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Abstract. We present a (1 + ε)-approximation algorithm running in
O(f(ε) · n log4 n) time for finding the diameter of an undirected planar
graph with n vertices and with non-negative edge lengths.

1 Introduction

The diameter of a graph is the largest distance between two vertices. Comput-
ing it is among the most fundamental algorithmic graph problems. In general
weighted graphs, as well as in planar graphs, the only known way to compute
the diameter is to essentially solve the (more general) All-Pairs Shortest Paths
(APSP) problem and then take the pair of vertices with the largest distance.

In general weighted graphs with n vertices and m edges, solving APSP
(thus diameter) currently requires Õ(n3) time. The fastest algorithm to date is
O(n3(log log n)/ log2 n) by Han and Takaoka [11], or for sparse graphs O(mn+
n2 log n) by Johnson [14], with a small improvement to O(mn+n2 log log n) [19].

In weighted planar graphs, solving APSP can be done in O(n2) time by Fred-
erickson [10]. While this is optimal for APSP, it is not clear that it is optimal for
diameter. Currently, only a logarithmic factor improvement by Wulff-Nilsen [21]
is known for the diameter, running in O(n2(log log n)4/ log n) time. A long stand-
ing open problem [6] is to find the diameter in truly subquadratic O(n2−ε) time.
Eppstein [8] has shown that if the diameter in a planar graph is bounded by
a fixed constant, then it can be found in O(n) time. Fast algorithms are also
known for some simpler classes of graphs like outer-planar graphs [9], interval
graphs [18], and others [5,7].

In lack of truly subcubic-time algorithms for general graphs and truly sub-
quadratic time algorithms for planar graphs it is natural to seek faster algorithms
that approximate the diameter. It is easy to approximate the diameter within
a factor of 2 by simply computing a Single-Source Shortest Path (SSSP) tree
from any vertex in the graph and returning twice the depth of the deepest node
in the tree. This requires O(m+ n log n) time for general graphs and O(n) time
for planar graphs [13]. For general graphs, Aingworth et al. [2] improved the
approximation factor from 2 to 3/2 at the cost of Õ(m

√
n + n2) running time,

and Boitmanis et al. [4] gave an additive approximation factor of O(
√
n) with

Õ(m
√
n) running time. For planar graphs, the current best approximation is a

3/2-approximation by Berman and Kasiviswanathan running in O(n3/2) time [3].
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We improve this to a (1 + ε)-approximation running in Õ(n) time for any fixed
0 < ε < 1. More precisely, we prove the following theorem:

Theorem 1. Given an undirected planar graph with n vertices, non-negative
edge lengths, and diameter d. For any ε > 0 we can compute an approximate
diameter d′ (where d ≤ d′ ≤ (1 + ε) · d) in time O(n log4 n/ε4 + n · 2O(1/ε)).

Summary of the Algorithm. A lemma of Lipton and Tarjan [17] states that,
for any SSSP tree T in a planar graph G, there is a non-tree edge e (where e
might possibly be a non-edge of the planar graph) such that the strict interior
and strict exterior of the unique simple cycle C in T ∪{e} each contains at most
2/3 · n vertices. The vertices of C therefore form a separator consisting of two
shortest paths with the same common starting vertex.

Let Gin (resp. Gout) be the subgraph of G induced by C and all interior
(resp. exterior) vertices to C. Let d(Gin, Gout, G) denote the largest distance in
the graph G between a marked vertex in V (Gin) and a marked vertex in V (Gout).
In the beginning, all vertices of G are marked and we seek the diameter which
is d(G,G,G). We use a divide and conquer algorithm that first approximates
d(Gin, Gout, G), then unmarks all vertices of C, and then recursively approxi-
mates d(Gin, Gin, G) and d(Gout, Gout, G) and takes the maximum of all three.
We outline this algorithm below. Before running it, we compute an SSSP tree
from any vertex using the linear-time SSSP algorithm of Henzinger et al. [13].
The depth of the deepest node in this tree already gives a 2-approximation to the
diameter d(G,G,G). Let x be the obtained value such that x ≤ d(G,G,G) ≤ 2x.

Reduce d(Gin, Gout, G) to d(Gin, Gout, Gt) in a tripartite graph Gt: The sepa-
rator C is composed of two shortest paths P and Q emanating from the same
vertex, but that are otherwise disjoint. We carefully choose a subset of 16/ε
vertices from C called portals. The first (resp. last) 8/ε portals are all part of
the prefix of P (resp. Q) that is of length 8x. The purpose of the portals is
to approximate a shortest u-to-v path for u ∈ Gin and v ∈ Gout by forcing it
to go through a portal. Formally, we construct a tripartite graph Gt with ver-
tices (V (Gin), portals, V (Gout)). The length of edge (u ∈ V (Gin), v ∈ portals) or
(u ∈ portals, v ∈ V (Gout)) inGt is the u-to-v distance inG. This distance is com-
puted by running the SSSP algorithm of [13] from each of the 16/ε portals. By
the choice of portals, we show that d(Gin, Gout, Gt) is a (1 + 2ε)-approximation
of d(Gin, Gout, G).

