furthermore, if P is a monotone-increasing simple

property with fP (n) = O(2n
2

) (Hamiltonicity, perfect-matching and s-connectivity are

just a few examples of such properties) and k = O(
√

log n/log log n), deciding whether G

has Pk can be done in polynomial time.

• If k ≥ 1 and d ≥ 1 are fixed, and P is either a connected property (Hamiltonicity is an

example of such a property) or a monotone-decreasing infinitely-simple property (perfect-

matching of independent vertices and Hamiltonian hole are examples of such properties)

computing NPk(G) for graphs G with ∆(G) ≤ d can be done in linear time.

• If P is an NP-Hard monotone property and ε > 0 is fixed, Then Pbnεc is also NP-Hard. The

monotonicity is required as there are NP-Hard properties where Pk is easy when k < n.
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1 Introduction

All graphs considered here are finite, undirected and simple. The graph-theoretical terminology

used is compliant with that of [6]. A graph property P is a subset of the family of all graphs. We

usually identify a property with a graph-theoretical statement that applies to all graphs in P, and to

no graph outside of P. For example the Hamiltonicity property is the set of all Hamiltonian graphs.

We also use the term ”G has P” or ”P holds for G” as a synonym to G ∈ P. The complement

property of P, denoted by Pc, is {Gc | G ∈ P} where Gc is the graph complement of G. Thus the

property of containing a triangle is the complement property of containing an independent set of

size 3. P is called monotone-decreasing if whenever G ∈ P then also H ∈ P for every spanning

subgraph of G. P is monotone-increasing if Pc is monotone-decreasing. P is spanning if it does not

hold for graphs with isolated vertices (hence it cannot be monotone-decreasing). P is connected if

every graph having P is connected.

We associate with P a decision problem ΠP which, given as input a graph G, answers whether

G ∈ P. We call P NP-Hard (NP-Complete) if ΠP is NP-Hard (NP-Complete). Note that P and Pc

are polynomial-time equivalent. It is an easy set-theoretical argument that there exist properties

which are undecidable, and even monotone properties which are undecidable. In the sequel we

consider only decidable (recursive) properties, thus the running time of ΠP is bounded by some

recursive function fP (n). In what follows n will denote the size of the input graph and m the

number of its edges.

Let k = k(n) be an integer valued function (we assume that k(n) is computable in O(p(n)) time

for some polynomial p, and also that k(n)=o(n)). With every property P we associate a property

Pk, where a graph G on n vertices has Pk iff every induced subgraph of G on k vertices has P. The

associated decision problem is ΠPk . We also denote by NPk(G) the number of induced k-subgraphs

of G having P. Thus G has Pk iff NPk(G) =
(n
k

)
.

Many classical problems in graph theory involve the requirement that all k-subgraphs of a given

graph have a certain property. Among the most famous ones are the Turán type problems, in which

one requires that no k-vertex subgraph of G contains a copy of some fixed graph on k vertices,

see e.g [5]. The k-Independent Set problem [11] in which one needs to determine if a graph has

no independent set on k vertices is equivalent to the requirement that every k-vertex subgraph

contains an edge. The Ramsey Numbers R(H,Kn) are another obvious example [12]. Many other

problems can be formulated equivalently be defining an appropriate property P and asking whether

a given graph has Pk. Hence, the motivation in investigating Pk for various graph properties cannot

be overestimated. For other sources which deal with graph-theoretical aspects of Pk the reader is

referred to [2, 7, 8, 1, 14, 13]. Our main concern in this paper is to estimate the complexity of ΠPk

and the complexity of computing NPk(G). Some graph-theoretical aspects of Pk (i.e. the structure

possessed by graphs having Pk for various properties) was studied in [7], [8] and [1]. These papers
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contain other relevant references as well. Approximating the number of labeled copies of k-vertex

graphs in a large graph is discussed in [9].

