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Abstract. We give an O(n log n) algorithm for computing the girth (shortest cycle) of an
undirected n-vertex planar graph. Our solution extends to any graph of bounded genus. This
improves upon the best previously known algorithms for this problem.
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1. Introduction. The girth of a graph is the length of its shortest cycle, or
infinity if the graph does not contain any cycles. In addition to being a basic combi-
natorial characteristic of graphs, the girth has tight connections to many other graph
properties. The connection between the girth of a graph and its chromatic number
was studied by Erdős [13], Lovasz [19], Bollobás [4], and Cook [6]. Other important
graph properties related to the girth include the minimum or average degree of the
vertices, the diameter, the connectivity, the maximum genus, and the existence of
certain type of minors (see Diestel’s book [8] for a review of results).

The problem of computing the girth of a graph is among the most natural and
easily stated algorithmic graph problems. Itai and Rodeh [17] were the first to suggest
an efficient algorithm to compute the girth. They presented an O(nm)-time algorithm
for a graph of n vertices and m edges, and an O(n2)-time algorithm if an additive
error of one is allowed. Monien [20] showed that finding the shortest cycle of even
length is easier and can be done in O(n2α(n)) time, where α(n) is the inverse Acker-
mann function. Yuster and Zwick improved this to a pure O(n2) time algorithm [26].
Vazirani and Yannakakis [24] and Robertson et al. [23] studied the connection between
such even-length cycles and Pfaffian orientations. Finding a cycle of a given size has
also been extensively studied (see Alon et al. [1, 2] for references).

For the case of planar graphs, Eppstein [11] proved that the girth can be found
in O(n) time provided it is bounded by some constant. His result extended that of
Itai and Rodeh [17] and of Papadimitriou and Yannakakis [21] who proved this for
girth bounded by 3. For the general case, when the girth is not bounded by a con-
stant, Djidjev [9] presented and algorithm that computes the girth in O(n5/4 log n)
time. Djidjev’s solution uses dynamic data structure for shortest paths [10], as well
as a clever use of hammock decompositions [14]. Djidjev’s algorithm is the fastest
algorithm that solves this problem directly. However, there is another, indirect ap-
proach to solve the girth problem in planar graphs. It is a known fact that cuts in an
embedded planar graph correspond to cycles in the dual plane graph. Furthermore,
minimum cuts correspond to shortest cycles in the dual plane graph. Chalermsook
et al. [5] gave an O(n log2 n) time algorithm for the minimum-cut problem in planar
graphs. This algorithm can be used to solve the girth problem in planar graphs with
positive edge weights in the same time, by reducing it (in linear time) to the min-cut
problem in planar graphs. We note that this reduction introduces (not necessarily
constant) weights in the dual graph even if the original graph was unweighted.
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In this paper, we give an O(n log n)-time algorithm for finding the girth of a planar
graph. Apart from being faster than Djidjev’s O(n5/4 log n) algorithm and from the
O(n log2 n) minimum-cut based algorithm, the structure of our algorithm is different
– it is a simple divide-and-conquer, and we require no dynamic data structures. In
addition, just like in Djidjev’s case, our result extends from planar graphs to graphs
of bounded genus. Unlike the minimum-cut based algorithm, or Djidjev’s algorithms,
we do not need to find an embedding of the graph in the plane (notice that any
minimum-cut based algorithm must first embed the graph since it needs to construct
the dual graph).

The rest of the paper is organized as follows. In Section 2 we recall some definitions
and facts about planar graphs and bounded genus graphs. Sections 3 contains the
description and proof of the algorithm for planar graphs, and Section 4 describes the
generalization to bounded genus graphs. The final section contains some concluding
remarks.