Approximate d(Gin, Gout, Gt): If ` is the maximum edge-length of Gt, then note
that d(Gin, Gout, Gt) is between ` and 2`. This fact makes it possible to round
the edge-lengths of Gt to be in {1, 2, . . . , 1/ε} so that ε` · d(Gin, Gout, Gt) after
rounding is a (1 + 2ε)-approximation to d(Gin, Gout, Gt) before rounding. For
any fixed ε we can assume without loss of generality that 1/ε is an integer.
This means that after rounding d(Gin, Gout, Gt) is bounded by some fixed inte-
ger. We give a linear-time algorithm to compute it exactly, thus approximating
d(Gin, Gout, G). We then unmark all vertices of C and move on to recursively
approximate d(Gin, Gin, G) (the case of d(Gout, Gout, G) is symmetric).
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Reduce d(Gin, Gin, G) to d(Gin, Gin, G
+
in) in a planar graph G+

in of size at most
2/3 · n: In order to apply recursion, we construct planar graphs G+

in and G+
out

(that is constructed similarly to G+
in). The size of each of these graphs will be

at most 2/3 · n and their total size n+ o(n). We would like G+
in to be such that

d(Gin, Gin, G
+
in) is a (1 + ε/(2 log n))-approximation1 to d(Gin, Gin, G).

To construct G+
in, we first choose a subset of 256 log n/ε vertices from C

called dense portals. We then compute all O((256 log n/ε)2) shortest paths in
Gout between dense portals. The graph B′ obtained by the union of all these
paths has at most O((256 log n/ε)4) vertices of degree > 2. We contract vertices
of degree = 2 so that the number of vertices in B′ decreases to O((256 log n/ε)4).
Appending this small graph B′ (after unmarking all of its vertices) as an exterior
to Gin results in a graph G+

in that has |Gin| + O((256 log n/ε)4) vertices and
d(Gin, Gin, G

+
in) is a (1 + ε/(2 log n))-approximation of d(Gin, Gin, G).

The problem is still that the size of G+
in is not necessarily bounded by

2/3 · n. This is because C (that is part of G+
in) can be as large as n. We

show how to shrink G+
in to size roughly 2/3 · n while d(Gin, Gin, G

+
in) remains

a (1 + ε/(2 log n))-approximation of d(Gin, Gin, G). To achieve this, we shrink
the C part of G+

in so that it only includes the dense portals without changing
d(Gin, Gin, G

+
in).

Approximate d(Gin, Gin, G
+
in): Finally, once |G+

in| ≤ 2/3 · n we apply recursion
to d(Gin, Gin, G

+
in). In the halting condition, when |G+

in| ≤ (256 log n/ε)4, we
naively compute d(Gin, Gin, G

+
in) using APSP.

Related Work. The use of shortest-path separators and portals to approxi-
mate distances in planar graphs was first suggested in the context of approxi-
mate distance oracles. These are data structures that upon query u, v return a
(1 + ε)-approximation of the u-to-v distance. Thorup [20] presented an O(1/ε ·
n log n)-space oracle answering queries in O(1/ε) time on directed weighted pla-
nar graphs. Independently, Klein [16] achieved these same bounds for undirected
planar graphs.

In distance oracles, we need distances between every pair of vertices and
each vertex is associated with a possibly different set of portals. In our diameter
case however, since we know the diameter is between x and 2x, it is possible to
associate all vertices with the exact same set of portals. This fact is crucial in
our algorithm, both for its running time and for its use of rounding. Another
important distinction between our algorithm and distance oracles is that distance
oracles upon query (u, v) can inspect all recursive subgraphs that include both
u and v. We on the other hand must have that, for every (u, v), the shortest
u-to-v path exists (approximately) in the unique subgraph where u and v are
separated by C. This fact necessitated our construction of G+

in and G+
out.

1 logn = log2 n throughout the paper.
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2 The Algorithm

In this section we give a detailed description of an algorithm that approxi-
mates the diameter of an undirected weighted planar graph G = (V,E) in the
bounds of Theorem 1. The algorithm computes a (1 + ε)-approximation of the
diameter d = d(G,G,G) for G = G. This means it returns a value d′ where
d ≤ d′ ≤ (1 + ε) · d (recall that, before running the algorithm, we compute a
value x such that x ≤ d ≤ 2x by computing a single-source shortest-path tree
from an arbitrary vertex in G). We focus on approximating the value of the
diameter. An actual path of length d′ can be found in the same time bounds.
For simplicity we will assume that shortest paths are unique. This can always
be achieved by adding random infinitesimal weights to each edge, and can also
be achieved deterministically using lexicographic-shortest paths (see, e.g., [12]).
Also, to simplify the presentation, we assume that ε ≤ 0.1 and we describe a
(1 + 7ε)-approximation. (then just take ε′ = ε/7).

The algorithm is recursive and actually solves the more general problem of
finding the largest distance only between all pairs of marked vertices. In the
beginning, we mark all n = |V (G)| vertices of G = G and set out to approximate
d(G,G,G) (the largest distance in G between marked vertices in V (G)). Each
recursive call approximates the largest distance in a specific subset of marked
vertices, and then unmarks some vertices before the next recursive call. We make
sure that whatever the endpoints of the actual diameter are, their distance is
approximated in some recursive call. Finally, throughout the recursive calls, we
maintain the invariant that the distance between any two marked vertices in
the graph G of the recursive call is a (1 + ε)-approximation of their distance in
the original graph G (there is no guarantee on the marked-to-unmarked or the
unmarked-to-unmarked distances). We denote by δG(u, v) the u-to-v distance in
the original graph G.