Clearly, if k is a constant, NPk(G) can be computed in O(nk) time. We simply check whether

P holds for each induced k-subgraph of G. Each such check is done in constant time since P is

recursive. This fact, in particular, means that ΠPk can be solved in O(nk) time. It turns out that

for spanning properties we can solve ΠPk much faster.

Theorem 1.1 Let P be a spanning graph property, and let k = k(n). Then ΠPk can be solved in

O(fP (k)k4k
3
n+m) time.

As an immediate consequence of Theorem 1.1 we have that when k is constant, ΠPk can be solved

in (linear) O(n+m) time. Furthermore, even when k is O((log n/ log log n)1/3) and fP (n) = O(2n
3
)

we have that ΠPk can be solved in polynomial time. Note that many well known NP-Hard properties

have simple algorithms which give fP (n) = O(2n
3
). Numerous examples appear in [11].

The result in Theorem 1.1 is based on an algorithm for the induced subgraph isomorphism

problem. In this algorithm we need to test whether a graph G on n vertices and maximum degree

d contains an induced copy of some subgraph H on at most h vertices. When H is connected and

the requirement that the copy be induced is not needed, this algorithm is a part of the folklore

and can be implemented in O(d2h
2
n) time. However, if we insist that the copy of H be induced,

or that H may not be connected, the algorithm is more complex and we present it in section 2.

The running time we obtain for it is O(d3h
3
n). Some other special cases of the fixed subgraph

isomorphism algorithm are presented in [3], [4] and [15].

In many interesting cases we are able to implement a faster version of the subgraph isomorphism

algorithm. In order to identify these cases we need the following definitions. A graph H with no

isolated vertices is called (P, k)-extremal if H has h ≤ k vertices, and the k-vertex graph H ′

obtained from H by adding k − h isolated vertices does not have P, but whenever we delete any

edge from H ′, the resulting graph has P. A monotone-decreasing property P is called simple if

for every k > 1, every (P, k)-extremal graph is connected. A simple property is called k-simple

if every (P, k)-extremal graph has more than k/2 vertices. If P is k-simple for all k > 1, we

call P infinitely-simple. For example, the property of planarity is a simple property since it is

monotone-decreasing, and every extremal graph w.r.t. planarity is connected. Also note that

planarity is 9-simple since the smallest non-planar graph has 5 vertices. It is not 10-simple since

K5 is non-planar, and is (P, 10)-extremal, but 5 ≤ 10/2. We call a monotone-increasing property

simple (r-simple, infinitely-simple) if its complement property (which is monotone decreasing) is

simple (r-simple, infinitely-simple, respectively). Identifying simple properties is an interesting

graph-theoretical problem on its own right. It is also useful from the algorithmic perspective:

Theorem 1.2 Let P be a monotone increasing simple property, and assume that P is a spanning

property. Let k = k(n). Then ΠPk can be solved in O(fP (k)k3k
2
n+m) time.
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Theorem 1.3 Let P be a monotone-decreasing k-simple property, and let d be a fixed integer. Let

G be a graph with ∆(G) ≤ d. Then NPk(G) can be computed in (linear) O(n) time.

A result similar to Theorem 1.3 applies also to connected properties.

Theorem 1.4 Let P be a connected property, and let k and d be fixed integers. Let G be a graph

with ∆(G) ≤ d. Then NPk(G) can be computed in (linear) O(n) time.

In order to demonstrate the applicability of the above mentioned theorems, let us consider some

well-known graph properties. The following properties are spanning, simple, and have fP (n) =

O(nn). The first three are also connected properties.

1. Hamiltonicity (containing a Hamiltonian cycle).

2. Containing a Hamiltonian path.

3. Being s-connected.

4. Containing a perfect matching (fP (n) = O(n2.5) in this case).

Thus for all these properties we have that if k = O(
√

log n/ log log n) then ΠPk can be solved in

polynomial time. The following properties are monotone-decreasing, simple, and have fP (n) =

O(nn).