2. Preliminaries. A planar embedding of a graph assigns each vertex to a dis-
tinct point on the sphere, and assigns each edge to a simple curve between the points
corresponding to its endpoints, with the property that the curves intersect only at
their endpoints. A graph G is planar if it has a planar embedding. Consider the set
of points on the sphere that are not assigned to any vertex or edge; each connected
component of this set is a face of the embedding. A planar embedding on the sphere
translates to a planar embedding in the plane where a chosen face becomes the outer
face. If all the vertices of G lie on a single face, G is said to be outerplanar (or
1-outerplanar). G is k-outerplanar if the deletion of the vertices on the outer face
results in a (k − 1)-outerplanar graph.

The genus of a graph is the minimum number of handles that must be added to
a sphere so that the graph can be embedded in the resulting surface with no crossing
edges. A planar graph therefore has genus 0. Euler’s formula states that a graph
embedded on a surface of genus g with n vertices, m edges, and f faces, satisfies

n−m+ f = 2− 2g .(2.1)

A separator is a set of vertices whose removal leaves no connected component of
more than 2n/3 vertices. If G is a planar graph, then it has a separator of O(

√
n)

vertices [18], and if G has genus g > 0, then it has a separator of O(
√
gn) vertices [15].

The corresponding separators can be found in O(n + g) time. Every k-outerplanar
graph has a separator of size O(k) [3, 22] that can be found in O(n) time.

3. The Algorithm for Planar Graphs. In this section we prove the following
main theorem of our paper.

Theorem 3.1. The girth of an undirected n-vertex planar graph can be computed
in O(n log n) time.
Given an embedded planar graph G, the size of each face of G is clearly an upper
bound on G’s girth. Notice however that the shortest cycle is not necessarily a face.
Djidjev’s algorithm [9], begins by computing, in O(n) time, the size h of the minimal
face of G. It then uses h to decide which of two procedures to apply in order to
compute the girth. One procedure is used if h is below some specific threshold, and
another if it is above. Our algorithm begins by computing, in O(n) time, an upper
bound, h, for the minimal face size of any embedding. We therefore avoid the need
to compute an embedding explicitly. Unlike Djidjev’s algorithm, our algorithm is a
single divide-and-conquer procedure whose running-time is independent of h.
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Our general idea is to cover G with O(n/k) overlapping k-outerplanar graphs
where k = 2h. The cover is constructed so that the smallest cycle in G is entirely
contained within one of these k-outerplanar graph. This means that we can compute
G’s girth by independently computing the girth of each k-outerplanar graph. We use
a simple algorithm on each k-outerplanar graph that exploits the fact that it has an
O(k) separator. We next describe this algorithm. In order to use it later we need
the algorithm to work even if G’s edges have positive edge lengths (and we seek the
shortest, rather than smallest, cycle).

k-outerplanar Graphs with Nonnegative Edge-lengths. Given a k-outer-
planar graph G with n vertices and nonnegative edge-lengths we describe an algorithm
that computes G’s shortest cycle in O(kn log n) time. The algorithm first constructs
the O(k)-sized separator, and is then applied recursively on each of the connected
components resulting from the removal of the separator. The recursive calls find G’s
shortest cycle in the case that it does not pass through any of the separator vertices.
We are therefore left with finding G’s shortest cycle in the case that it includes one
or more of the separator vertices.

To do this, we first run a single-source shortest path algorithm from every sepa-
rator vertex. Henzingeret al. [16] gave an O(n)-time algorithm for planar graphs with
nonnegative edge-lengths that computes the distances from a given source v to all
vertices of G. Therefore, in O(kn) time, we can construct the shortest-path tree from
every separator vertex. Suppose that the shortest cycle of G passes through some
separator vertex v. The following lemma states an important connection between this
cycle and the shortest-path tree from v to all vertices of G.

Lemma 3.2. Let G be a connected graph with positive edge-lengths. If a vertex v
lies on a shortest cycle, and if T is a shortest paths tree from v then there is a shortest
cycle that passes through v and has exactly one edge not in T .