The recursion is applied according to a variant of the shortest-path separator
decomposition for planar graphs by Lipton and Tarjan [17]: We first pick any
marked vertex v1 and compute in linear time the SSSP tree from v1 in G. In this
tree, we can find in linear time two shortest paths P and Q (both emanating from
v1) such that removing the vertices of C = P ∪Q from G results in two disjoint
planar subgraphs A and B (i.e., there are no edges in V (A)×V (B)). The number
of vertices of C can be as large as n but it is guaranteed that |V (A)| ≤ 2/3 · n
and |V (B)| ≤ 2/3 · n. Notice that the paths P and Q might share a common
prefix. It is common to not include this shared prefix in C. However, in our case,
we must have the property that P and Q start at a marked vertex. So we include
in C the shared prefix as well. See Fig. 1 (left).

Let Gin (resp. Gout) be the subgraph of G induced by V (C) ∪ V (A) (resp.
V (C)∪ V (B)). In order to approximate d(G,G,G), we first compute a (1 + 5ε)-
approximation d1 of d(Gin, Gout, G) (the largest distance in G between the
marked vertices of V (Gin) and the marked vertices of V (Gout)). In particu-
lar, d1 takes into account all V (C)× V (G) distances. We can therefore unmark
all the vertices of C and move on to approximate d2 = d(Gin, Gin, G) (approxi-
mating d3 = d(Gout, Gout, G) is done similarly). We approximate d(Gin, Gin, G)
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by applying recursion on d(Gin, Gin, G
+
in) where |V (G+

in)| ≤ 2/3 ·n. The marked
vertices in G+

in and in Gin are the same and d(Gin, Gin, G
+
in) is a (1+ε/(2 log n))-

approximation of d(Gin, Gin, G). This way, the diameter grows by a multiplica-
tive factor of (1 + ε/(2 log n)) in each recursive call. Since the recursive depth is
O(log n) (actually, it is never more than 1.8 log n) we get a (1 + 5ε) · (1 + ε) ≤
(1 + 7ε)-approximation d2 to d(Gin, Gin, G). Finally, we return max{d1, d2, d3}.

2.1 Reduce d(Gin, Gout, G) to d(Gin, Gout, Gt)

Our goal is now to approximate d(Gin, Gout, G). For u ∈ Gin and v ∈ Gout, we
approximate a shortest u-to-v path in G by forcing it to go through a portal.
In other words, consider a shortest u-to-v path. It is is obviously composed of a
shortest u-to-c path in G concatenated with a shortest c-to-v path in G for some
vertex c ∈ C. We approximate the shortest u-to-v path by insisting that c is a
portal. The fact that we only need to consider u-to-v paths that are of length
between x and 2x makes it possible to choose the same portals for all vertices.

We now describe how to choose the portals in linear time. Recall that the
separator C is composed of two shortest paths P and Q emanating from the
same marked vertex v1. The vertex v1 is chosen as the first portal. Then, for
i = 2, 3, . . . we start from vi−1 and walk on P until we reach the first vertex v
whose distance from vi−1 via P is greater than εx. We designate v as the portal
vi and continue to i+1. We stop the process when we encounter a vertex v whose
distance from v1 is greater than 8x. This guarantees that at most 8/ε portals
are chosen from the shortest path P and they are all in a prefix of P of length
at most 8x. This might seem counterintuitive as we know that any shortest path
P in the original graph G is of length at most 2x. However, since one endpoint
of P is not necessarily marked, it is possible that P is a shortest path in G but
not even an approximate shortest path in the original graph G. We do the same
for Q, and we get a total of 16/ε portals. See Fig. 1 (right).

Once we have chosen the portals, we move on to construct a tripartite graph
Gt whose three vertex sets (or columns) are (V (Gin), portals, V (Gout)). The
length of edge (u ∈ V (Gin), v ∈ portals) or (u ∈ portals, v ∈ V (Gout)) is the
u-to-v distance in G. This distance is computed by running the linear-time SSSP
algorithm of Henzinger et al. [13] in G from each of the 16/ε portals in total
O(1/ε · |V (G)|) time. The following lemma states that our choice of portals
implies that d(Gin, Gout, Gt) is a good approximation of d(Gin, Gout, G).

Lemma 1. If d(Gin, Gout, G) ≥ x, then d(Gin, Gout, Gt) is a (1+2ε)-approximation
of d(Gin, Gout, G). Otherwise, d(Gin, Gout, Gt) ≤ (1 + 2ε)x.

Proof. The first thing to notice is that d(Gin, Gout, Gt) ≥ d(Gin, Gout, G). This
is because every shortest u-to-v path in Gt between a marked vertex u ∈ V (Gin)
of the first column and a marked vertex v ∈ V (Gout) of the third column corre-
sponds to an actual u-to-v path in G.

We now show that d(Gin, Gout, Gt) ≤ (1+2ε)·d(Gin, Gout, G). We begin with
some notation. Let Pt denote the shortest path in Gt realizing d(Gin, Gout, Gt).
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P Q

v1

Gin

Gout

Saturday, April 13, 13

P Q

v1

Gout

Gin

u
v

c

p(c)

≤ ε
x

≤ 8x

Saturday, April 13, 13

Fig. 1. Two illustrations of a weighted undirected planar graph G. On the left: The
black nodes constitute the shortest path separator C composed of two shortest paths
P and Q emanating from the same vertex v1. The subgraph of G induced by the white
(resp. gray) nodes is denoted A (resp. B). The graph Gin (resp. Gout) is the subgraph
induced by A ∪ C (resp. B ∪ C). On the right: The six circled vertices are the 16/ε
portals in the 8x prefixes of P and Q. The shortest path between u and v goes through
the separator vertex c and is approximated by the u-to-λ(c) and the λ(c)-to-v shortest
paths where λ(c) is the closest portal to c. The distance from c to λ(c) is at most εx.