1. The complements of all the properties mentioned in the list above. They are all infinitely-

simple.

2. Planarity is 9-simple.

3. The property of having maximum degree r is 2r + 3 simple.

4. The property of not containing a fixed connected graph H on h vertices as a subgraph is

2h− 1 simple.

The proof that a property is simple can be easy or hard, depending on the property. In section

3 we present the proofs of r-simplicity for all of the above properties, and prove Theorems 1.2, 1.3

and 1.4. We also give an example of a monotone graph property which is non-simple (but still with

fP (n) = O(2n
3
)) in which case we can use Theorem 1.1.

In section 4 we consider the hardness of Pk. It is not difficult to show that if P is a monotone

NP-Hard problem and ε > 0 is fixed, then Pbnεc is NP-Hard as well. Hence we can verify if all

subgraphs of order
√

log n/ log log n are Hamiltonian in polynomial time, but we cannot verify this

property in polynomial time (unless P=NP) if the subgraphs are of order, say, n0.01. (This problem

may even be outside of NP). We show that the monotonicity requirement is essential as there are

NP-Hard properties for which Pk is easy for all k ≤ n − 1. We also show that there are easy

properties for which Pbnεc is NP-Hard.
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2 Detecting Pk for spanning properties

As mentioned in the introduction, the basic ingredient that we require is an algorithm for the

(induced) subgraph isomorphism problem. The following lemma describes such an algorithm.

Lemma 2.1 Let G be a graph on n vertices, and let d = ∆(G) denote its maximal degree. Let H

be a graph on h vertices. Finding whether H is isomorphic to some (induced) h-vertex subgraph of

G can be done in O(d3h
3
n) time. Furthermore, if H is connected we may list all the subgraphs of

G which are isomorphic to H in O(d2h
2
n) time.

Proof We prove the lemma for the case where an induced copy of H is searched for. The case

where a not-necessarily induced copy of H is searched for is simpler (and faster). Let H1, . . . ,Hr

denote the distinct connected components of H, and let hi be the number of vertices of Hi. Let pi

be the multiplicity of Hi. (E.g. if H is the union of two vertex-disjoint triangles we have H1 = K3,

r = 1, h1 = 3 and p1 = 2). Constructing H1, . . . ,Hr can be done in O(h2) time, and finding

p1, . . . , pr can be done in O(r2h!) = O(hh) time using a naive graph isomorphism algorithm.

Assume for simplicity that V = {1, . . . , n}. For each j = 1, . . . , n and each i = 1, . . . , r let Lij

denote a list whose elements are all the hi subsets of {j, . . . , n} that induce a copy of Hi, and that

contain j. Lij is computed as follows. We perform a Breadth-First Search beginning at j, and

whose depth is hi − 1. Let Xij be the set of all vertices discovered by this search and that are

greater than j − 1. Clearly, |Xij | < dhi , and Xij can be computed in O(dhi) time, and, since Hi is

connected, every member of Lij is a subset of Xij . We consider all hi subsets of Xij that contain j.

There are at most
( dhi
hi−1

)
such subsets. For each such subset, we test whether the induced subgraph

of G on this subset is isomorphic to Hi. If this is the case we add the subset to Lij . Thus, Lij is

constructed in O(dhi +
( dhi
hi−1

)
h2ihi!) = O(d2h

2
i ). All Lij ’s are constructed in O(nd2h

2
) time. With no

additional cost we can also compute the size lij of Lij , and li =
∑n
j=1 lij . Note also that lij ≤ dh

2
i ,

and since this bound does not depend on j, every vertex j appears in at most d2h
2
i subsets of hi

vertices that induce a copy of Hi. Thus every vertex appears in at most d2h
2

subsets that induce

some subgraph isomorphic to a connected component of H.