Proof. Suppose that the shortest cycle of G is of length s. Among all cycles of
length s that pass through v, let C be the one with the least number of edges not in T .
Assume for contradiction that this number is k ≥ 2. A vertex u 6= v on C partitions
C into two parts C1 and C2 that are the two v-to-u simple paths in C. Since k ≥ 2,
there exists a vertex u so that both C1 and C2 contain an edge that is not in T . This
is illustrated in Fig. 3.1

v 

u 

x1 

x2 

Fig. 3.1. A cycle passing through a vertex v. The solid edges belong to the shortest-paths tree T
and the dashed edges do not. The path P in bold (red) is the shortest path from v to u. The shaded
area is a shorter cycle formed by a prefix of P and a part of the original cycle.
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Denote by P the path in T from the root v to the vertex u. Suppose that the only
vertices that P and C1 (resp. C2) share are u and v. Then the cycle C ′ formed by
P together with C1 (resp. C2) is of length at most s. This is because P is a shortest
v-to-u path and thus not longer than C2 (resp. C1). However, C ′ has less than k
edges that are not in T since all the edges of P are in T . This contradicts the fact
that C is the shortest cycle with the least number of edges not in T .

Therefore, P must share some vertex x1 6∈ {u, v} with C1 and some vertex x2 6∈
{u, v} with C2. Without loss of generality we assume that x1 appears before x2 in P
and that x2 is the first vertex of P in C2 − {u, v}. The prefix of P that ends in x2,
together with the part of C2 between v and x2, form a cycle C ′. However, again, C ′

has less than k edges that are not in T , and this contradicts the fact that C is the
shortest cycle with the least number of edges not in T .

The above lemma suggests the following O(n)-time procedure to find the shortest
cycle in case it passes through v. Let T be the shortest-path tree rooted at v, and let
dv(x) denote the length of the shortest path from v to x. For each edge (x, y) not in
T whose length is `(x, y) we look at dv(x) + dv(y) + `(x, y) and take the minimum of
this sum over all edges (x, y) /∈ T .

Suppose the shortest cycle is of length s. Notice that if v is indeed part of a
shortest cycle then by Lemma 3.2 we are guaranteed to find it using the above process.
If on the other hand no shortest cycle passes through v then the value we get from
this process is not smaller than s. This is because every value dv(x) + dv(y) + `(x, y)
that we consider corresponds to either an actual cycle or a cycle attached to a path
(in the case where the shortest paths to x and to y share a common prefix). The O(n)
time complexity follows from the shortest paths algorithm of Henzingeret al. [16] and
from the fact that the number of edges in G is O(n) and each edge is checked in O(1).

We have thus established that in O(kn) time we can find the shortest cycle in the
case that it passes through a separator vertex. If the removal of the separator results
in t ≥ 2 connected components, then the total time-complexity of all the recursive
calls is therefore

T (n) = T (n1) + T (n2) + · · ·+ T (nt) +O(kn),

where
t∑

i=1

ni ≤ n and every ni ≤ 2n/3 .

The solution to this recurrence is T (n) = O(kn log n) (for the standard analysis of
such recurrences see, e.g. [7]).

This concludes our description of the k-outerplanar O(kn log n)-time algorithm.
Notice that this algorithm works even if the graph is directed. Indeed, suppose we
want to compute the shortest directed cycle containing the separator vertex v. We
start by deleting all the edges incoming to v. We then apply the Henzingeret al.
algorithm (that works also for directed graphs) from source v. Let dv(x) denote the
length of the shortest v-to-x path. We scan all edges (x, v) that we deleted before and
take the minimum of dv(x) + `(x, v).

Since any planar graph G has a separator of size
√
|G|, our algorithm for directed

planar graphs runs in time

T (G) = T (G1) + T (G2) + · · ·+ T (Gt) +O(|G|3/2),
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where
t∑

i=1

|Gi| ≤ |G| and every |Gi| ≤ 2|G|/3 .

This gives a total of O(n3/2) time. We next show that in the undirected case this
can be improved to O(n log n) by dividing the planar graph into many k-outerplanar
graphs.