The path Pt is a shortest u-to-v path for some marked vertices u ∈ Gin and
v ∈ Gout. The length of the path Pt is δGt(u, v). Let PG denote the shortest
u-to-v path in G that is of length δG(u, v) and let PG denote the shortest u-to-v
path in the original graph G that is of length δG(u, v). Recall that we have the
invariant that in every recursive level for every pair of marked vertices δG(u, v) ≤
(1 + ε) · δG(u, v). We also have that δG(u, v) ≤ 2x and so δG(u, v) ≤ 2x · (1 + ε).
For the same reason, since v1 (the first vertex of both P and Q) is also marked,
we know that δG(v1, u) is of length at most 2x · (1 + ε).

The path PG must include at least one vertex c ∈ C. Assume without loss
of generality that c ∈ P . We claim that c must be a vertex in the prefix of P
of length 8x. Assume the converse, then the v1-to-c prefix of P is of length at
least 8x. Since P is a shortest path in G, this means that δG(v1, c) is at least
8x. However, consider the v1-to-c path composed of the v1-to-u shortest path (of
length δG(v1, u) ≤ 2x · (1 + ε)) concatenated with the u-to-c shortest path (of
length δG(u, c) ≤ δG(u, v) ≤ 2x · (1 + ε)). Their total length is 4x · (1 + ε) which
is less than 8x (since ε < 1) thus contradicting our assumption.

After establishing that c is somewhere in the 8x prefix of P , we now want
to show that δGt

(u, v) ≤ (1 + 2ε) · δG(u, v). Let λ(c) denote a closest portal
to c on the path P . Notice that by our choice of portals and since c is in the
8x prefix of P we have that δG(c, λ(c)) ≤ εx. By the triangle inequality we
know that δG(u, λ(c)) ≤ δG(u, c) + δG(c, λ(c)) ≤ δG(u, c) + εx and similarly
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δG(λ(c), v) ≤ δG(c, v) + εx. This means that

d(Gin, Gout, Gt) = δGt(u, v)

≤ δG(u, λ(c)) + δG(λ(c), v)

≤ δG(u, c) + δG(c, v) + 2εx

= δG(u, v) + 2εx

≤ d(Gin, Gout, G) + 2εx

≤ (1 + 2ε) · d(Gin, Gout, G),

where in the last inequality we assumed that d(Gin, Gout, G) ≥ x. Note that if
d(Gin, Gout, G) < x, then d(Gin, Gout, Gt) ≤ (1 + 2ε) ·x. The lemma follows. ut

By Lemma 1, approximating d(Gin, Gout, G) when d(Gin, Gout, G) ≥ x re-
duces to approximating d(Gin, Gout, Gt). The case of d(Gin, Gout, G) < x means
that the diameter d of the original graph G is not a (u ∈ Gin)-to-(v ∈ Gout)
path. This is because d ≥ x > d(Gin, Gout, G) ≥ d(Gin, Gout,G). So d will be
approximated in a different recursive call (when the separator separates the end-
points of the diameter). In the meanwhile, we will get that d(Gin, Gout, Gt) is at
most (1 + 2ε) · x and so it will not compete with the correct recursive call when
taking the maximum.

2.2 Approximate d(Gin, Gout, Gt)

In this subsection, we show how to approximate the diameter in the tripartite
graph Gt. We give a (1+2ε)-approximation for d(Gin, Gout, Gt). By the previous
subsection, this means we have a (1 + 2ε)(1 + 2ε) < (1 + 5ε)-approximation for
d(Gin, Gout, G). From the invariant that distances in G between marked vertices
are a (1 + ε)-approximation of these distances in the original graph G, we get a
(1+5ε)(1+ε) < (1+7ε)-approximation for d(Gin, Gout,G) in the original graph
G.

We now present our (1 + 2ε)-approximation for d(Gin, Gout, Gt) in the tri-
partite graph Gt. Recall that Pt denotes the shortest path in Gt that realizes
d(Gin, Gout, Gt). By the definition of Gt, we know that the path Pt is composed
of only two edges: (1) edge (u, p) between a marked vertex u of the first column
(i.e., u ∈ V (Gin)) and a vertex p of the second column (i.e., p corresponds to
some portal in G). (2) edge (p, v) between p and a marked vertex v of the third
column (i.e., v ∈ V (Gout)).

Let X (resp. Y ) denote the set of all edges in Gt adjacent to marked vertices
of the first (resp. third) column. Let ` denote the maximum edge-length over all
edges in X ∪ Y . Notice that ` ≤ d(Gin, Gout, Gt) ≤ 2`. We round up the lengths
of all edges in X ∪Y to the closest multiple of ε`. The rounded edge-lengths are
thus all in {ε`, 2ε`, 3ε`, . . . , `}. We denote Gt after rounding as G′t. Notice that
d(Gin, Gout, G

′
t) is a (1 + 2ε)-approximation of d(Gin, Gout, Gt). This is because

the path Pt is of length at least ` and is composed of two edges, each one of
them has increased its length by at most ε`.
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We now show how to compute d(Gin, Gout, G
′
t) exactly in linear time. We

first divide all the edge-lengths of G′t by ε` and get that G′t has edge-lengths
in {1, 2, 3, . . . , 1/ε}. After finding d(Gin, Gout, G

′
t) (which is now a constant) we

simply multiply the result by ε`. The following lemma states that when the
diameter is constant it is possible to compute it exactly in linear time. Note that
we can’t just use Eppstein’s [8] linear-time algorithm because it works only on
planar graphs and in our case we get a non-planar tripartite graph G′t.