Consider a subset S that appears in some Lij . Let N(S) be the set of all vertices of G that are

neighbors of some vertex of S. Clearly, |N(S)| ≤ dhi, and S ⊂ N(S) (since Hi is connected and

S induces Hi). We claim that if li > (dh)d2h
2

for all i = 1, . . . , r, then G contains an induced

copy of H. We can construct such a copy using the following greedy procedure: We first pick some

subset S of L1j for some j such that L1j is not empty (there exists such a j since l1 > 0). For

each v ∈ N(S) we nullify all the lists Lvj′ for all j′ = 1, . . . , r. This is done since the subgraphs

induced by the subsets in these lists either intersect with S or have an edge connecting them to S.

Hence they are no longer allowed. Note that the number of subsets that have been nullified is at

most (dh1)d
2h2 . Suppose we have already constructed an induced subgraph containing all required
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copies of H1, . . . ,Ht and nullified all the disallowed lists. We now need to find another induced

copy of Ht (or the first copy of Ht+1 in case we already found pt copies of Ht). This can be done

since we have only nullified at most d(h1p1 + . . . + htpt)d
2h2 ≤ (dh)d2h

2
subsets. Hence some Ltj

(or L(t+1)j) is not empty, and we can pick a subset from it which will be the desired induced copy.

Since the computation of N(S) requires only dh2i time, this is dominated by the time needed to

construct the Lij ’s which is O(nd2h
2
), which is the running time of the algorithm in this case.

We need to consider the case where for some i we have li ≤ dh(d2h
2
). Let I denote the set of all

these i’s. Let Li = ∪nj=1Lij for i ∈ I. (Constructing the Li’s is linear in the sizes of the lists, and

incurs no additional overhead). We pick all possible pi subsets from Li for each i ∈ I. We check

whether all these
∑
i∈I pi subsets are pairwise-disjoint and that there is no edge connecting them.

The number of choices for these subsets is O((dh(d2h
2
))
∑

i∈I pi) and each check can be done in dh2

time, which is dominated, overall, by O(d3h
3
). Clearly, G contains an induced copy of H iff one of

these checks succeeds. For the rest of the induced copies, that correspond to the Hi where i /∈ I,

we can proceed as before, using the greedy procedure.

It is easy to see that when H is connected (hence r = 1 and p1 = 1) it is sufficient to halt the

algorithm whenever the first subgraph isomorphic to H is found. Hence the running time in this

case is O(d2h
2
n). Furthermore, L1j contains at most dh

2
subsets. All the subsets from all the L1j ’s

can therefore be listed in O(d2h
2
n) time. 2

Proof of Theorem 1.1 Let P be the spanning graph property, and k = k(n). Let G be the

input to ΠPk . We first verify in O(n+m) time whether δ(G) > n− k, where δ(G) is the minimum

degree of G. If this is not the case then Pk does not hold for G since some vertex has k − 1

non-neighbors, which implies that G has a k-subgraph with an isolated vertex. Such a subgraph

cannot have P since P is a spanning property.

Since we assume that k = o(n) we are guaranteed that m = Θ(n2), and we may construct, in

O(n+m) time, the graph Gc for which ∆(Gc) ≤ k−2 holds. Let H be the set of all k-vertex graphs

that do not have Pc. We can construct the set H in O(fP (k)2k
2
) time since we may generate all 2(k2)

(labeled) graphs on k vertices and check each graph, in O(fP (k)) time, whether it has Pc. Clearly,

G has Pk iff Gc does not contain any graph from H as an induced subgraph. We use Lemma 2.1

to check, for each member of H, in O(k3k
3
n) time, whether it is an induced subgraph of Gc. The

overall running time is therefore O(fP (k)2k
2

+ 2k
2
k3k

3
n) = O(fP (k)k4k

3
n+m). 2

As mentioned in the introduction, an immediate corollary of Theorem 1.1 is that when k is

constant Pk is linear-time solvable, and when k = O((log n/ log log n)1/3) and fP (k) = O(2k
3
), Pk

is solvable in polynomial time. If all graphs in H turn out to be connected, we may even have

k = O((log n/ log log n)1/2). This may be the case for some spanning graph properties. Consider

the property of being connected. This is a spanning property, and H is the set of all k-vertex

graphs whose complements are non-connected. Such graphs must be connected, since every graph

is either connected or its complement is. It follows that all elements of H are connected.
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3 Detecting Pk and computing NPk
(G) when P is simple or con-

nected

The main purpose of this section is twofold. Our first goal is to show how to compute NPk(G)

whenever P is a simple property or a connected property, and whenever G has bounded degree.