Covering the Graph by k-outerplanar Graphs. Before we can cover G by
k-outerplanar graphs, we will need to modify G in order to make sure that each edge
of G is incident with a vertex whose degree is at least 3. We note that this is opposite
of Djidjev’s algorithm [9] which makes sure that the maximum degree is 3. We may
assume, of course, that G is 2-connected as otherwise we can run the algorithm on
each 2-connected component separately. In particular, this implies that G has no
vertices of degree 0 or degree 1. We may also assume that G is not a simple cycle as
this case is trivial. We apply the following contraction to G repeatedly. We remove
every vertex u of degree 2 whose two neighbors v1, v2 are not connected and add an
edge (v1, v2) whose length is the sum of lengths of the edges (u, v1) and (u, v2). Once
this contraction process ends we obtain a graph G′ with the property that the girth of
G is equal to the length of the shortest cycle in G′. Therefore, it suffices to compute
the shortest cycle of G′. Notice that if h is the minimum face length of any embedding
of G, then the number of edges on a shortest cycle of G′ is also bounded by h. This
is because the girth of G is bounded by h and we have only contracted edges to get
from G to G′. The following lemma states two important properties of G′.

Lemma 3.3. In order to compute the girth of an n-vertex planar graph G, for
which some embedding has minimum face length h, it suffices to compute the shortest
cycle of the planar graph G′, which has nonnegative edge-lengths and O(n/h) vertices.

Proof. Fix an embedding of G with minimal face length h. We will prove that
the graph G′ obtained by the above process has O(n/h) vertices. We denote m as the
number of edges in G, F denotes the set of all faces of G, |x| denotes the size of a face
x ∈ F and f denotes the number of faces of G. Notice that the transformation from G
to G′ does not change the total number of faces. We will show first that f = O(n/h).
Since any edge of G belongs to two faces, then

2m =
∑
x∈F

|x| ≥
∑
x∈F

h = fh .

In any planar graph m ≤ 3n− 6 so we get that f ≤ 2m/h ≤ 6n/h = O(n/h).
Let m′ and n′ denote the number of edges and vertices of G′. We need to show

that n′ = O(n/h), or, equivalently, that m′ = O(n/h). We denote T as the set of
vertices of G with degree at least 3 and set t = |T |. As the set of vertices with degree
2 in G′ is an independent set, we have that∑

v∈T

deg(v) ≥ m′ .

On the other hand, ∑
v∈T

deg(v) + 2(n′ − t) = 2m′ .

By Euler’s formula we know that

m′ = n′ + f − 2 ≤ n′ + 6n/h .
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It follows that ∑
v∈T

(deg(v)− 2) = 2(m′ − n′) = 2f − 4 ≤ 12n/h .

Since deg(v) ≥ 3 for each v ∈ T we have that

1
3

∑
v∈T

deg(v) ≤ 12n/h .

Consequently,

m′ ≤ 36n/h

as required.
Lemma 3.3 actually provides a way to compute an upper bound h for the minimum

face length of any embedding of G. We simply construct G′ resulting in n′ vertices,
and set h = min{n, b36n/n′c}.

Now that we can work with a graph G′ that has only O(n/h) vertices we can
finally describe how to cover G′ by k-outerplanar graphs. Consider a breadth-first
search of G′ that starts in an arbitrary vertex r (and can be done in linear-time).
Define G′i as the graph induced by the vertices whose distance from r is between ki/2
and k + ki/2 for k = 2h and i = 0, 1, . . . , 2(n−k)

k . In this way, every G′i overlaps with
at most two other graphs, G′i−1 and G′i+1. This is depicted in Fig. 3.2. It is easy to
verify that every G′i is indeed a (k + 1)-outerplanar graph. Furthermore, recall that
the shortest cycle in G′ has at most h edges. Therefore, it must be entirely contained
within a single G′i. This is because we chose k to be 2h and the overlap between two
adjacent G′i’s to be k/2.

r 

2h    G0 ’ 
   G1     2h ’ 

2h    G2 ’ 

Fig. 3.2. A decomposition of a graph G′ into overlapping 2h-outerplanar graphs according to
a breadth-first search of G′ that starts in an arbitrary vertex r. The shortest cycle is guaranteed to
be completely contained within one of these 2h-outerplanar graphs, in this case in G′1.