Lemma 2. d(Gin, Gout, G
′
t) can be computed in time O(|V (G)|/ε+ 2O(1/ε)).

Proof. Recall that inG′t we denote the set of all edges adjacent to marked vertices
of the first and third column as X and Y . The length of each edge in X ∪ Y is
in {1, 2, . . . , k} where k = 1/ε. The number of edges in X (and similarly in Y )
is at most 16k · |V (G)|. This is because the first column contains |Gin| ≤ |V (G)|
vertices and the second column contains j ≤ 16k vertices v1, v2, . . . , vj (the
portals). For every marked vertex v in the first (resp. third) column, we store a
j-tuple vX (resp. vY ) containing the edge lengths from v to all vertices of the
second column. In other words, the j-tuple vX = 〈δ(v, v1), δ(v, v2), . . . , δ(v, vj)〉
where every δ(v, vi) ∈ {1, 2, . . . , k} is the length of the edge (v, vi). The total
number of tuples is O(k · |V (G)|) but the total number of different tuples is only
t = kO(k) since each tuple has O(k) entries and each entry is in {1, 2, . . . , k}.

We create two binary vectors VX and VY each of length t. The i’th bit of VX
(resp. VY ) is 1 iff the i’th possible tuple exists as some vX (reps. vY ). Creating
these vectors takes O(k · |V (G)|) = O(|V (G)|/ε) time. Then, for every 1 bit in
VX (corresponding to a tuple of vertex u in the first column) and every 1 bit in
VY (corresponding to a tuple of vertex v in the third column) we compute the
u-to-v distance in G′t using the two tuples in time O(16k). We then return the
maximum of all such (u, v) pairs. Notice that a 1 bit can correspond to several
vertices that have the exact same tuple. We arbitrarily choose any one of these.
There are t entries in VX and t entries in VY so there are O(t2) pairs of 1 bits.
Each pair is examined in O(16k) time for a total of O(kt2) = kO(k) time.

To complete the proof we now show that this last term O(kt2) is not only
kO(k) but actually 2O(k). For that we claim that the total number of different tu-
ples is t = 2O(k). We assume for simplicity (and w.l.o.g.) that all portals v1, . . . , vj
are on the separator P . We encode a j-tuple vX = 〈δ(v, v1), . . . , δ(v, vj)〉 by a
(2j − 1)-tuple v′X : The first entry of v′X is δ(v, v1). The next j − 1 entries are
|δ(v, vi+1)−δ(v, vi)| for i = 1, . . . , j−1. Finally, the last j−1 entries are single bits
where the i’th bit is 1 if δ(v, vi+1)− δ(v, vi) ≥ 0 and 0 if δ(v, vi+1)− δ(v, vi) < 0.

We will show that the number of different (2j − 1)-tuples v′X is 2O(k). There
are k options for the first entry of v′X and two options (0 or 1) for each of the
last j − 1 entries. We therefore only need to show that there are at most 2O(k)

possible (j − 1)-tuples 〈a1, a2, . . . , aj−1〉 where ai = |δ(v, vi+1) − δ(v, vi)|. First
notice that since δ(v, vi+1) and δ(v, vi) correspond to distances, by the triangle
inequality we have ai = |δ(v, vi+1) − δ(v, vi)| ≤ δ(vi, vi+1). We also know that
δ(v1, vj) ≤ 8x/ε` since all portals lie on a prefix of P of length at most 8x and

we scaled the lengths by dividing by ε`. We get that
∑j−1

i=1 ai ≤ 8x/ε` ≤ 16k.
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In the last inequality we used the fact that x ≤ 2`, if x > 2`, then we ignore
this recursive call altogether (the diameter will be found in another recursive
call). To conclude, observe that the number of possible vectors 〈a1, a2, . . . , aj−1〉
where every ai is non-negative and

∑
ai ≤ 16k is at most 2O(k). ut

To conclude, we have so far seen how to obtain a (1 + 5ε)-approximation for
d(Gin, Gout, G) implying a (1 + 7ε)-approximation for d(Gin, Gout,G) in the
original graph G. The next step is to unmark all vertices of C and move on to
recursively approximate d(Gin, Gin, G) (approximating d(Gout, Gout, G) is done
similarly).

2.3 Reduce d(Gin, Gin, G) to d(Gin, Gin, G
+
in)

In this subsection we show how to recursively obtain a (1+5ε)-approximation of
d(Gin, Gin, G) and recall that this implies a (1+7ε)-approximation of d(Gin, Gin,G)
in the original graph G since we will make sure to maintain our invariant that,
at any point of the recursion, distances between marked vertices are a (1 + ε)-
approximation of these distances in the original graph G.

It is important to note that our desired construction can be obtained with
similar guarantees using the construction of Thorup [20] for distance oracles.
However, we present here a simpler construction than [20] since, as apposed to
distance oracles that require all-pairs distances, we can afford to only consider
distances that are between x and 2x.