This is done by proving Theorems 1.3 and 1.4. We also show how ΠPk can be solved in polynomial

time even when k = O(
√

log n/ log log n) whenever P is a spanning simple property. This is done

by proving Theorem 1.2. In the second part of this section we prove that many well-known and

even some NP-Hard graph properties are simple or connected. We also give an example of a natural

graph property which is non-simple.

The following lemma gives an indication as to why simple properties are easier to detect than

others.

Lemma 3.1 Let P be a monotone-decreasing property, and let k ≥ 1. Let H be the set of all

(P, k)-extremal graphs. Then G has Pk iff it does not contain any member of H as a subgraph.

Proof Suppose G contains a graph H ∈ H with h vertices. Thus, G also contains the k-vertex

graph H ′ obtained from H by adding k − h isolated vertices. Since H is (P, k)-extremal, H ′ does

not have P. Let G′ be a k-vertex induced subgraph of G containing H ′ as its subgraph. Since P
is monotone-decreasing we have that G′ also does not have P. Thus, G does not have Pk. Now

suppose that G does not have Pk. Let G′ be a k-vertex induced subgraph of G that does not have

P. We delete edges from G′ one by one until we obtain a subgraph H ′ of G′ that is minimal in

the sense that H ′ does not have P but any edge we delete from H ′ results in a graph which has P.

Ignoring the isolated vertices of H ′, if there are any, results in a (P, k)-extremal graph H. 2

Proof of Theorem 1.2, We use the same proof of Theorem 1.1, with one change. The set H
is now defined as in Lemma 3.1, but with respect to the property Pc which is monotone-decreasing.

That is, H is the set of all (Pc, k)-extremal graphs. Note that given a graph H on h < k vertices,

we can verify (in O(k2fP (k)) time) whether H is (Pc, k)-extremal by adding to it k − h isolated

vertices and checking that the resulting graph H ′ does not have Pc and that whenever any edge

is deleted from H ′ the resulting graph has Pc. By Lemma 3.1 we have that the same proof of

Theorem 1.1 still holds. Furthermore, since every graph in H is connected, the claimed running

times follow from Lemma 2.1. 2

The proof of Theorem 1.3 requires an additional idea which is stated in the following lemma.

Lemma 3.2 Let k and d be fixed positive integers. Let F = {S1, . . . , Sm} be a family of subsets of

{1, . . . , n}, where k/2 < |Sj | ≤ k, for j = 1, . . . ,m. Suppose that each i = 1, . . . , n belongs to at

most d subsets. Then we can count how many k-subsets of {1, . . . , n} contain a member of F in

O(n) time.
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Proof We note first that m ≤ dn = O(n). Each Sj intersects at most k(d− 1) other members of

F . Hence if we put I(j) = {j′ | j′ < j , Sj ∩ Sj′ 6= ∅}, we have |I(j)| ≤ k(d − 1). All the I(j)’s

can be constructed in O(m) = O(n) time by scanning the Sj ’s sequentially and creating the lists