Finally, we run our k-outerplanar graph algorithm on every G′i separately to find
its shortest cycle. We then return the shortest cycle among these cycles. The time
complexity is thus ∑

i

O(k|G′i| log |G′i|) ≤ O(2h log n) ·
∑

i

|G′i| .

The O(n log n) total time complexity is achieved by noticing that every vertex in G′

appears in at most three G′i’s therefore
∑

i |G′i| = O(|G′|), which is equal to O(n/h)
by Lemma 3.3. This completes the proof of Theorem 3.1.
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4. Extension for Bounded Genus Graphs. In this section we show how to
adjust the proof of Theorem 3.1 so that it extends to graphs with bounded genus. We
therefore obtain the following theorem.

Theorem 4.1. For every fixed positive integer g, the girth of an undirected n-
vertex graph whose genus is at most g can be computed in O(n log n) time.
We outline the adjustments to the proof of Theorem 3.1 that are required in order to
obtain Theorem 4.1. Regarding the shortest paths algorithm of Henzingeret al. [16]
that we use, as pointed out in [16], separators of size O(n1−ε) suffice for the application
of their algorithm, provided that the separator can be found in linear time. Thus their
algorithm remains O(n) when applied to graphs with bounded genus.

In the proof of Theorem 3.1 the (k + 1)-outerplanar graphs are just obtained by
taking k+ 1 consecutive layers of a breadth-first search from a given vertex. We then
use the fact that such graphs have O(k)-sized separators, and such separators are
guaranteed to exist in subgraphs of these (k+ 1)-outerplanar graphs, as subgraphs of
(k+1)-outerplanar graphs are also (k+1)-outerplanar. In other words, we simply use
the fact that k-outerplanar graphs have tree-width O(k). Now, suppose we perform
breadth-first search in a genus g graph, and let G′i be obtained by taking the k + 1
consecutive layers s through s + k of that search. We would like to claim that G′i
is analogous to a (k + 1)-outerplanar graph in a “genus g” setting. Consider any
embedding of the graph on a genus g surface. We can contract all vertices in layers
above s to a single vertex z. The resulting graph is a minor of the original graph,
thus the genus does not increase. Notice that now the diameter of G′i becomes O(k)
and the genus remains at most g. A result of Eppstein [12] shows that graphs with
bounded genus g have separators, as well as tree-width, of the same order as the
diameter. It follows that G′i has tree-width O(k) as well, so the same analysis as in
the case of k-outerplanar graphs holds in the bounded genus setting.

Another point of minor difference is in Euler’s formula when applied in the proof
of Lemma 3.3. Instead of using the fact that in planar graphs we have m ≤ 3n− 6 we
use the fact that in genus g graphs we have m ≤ 3n− 6 + 6g. As g is bounded we still
have f = O(n/h) as in the planar case. Similarly, instead of using m′ = n′ + f − 2
which holds in the planar case we use m′ = n′ + f − 2 + 2g and since g is bounded
this still gives us that m′ = O(n/h) as in the planar case.

We have therefore shown that Theorem 3.1 can be adjusted to apply to the
bounded genus setting, thereby proving Theorem 4.1.

5. Concluding Remarks and Open Problems. We have presented the fastest
algorithm for computing the girth of an undirected planar graph and bounded genus
graph. Our algorithm runs in O(n log n) time, improving the previous best algorithms.
It would be interesting to extend this algorithm to undirected graphs with arbitrary
positive real edge weights. It would also be interesting to find an o(n3/2) algorithm
for directed planar graphs.
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