There are two problems with applying recursion to solve d(Gin, Gin, G). The
first is that |V (Gin)| can be as large as |V (G)| and we need it to be at most
2/3 · |V (G)|. We do know however that the number of marked vertices in V (Gin)
is at most 2/3 · |V (G)| . The second problem is that it is possible that the u-to-v
shortest path in G for u, v ∈ Gin includes vertices of Gout. This only happens if
the u-to-v shortest path in G is composed of a shortest u-to-p path (p ∈ P ) in
Gin, a shortest p-to-q path (q ∈ Q) in Gout, and a shortest q-to-v path in Gin. To
overcome these two problems, we construct a planar graph G+

in that has at most
2/3 · |V (G)| vertices and d(Gin, Gin, G

+
in) is a (1 + ε/(2 log n))-approximation to

d(Gin, Gin, G).

Recall that the subgraph B of G induced by all vertices in the strict exterior
of the separator C is such that |B| ≤ 2/3 · |V (G)| and Gout = B ∪ C. The
construction of G+

in is done in two phases. In the first phase, we replace the
B part of G with a graph B′ of polylogarithmic size. In the second phase, we
contract the C part of G to polylogarithmic size.

Phase I: replacing B with B′. To construct G+
in, we first choose a subset of

256 log n/ε vertices from C called dense portals. The dense portals are chosen
similarly to the regular portals but there are more of them. The marked vertex
v1 (the first vertex of both P and Q) is chosen as the first dense portal. Then,
for i = 2, . . . , 128 log n/ε we start from vi−1 and walk on P until we reach the
first vertex whose distance from vi−1 via P is greater than εx/(16 log n). We set
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this vertex as the dense portal vi and continue to i+ 1. We do the same for Q,
for a total of 256 log n/ε dense portals.

After choosing the dense portals, we compute all O((256 log n/ε)2) shortest
paths in Gout between dense portals. This can be done using SSSP from each
portal in total O(|V (Gout)| · log n/ε) time. It can also be done using the Multiple
Source Shortest Paths (MSSP) algorithm of Klein [15] in total O(|V (Gout)| ·
log n+ log2 n/ε2) time.

Let B′ denote the graph obtained by the union of all these dense portal to
dense portal paths in Gout. Notice that since these are shortest paths, and since
we assumed shortest paths are unique, then every two paths can share at most
one consecutive subpath. The endpoints of this subpath are of degree > 2. There
are only O((256 log n/ε)2) paths so this implies that the graph B′ has at most
O((256 log n/ε)4) vertices of degree > 2. We can therefore contract vertices of
degree = 2. The number of vertices of B′ then decreases to O((256 log n/ε)4), it
remains a planar graph, and its edge lengths correspond to subpath lengths.

We then unmark all vertices of B′ and append B′ to the infinite face of
Gin. In other words, we take the disjoint union of Gin and B′ and identify the
dense portals of Gin with the dense portals of B′. This results in a graph G+

in

that has |V (Gin)| + O((256 log n/ε)4) vertices. In Lemma 3 we will show that
d(Gin, Gin, G

+
in) can serve as a (1+ε/(2 log n))-approximation to d(Gin, Gin, G).

But first we will shrink G+
in so that the number of its vertices is bounded by

2/3 · |V (G)|.

P Q

v1

Thursday, December 8, 2011

v1

Thursday, December 8, 2011

Fig. 2. On the left: The graph G+
in before shrinking. The white vertices are the vertices

of A, the black vertices are the vertices of C that are not dense portals, the six red
circled vertices are the 256 logn/ε dense portals, and the gray vertices are the vertices
of B′ \ C with degree > 2. On the right: The graph G+

in after shrinking. The edges
adjacent to vertices of C that are not dense portals are now replaced with edges to
dense portals.

Phase II: shrinking G+
in. The problem with the current G+

in is still that the
size of V (G+

in) is not necessarily bounded by 2/3 · |V (G)|. This is because C
(that is part of V (G+

in)) can be as large as n. We now show how to shrink
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V (G+
in) to size 2/3 · |V (G)| while d(Gin, Gin, G

+
in) remains a (1 + ε/(2 log n))-

approximation of d(Gin, Gin, G). To achieve this, we shrink the C part of V (G+
in)

so that it only includes the dense portals. We show how to shrink P , shrinking
Q is done similarly.

Consider two dense portals vi and vi+1 on P (i.e., vi is the closest portal to
vi+1 on the path P towards v1). We want to eliminate all vertices of P between
vi and vi+1. Denote these vertices by p1, . . . , pk. If vi is the last portal of P
(i.e., i = 128 log n), then p1, . . . , pk are all the vertices between vi and the end
of P . Recall that A is the subgraph of G induced by all vertices in the strict
interior of the separator C. Fix a planar embedding of G+

in. We perform the
following process as long as there is some vertex u in Q∪A which is a neighbor
of some pj , and which is on some face of the embedding that also contains vi.
We want to “force” any shortest path that goes through an edge (u, pj) to also
go through the dense portal vi. To this end, we delete all such edges (u, pj), and
instead insert a single edge (u, vi) of length minj{`(u, pj) + δG(pj , vi)}. Here,
`(u, pj) denotes the length of the edge (u, pj) (it may be that `(u, pj) = ∞ if
(u, pj) is not an edge) and δG(pj , vi) denotes the length of the pj-to-vi subpath
of P . It is important to observe that the new edge (u, vi) can be embedded while
maintaining the planarity since we have chosen u to be on the same face as vi.
Observe that once the process ends, the vertices pj have no neighbors in Q∪A.