L(i) = {j | i ∈ Sj} and observing that I(j) = ∪i∈SjL(i)∩{1, . . . , j−1}. A subset R ⊂ I(j) is called

j-obsolete if | ∪j′∈R Sj′ ∪ Sj | ≤ k. Let R(j) denote the set of all j-obsolete subsets of I(j). For

a j-obsolete subset R let s(R) = | ∪j′∈R Sj′ ∪ Sj |. Since I(j) has constant size, R(j) can also be

computed in constant time for each j, and all R(j)’s can be computed in O(n) time. Let Cj denote

the number of k-subsets of {1, . . . , n} that contain some subset Sj′ with 1 ≤ j′ ≤ j. We want to

compute Cm. Note that C1 =
(n−|S1|
k−|S1|

)
. Assuming we have already computed Cj−1, we show how

to compute Cj in constant time. We claim that

Cj = Cj−1 +

(
n− |Sj |
k − |Sj |

)
+

∑
R∈R(j)

(−1)|R|
(
n− s(R)

k − s(R)

)
.

The negation of the rightmost summand in this expression counts the number of k-subsets of

{1, . . . , n} that contain Sj and some Sj′ that intersects with Sj , where j′ < j, by the inclusion-

exclusion principle. However, since |Sj | > k/2, this is also the number of k-subsets of {1, . . . , n}
that contain Sj and some Sj′ with j′ < j. Hence in the above expression, Cj −Cj−1 is exactly the

number of k-subsets that contain Sj and do not contain any Sj′ with j′ < j. Thus, Cj is correctly

computed. 2

Proof of Theorem 1.3 Assume that the vertices of G are {1, . . . , n}. We construct the set H
of all (P, k)-extremal graphs. This is done in constant time as k is constant. Note that H consists

only of connected graphs with more than k/2 vertices. For each H ∈ H, we construct a list, LH ,

of all |H|-vertex subsets of G that induce a subgraph containing (as a spanning subgraph) a copy

of H. By Lemma 2.1 each such list (and henceforth all lists) can be constructed in O(n) time

and contains O(n) elements. We now create, in O(n) time, the sets Mi, where Mi contains all

the subsets in ∪H∈HLH that contain i as their lowest numbered element. The reason for creating

the Mi’s is the following: It may be the case that some x-subset of G appears in more than one

list LH , since the subgraph induced by it may contain more than one element of H as a spanning

subgraph. By creating the Mi’s and using the fact (which is shown in the proof of Lemma 2.1) that

the number of elements in Mi is bounded by a constant which is at most |H|d2k2 ≤ d3k
2
, we can

make sure that we eliminate these multiplicities and that the Mi’s are, indeed, sets. We now take

the union of the Mi’s and obtain F = ∪H∈HLH . F has the property that every induced k-subgraph

of G that does not have P contains an element of F . Furthermore, each subset in F has at most

k elements and more than k/2 elements, and every vertex i of G appears in at most d3k
2

of the

subsets. It therefore follows from Lemma 3.2 that NPk(G) can be computed in O(n) time. 2

Proof of Theorem 1.4 The proof of this theorem is similar (and, in fact, simpler) than that

of Theorem 1.3. In this case we construct the set H of all k-vertex graphs that have P. As before,
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this is done in constant time as k is constant, and H consists only of connected graphs having

exactly k vertices. We construct the lists LH and the sets Mi as before, in O(n) time. Clearly,

NPk(G) =
∑n
i=1 |Mi|. 2

It is time to show that simplicity of properties is not an artificial definition, but, in fact, a very

practical one, as many well-known graph-theoretic properties are simple.

Theorem 3.3 The following monotone-increasing properties are spanning and infinitely-simple,

and have fP (n) = o(2n
2
).

1. Containing a Hamiltonian cycle.

2. Containing a Hamiltonian path.

3. Being s-connected.

4. Containing a perfect matching.

Proof The fact that these properties are spanning and that they can be recognized by simple

exponential algorithms (some are even polynomial) is straightforward. We prove that they are

infinitely-simple. By definition, we need to look at their complement properties. We consider a

(P, k)-extremal graph H on h ≤ k vertices, and denote by H ′ the k-vertex graph obtained from H

be adding k − h isolated vertices.