Finally, we replace the entire vi+1-to-vi subpath of P with a single edge
(vi+1, vi) whose length is equal to the entire subpath length. If vi is the last
dense portal in P , then we simply delete the entire subpath between vi and the
end of P . The entire shrinking process takes only linear time in the size of |V (G)|
since it is linear in the number of edges of G+

in (which is a planar graph).
The following Lemma asserts that after the shrinking phase d(Gin, Gin, G

+
in)

can serve as a (1 + ε/(2 log n))-approximation to d(Gin, Gin, G).

Lemma 3. d(Gin, Gin, G) ≤ d(Gin, Gin, G
+
in) ≤ d(Gin, Gin, G) + εx/(2 log n)

Proof. First observe that d(Gin, Gin, G
+
in) ≥ d(Gin, Gin, G). This is because ev-

ery vertex of Gin that is marked in G is also a marked vertex in G+
in, and any

shortest u-to-v path in G+
in corresponds to an actual u-to-v path in G.

We now show that d(Gin, Gin, G
+
in) ≤ d(Gin, Gin, G) + εx/(2 log n). Let P+

denote the shortest u-to-v path in G+
in realizing d(Gin, Gin, G

+
in). Both u and v

are marked vertices in Gin and the length of P+ is δG+
in

(u, v). Let PG denote

the shortest u-to-v path in G that is of length δG(u, v).

Case 1: If PG does not include any vertex of C, then PG is also present in G+
in

and therefore d(Gin, Gin, G
+
in) ≤ d(Gin, Gin, G).

Case 2: If PG includes vertices that are not in Gin (i.e., vertices in Gout \ C),
then PG must be composed of a shortest u-to-p path (p ∈ P ) in Gin, a shortest
p-to-q path (q ∈ Q) in Gout, and a shortest q-to-v path in Gin.

We first claim that p must be a vertex in the prefix of P of length 8x (a
similar argument holds for q and Q). Assume the converse, then the prefix of P
from v1 (the first vertex of both P and Q) to p is of length at least 8x. Recall
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that we have the invariant that in every recursive level for every pair of marked
vertices δG(u, v) ≤ (1 + ε) · δG(u, v) ≤ 2x · (1 + ε). For the same reason we
know that δG(v1, u) ≤ 2x · (1 + ε). Since P is a shortest path in G, this means
that δG(v1, p) ≥ 8x. However, consider the v1-to-p path composed of the v1-to-u
shortest path (of length δG(v1, u) ≤ 2x · (1 + ε)) concatenated with the u-to-p
shortest path (of length δG(u, p) ≤ δG(u, v) ≤ 2x · (1 + ε)). Their total length is
4x · (1+ε) which is less than 8x (since ε < 1) thus contradicting our assumption.

We now show that δG+
in

(u, v) ≤ δG(u, v) + εx/(2 log n). For c ∈ P (resp.

c ∈ Q), let λ(c) denote the first dense portal encountered while walking from
c towards v1 on the path P (resp. Q). Notice that since p and q are in the 8x
prefixes of P and Q we have that δG(p, λ(p)) ≤ εx/(16 log n) and δG(q, λ(q)) ≤
εx/(16 log n). From the shrinking phase, it is easy to see that G+

in includes a
u-to-λ(p) path of length δG(u, p) + δG(p, λ(p)) and so δG+

in
(u, λ(p)) ≤ δG(u, p) +

εx/(16 log n). Similarly, δG+
in

(λ(q), v) ≤ δG(q, v) + εx/(16 log n). Furthermore,

since G+
in was appended with shortest paths between dense portals in Gout we

have δG+
in

(λ(p), λ(q)) ≤ δGout
(λ(p), p)+δGout

(p, q)+δGout
(q, λ(q)) = δG(λ(p), p)+

δGout
(p, q) + δG(q, λ(q)) ≤ δGout

(p, q) + εx/(8 log n). To conclude we get that

d(Gin, Gin, G
+
in) = δG+

in
(u, v)

≤ δG+
in

(u, λ(p)) + δG+
in

(λ(p), λ(q)) + δG+
in

(λ(q), v)

≤ δG(u, p) + δGout
(p, q) + δG(q, v) + εx/(4 log n)

= δG(u, v) + εx/(4 log n)

≤ d(Gin, Gin, G) + εx/(4 log n)

< d(Gin, Gin, G) + εx/(2 log n).

Case 3: Finally, we need to consider the case where PG includes only vertices of
Gin. We assume PG includes vertices of P and\or vertices of Q (otherwise this
was handled in Case 1). We focus on the case that PG includes vertices of both P
and Q. The case that PG includes vertices of one of P or Q follows immediately
using a similar argument.

Since P and Q are shortest paths, then PG must be composed of the following
shortest paths: a u-to-p path (p ∈ P ) in Gin, a p-to-p′ subpath (p′ ∈ P ) of P ,
a p′-to-q′ path (q′ ∈ Q) in Gin, a q′-to-q subpath (q ∈ Q) of Q, and a q-to-v
path in Gin. Following the same argument as in Case 2, we know that p and
p′ (resp. q and q′) must in the prefix of P (resp. Q) of length 8x. This means
δG(c, λ(c)) ≤ εx/(16 log n) for every c ∈ {p, p′, q, q′}.

From the shrinking phase, it is easy to see that G+
in includes a u-to-λ(p) path

of length δG(u, p) + δG(p, λ(p)) and so δG+
in

(u, λ(p)) ≤ δG(u, p) + εx/(16 log n).

Similarly, we have that δG+
in

(λ(q), v) ≤ δG(q, v) + εx/(16 log n), and we have

that δG+
in

(λ(p′), λ(q′)) ≤ δG(λ(p′), p′) + δG(p′, q′) + δG(q′, λ(q′)) ≤ δG(p′, q′) +

εx/(8 log n). Furthermore, since subpaths of P in G+
in between dense portals

capture their exact distance in G we have that δG+
in

(λ(p), λ(p′)) ≤ δG(λ(p), p) +

δG(p, p′)+δG(p′, λ(p′)) ≤ δG(p, p′)+εx/(8 log n) and similarly δG+
in

(λ(q′), λ(q)) ≤
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δG(q′, q) + εx/(8 log n). To conclude we get that

d(Gin, Gin, G
+
in) = δG+

in
(u, v)

≤ δG+
in

(u,λ(p))+δG+
in

(λ(p),λ(p′))+δG+
in

(λ(p′),λ(q′))+δG+
in

(λ(q′),λ(q))+δG+
in

(λ(q),v)

≤ δG(u, p) + δG(p, p′) + δG(p′, q′) + δG(q′, q) + δG(q, v) + εx/(2 log n)

= δG(u, v) + εx/(2 log n)

< d(Gin, Gin, G) + εx/(2 log n).

ut

Corollary 1. If d(Gin, Gin, G) ≥ x, then d(Gin, Gin, G
+
in) is a (1+ε/(2 log n))-

approximation of d(Gin, Gin, G). If d(Gin, Gin, G) < x, then d(Gin, Gin, G
+
in) ≤

(1 + ε/(2 log n)) · x.

By the above corollary, approximating d(Gin, Gin, G) when d(Gin, Gin, G) ≥ x
reduces to approximating d(Gin, Gin, G

+
in). When d(Gin, Gin, G) < x it means

that the diameter of the original graph G is not a (u ∈ Gin)-to-(v ∈ Gin) path
and will thus be approximated in a different recursive call.

Finally, notice that indeed we maintain the invariant that the distance be-
tween any two marked vertices in the recursive call toG+

in is a (1+ε)-approximation
of the distance in the original graph G. This is because, by the above corollary,
every recursive call adds a 1 + ε/(2 log n) factor to the approximation. Each re-
cursive call decreases the input size by a factor of (2/3 + o(1))−1. Hence, the
overall depth of the recursion is at most log1.5−o(1) n < 1.8 log n. Since

(1 + ε/(2 log n))1.8 logn < e0.9ε < 1 + ε

the invariant follows (we assume in the last inequality that ε ≤ 0.1). Together
with the (1 + 5ε)-approximation for d(Gin, Gout,G) in the original graph G, we
get a (1 + 5ε) · (1 + ε) ≤ (1 + 7ε)-approximation of d(Gin, Gin,G) in the original
graph G, once we apply recursion to d(Gin, Gin, G

+
in).

We note that our recursion halts once |G+
in| ≤ (256 log n/ε)4 in which case

we naively compute d(Gin, Gin, G
+
in) using APSP in time O(|G+

in|2). Recall that
even at this final point, the distances between marked vertices still obey the
invariant.

2.4 Running time

We now examine the total running time of our algorithm. Let n denote the
number of vertices in our original graph G and let V (G) denote the vertex set
of the graph G in the current invocation of the recursive algorithm. The current
invocation approximates d(Gin, Gout, Gt) as shown in subsection 2.2 in time
O(|V (G)|/ε+2O(1/ε)). It then goes on to construct the subgraphsG+

in andG+
out as

shown in subsection 2.3, where we have that after contraction using dense portals,
|V (G+

in)| = α|V (G)| + O(log4 n/ε4) and |V (G+
out)| = β|V (G)| + O(log4 n/ε4),
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where α, β ≤ 2/3 and α+ β ≤ 1. The time to construct |V (G+
in)| and |V (G+

out)|
is dominated by the time required to compute SSSP for each dense portal, which
requires O(|V (G)| · log n/ε). We then continue recursively to G+

in and to G+
out.

Hence, if T (|V (G)|) denotes the running time for G, then we get that

T (|V (G)|) = O
(
|V (G))| · log n/ε+ 2O(1/ε)

)
+ T

(
α|V (G)|+O(log4 n/ε4)

)
+ T

(
β|V (G)|+O(log4 n/ε4)

)
.

In the recursion’s halting condition, once we get to components of size |V (G)| =
(256 log n/ε)4, we naively run APSP. This takes O(|V (G)|2) time for each such
component, and there are O(n/|V (G)|) such components, so the total time is
O(n · |V (G)|) = O(n log4 n/ε4). It follows that

T (n) = O(n log4 n/ε4 + n · 2O(1/ε)).

3 Concluding Remarks

We presented the first (1+ε)-factor approximation algorithm for the diameter of
an undirected planar graph with non-negative edge lengths. Moreover, it is the
first algorithm that provides a nontrivial (i.e. less than 2-factor) approximation
in near-linear time.

It might still be possible to slightly improve the running time of our algorithm
by removing a logarithmic factor, or by replacing the exponential dependency on
ε with a polynomial one. In addition, the technique of Abraham and Gavoille [1]
which generalizes shortest-path separators to the class of H-minor free graphs
may also turn out to be useful.
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