We begin by showing that containing a Hamiltonian hole is an infinitely-simple property (a hole

is a permutation of vertices where every two consecutive vertices are independent). If H ′ contains

at least k/2 isolated vertices, the minimum degree of the complement of H ′ is at least k/2, and thus

by Dirac’s Theorem [6] H ′ contains a Hamiltonian hole, which is impossible. Thus, we have shown

h > k/2. The same argument shows that H ′ (and therefore H) must have at least one connected

component X with x = |X| > k/2. We must show that X is the only connected component of H.

Assume, in contradiction, that x < h. By the minimality of H we know that if we add to X a set

of k−x isolated vertices, the resulting graph has a Hamiltonian hole. This hole is a permutation of

k vertices, where x of them are from X. An X-segment in this permutation is a set of consecutive

vertices of X. The length of a segment is one less than the number of elements it contains. The total

length of the maximal X-segments (segments that cannot be extended are maximal) is therefore

at least x − (k − x) = 2x − k. Let us therefore consider a set S = {S1, . . . , Ss} of vertex-disjoint

X-segments (not necessarily maximal) whose total length is exactly 2x− k. (Hence there is a total

of 2x − k + s vertices of X in these segments). Each segment has two endpoints. We pick one

endpoint from each Si, denoted by si, i = 1, . . . , s. If we delete from each such Si all vertices but

si, we remain with a set Y of exactly x − (2x − k) = k − x vertices of X. There are also k − x
vertices in H ′ \X. Consider a 2(k− x) permutation alternating between vertices of Y and vertices

of H ′ \X. Now, replacing si in this permutation with the segment Si, for i = 1, . . . , s, we obtain a

Hamiltonian hole in H ′, a contradiction.
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The proofs of infinite-simplicity of Hamiltonian path and perfect matching are analogous to the

Hamiltonian cycle proof, and are left to the reader.

We now consider the s-connectivity property. Since H ′c is not s-connected, there are two vertices

x, y of H ′ that do not have s vertex-disjoint paths connecting between them in H ′c. Assume H is

not connected, and let X denote a connected-component of it that does not contain both x and y.

Let (u, v) be an edge in X. By the minimality of H, we know that L = H ′c∪{(u, v)} is s-connected.

There are, therefore, s vertex-disjoint paths p1, . . . , ps connecting x and y in L. We can assume that

each pi is an induced path (except for, maybe, the edge (x, y), if it exists). One of these paths, say

p1, contains (u, v). We claim that we cannot have x /∈ X. To see this, let us denote by w the first

vertex of p1 (form the direction of x) that belongs to X. Assume w 6= u (otherwise, w 6= v). Then

the vertex preceding w in p1 is connected to u (since they are in different connected components

in H ′), contradicting the fact that p1 is an induced path. Likewise we cannot have y /∈ X. Thus

we have shown x, y ∈ X, a contradiction to our assumption that H is not connected. 2

Theorem 3.4 The following properties are monotone-decreasing, simple, and have fP (n) = o(2n
2
).

1. The complements of all the properties mentioned in Theorem 3.3. They are all infinitely-

simple.

2. Planarity is 9-simple.

3. The property of having maximum degree r is 2r + 3 simple.

4. The property of not containing a fixed connected graph H on h vertices as a subgraph is 2h−1

simple.

Proof It is straightforward that these properties are monotone-decreasing and can be solved by

exhaustive search in o(2n
2
) time, and some of them even in polynomial time. As to the prop-

erties in the first item in the list, they are all infinitely-simple because they are complements of

infinitely-simple properties, shown as such in Theorem 3.3. Planarity is shown to be 9-simple in

the Introduction. The property of having maximum degree r is equivalent to the property of not

containing the star with r+ 2 vertices. It thus reduces to the property mentioned in the last item.

Since every graph that contains a connected graph H also has a connected component containing

H, this property is simple. Such a (P, k)-extremal graph must contain at least h vertices, so this

property is 2h− 1 simple. 2

Theorems 1.3 and 3.4 have many interesting consequences. For example, given a graph G with,

say, ∆(G) ≤ 1000, counting the number of induced 9-vertex subgraphs of G which are planar can

be done in linear time. Note that the naive algorithm requires O(n9) time.

Finally, we give an example of a natural graph property which is non-simple. The property P of

containing a factor into vertex-disjoint triangles. This is, in fact, a monotone-increasing property
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(which is NP-Hard, but with fP (n) = O(2n
2
)). Consider Pc and consider, for k ≥ 2, the graph

H on 3k vertices which is the vertex-disjoint union of K2 and K1,3k−3 (recall that Kn,m is the

complete-bipartite graph having vertex classes of sizes m and n). H does not have k vertex-disjoint

independent sets of size 3 each. However, whenever we delete any edge from H, the resulting graph

does have k vertex-disjoint independent sets of size 3. Hence it is (P c, 3k)-extremal. It is, however,

a non-connected graph.

4 Hardness results for Pk decision problems

We begin this section by proving that if P is a hard monotone property, so is Pk for k = bnεc.
Although the proof is easy, it raises some interesting computational issues.

Theorem 4.1 Let P be an NP-Hard monotone property, and ε > 0, fixed. Then Pbnεc is also

NP-Hard. If P belongs to NP, then Pbnεc ∈ Πp
2.

Proof, Note that we may assume that P is monotone-decreasing since P is NP-Hard iff Pc is

NP-Hard, and Pk is NP-Hard iff P ck is NP-Hard. The following straightforward polynomial trans-

formation from ΠP to ΠPbnεc gives the first part of the theorem. Let G be an n vertex graph.

We add to G a set of N = dn1/εe − n isolated vertices. Denote the obtained graph by G′. G′ is

constructed in polynomial time, has N +n vertices, and b(N +n)εc = n. Suppose G does not have

P. Since G is an n-vertex induced subgraph of G′, we have that G′ does not have Pn. Any n-vertex

induced subgraph of G′ is isomorphic to a spanning subgraph of G. Thus if G has P, and since P
is monotone decreasing, G′ has Pn. For the second part of the theorem, note that when P belongs

to NP, the complement problem of ΠPbnεc can be solved using a non-deterministic Turing reduction

to ΠP , hence Pbnεc belongs to the complexity class Πp
2 in the polynomial hierarchy. 2

Theorem 4.1 raises some interesting questions. Suppose first that P is monotone and polynomial

time solvable. What can be said about the hardness of Pbnεc. It may be the case that the problem

becomes difficult. Consider the property of being a non-isolated graph (i.e a graph that has at least

one edge). Then Pbnεc is equivalent to the decision problem ”does the graph have an independent

set of size nε”, which is NP-Complete.

We have shown that if P is the Hamiltonicity problem, Pk is polynomial whenever k =

O(
√

log n/ log logn) and is NP-Hard whenever k = Ω(nε). It would be interesting to narrow

the gap between these two bounds.

Finally, we note that the monotonicity assumption in Theorem 4.1 is essential. Consider the

property P of all graphs whose edge set is the edge-disjoint union of triangles. It was shown by

[10] that decomposing a graph G into a fixed graph H (which has a component with at least three

edges) is NP-Hard. In particular, the property P is NP-Complete. It is clearly non-monotone, as

the degree of every vertex in every graph having the property must be even. Suppose G has Pn−1.
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If G is the isolated graph, the answer is trivially yes. If G is a complete graph, the answer is yes

iff n− 1 has a Steiner triple-system, which is also easy to verify. Otherwise, G has vertices u, v, w

such that (u, v) is an edge and (u,w) is not. The degree of u in G \ {w} differs by one from the

degree of u in G \ {v}. Thus u has odd degree in one of these graphs an hence G does not have

Pn−1. A simple induction argument shows that G does not have Pk for 1 < k ≤ n− 1 unless G is

an isolated graph or a complete graph with n− k having a Steiner triple-system.
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