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Abstract

Let G(r, n) denote the set of all r-partite graphs consisting of n vertices in each partite class.

An independent transversal of G ∈ G(r, n) is an independent set consisting of exactly one vertex

from each vertex class. Let ∆(r, n) be the maximal integer such that every G ∈ G(r, n) with

maximal degree less than ∆(r, n) contains an independent transversal. Let Cr = limn→∞
∆(r,n)

n .

We establish the following upper and lower bounds on Cr, provided r > 2:

2blog rc−1

2blog rc − 1
≥ Cr ≥ max{ 1

2e
,

1

2dlog(r/3)e ,
1

3 · 2dlog re−3
}.

For all r > 3, both upper and lower bounds improve upon previously known bounds of Bollobás,

Erdös and Szemerédi. In particular, we obtain that C4 = 2/3, and that limr→∞ Cr ≥ 1/(2e),

where the last bound is a consequence of a lemma of Alon and Spencer. This solves two open

problems of Bollobás, Erdös and Szemerédi.

1 Introduction

All graphs considered here are finite, undirected and simple. Let G(r, n) denote the set of all r-

partite graphs consisting of n vertices in each partite vertex class. An independent transversal of

G ∈ G(r, n) is an independent set consisting of exactly one vertex from each vertex class. Let ∆(G)
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(δ(G)) denote the maximum (minimum) degree of G. Let ∆(r, n) be the maximal integer such

that every G ∈ G(r, n) with ∆(G) < ∆(r, n) contains an independent transversal. Alternatively, let

δ(r, n) be the minimal integer such that every G ∈ G(r, n) with δ(G) > δ(r, n) contains an r-clique.

Clearly, δ(r, n) + ∆(r, n) = (r − 1)n. Let Cr = limn→∞
∆(r,n)
n . (Similarly, cr = limn→∞

δ(r,n)
n ).

The fact that these limits exist is simple (cf. also, [6] p. 318). Hence, cr + Cr = r − 1. Trivially,

∆(2, n) = n, and therefore, C2 = 1. It was shown by Graver (cf. [4]) that δ(3, n) = n and therefore,

C3 = c3 = 1. The proof, although elementary, is non-trivial. For r ≥ 4, the exact value was not

known. In fact, the best known results ([5], [6] p. 318, there in terms of cr) were that for all r ≥ 4:

1

2
+

1

r − 2
≥ Cr ≥

2

r
. (1)

For r = 4 an example was constructed to obtain C4 ≤ 8/9. In this paper we improve both upper

and lower bounds, for all r > 3. In fact, we have:

Theorem 1.1 1. ∆(4, n) ≥ 2n/3.

2. For all r ≥ 3, ∆(2r, n) ≥ ∆(r, n)/2.

3. For all r ≥ 3,

Cr ≥ max{ 1

2logd(r/3)e ,
1

3 · 2dlog re−3
}.

For the upper bound, we have:

Theorem 1.2 For every r ≥ 2, ∆(r, n) ≤ n · 2blog rc−1

2blog rc−1
holds for infinitely many values of n.

Consequently, Cr ≤ 2blog rc−1

2blog rc−1
.

Note that the bounds in Theorems 1.1 and 1.2 improve upon those of inequality (1) for all r > 3. In

particular, our upper and lower bounds coincide for r = 4, and we therefore obtain that C4 = 2/3.

This solves a problem of Bollobás, Erdös and Szemerédi for the case r = 4. Note that the previously

best known bound was 8/9 ≥ C4 ≥ 1/2. Even for some other values the improvement is significant.

For example, we have 2/3 ≥ C6 ≥ 1/2 while the previous bound was 3/4 ≥ C6 ≥ 1/3.
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It is obvious that ∆(r + 1, n) ≤ ∆(r, n), since we may add a disconnected vertex class. Hence,

Cr is a monotone decreasing function of r, and µ = limr→∞Cr exists. It was conjectured by

Bollobás, Erdös and Szemerédi [5] that µ = 0.5. They also asked whether µ > 0 holds (note that

by equation (1) or Theorem 1.2 we have µ ≤ 0.5). Alon and Spencer have shown in Proposition 5.3

of Chapter 5 of [2], that any r-partite graph with maximum degree d, and with every vertex class

having at least 2ed vertices (e being the natural logarithm), contains an independent transversal.

This implies that for all r ≥ 2, ∆(r, n) > n/(2e) and therefore we have:

Proposition 1.3 For all r ≥ 2, Cr ≥ 1/(2e). Consequently, µ ≥ 1/(2e). 2

Note that the bound for Cr in Proposition 1.3 supersedes that of Theorem 1.1 only for r ≥ 13. We

can summarize the results of Theorems 1.1, 1.2 and Proposition 1.3 in the following corollary:

Corollary 1.4 For all r ≥ 3,

2blog rc−1

2blog rc − 1
≥ Cr ≥ max{ 1

2e
,

1

2dlog(r/3)e ,
1

3 · 2dlog re−3
}.

The rest of this paper is organized as follows: In section 2 we prove Theorem 1.1. In section 3 we

prove Theorem 1.2. Section 4 contains some concluding remarks and open problems.

2 The lower bound

In this section we prove Theorem 1.1. We begin with the following definitions. Let G = (V,E) ∈

G(r, n) have vertex classes V1, . . . , Vr. Let E(Vi, Vj) denote the set of edges of G with one endpoint

in Vi and the other in Vj . The bipartite complement BC(i, j) (1 ≤ i < j ≤ r) is the bipartite graph

whose vertex classes are Vi and Vj and whose edge-set is

E(BC(i, j)) = {(u, v) | u ∈ Vi, v ∈ Vj , (u, v) /∈ E}.
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We say that (Vi, Vj) is a sparse pair if BC(i, j) contains a perfect matching. If ∆(G) < n/2, we

clearly have that every pair (Vi, Vj) is sparse, since BC(i, j) satisfies Hall’s condition, and must

contain a perfect matching. Somewhat less obvious is the following lemma:

Lemma 2.1 Assume ∆(G) < 2n/3. If (Vi, Vj) is a non-sparse pair, and k is the size of the

maximum matching in BC(i, j), then k > 2n/3 and

|E(Vi, Vj)| > 8n2/9− 2nk/3 > 2n2/9.

Proof Let (Vi, Vj) be a non-sparse pair. and let k < n be the size of a maximum matching in

BC(i, j). For X ⊂ Vi, put N(X) = {u | ∃x ∈ X, (x, u) ∈ E(BC(i, j))}. Let X0 be a subset

such that |N(X0)| = |X0| − (n − k). Such a set X0 must exist according to Hall’s condition (See,

e.g. [7]). Clearly, |X0| < 2n/3 since if |X| ≥ 2n/3 then |N(X)| = n. Also, |N(X0)| > n/3 since

even a one-vertex set X = {x} has |N(X)| > n/3, and X0 6= ∅. We therefore have k > 2n/3 and

|X0| > 4n/3 − k. Note that every vertex of X0 is connected to every vertex of Vj \ N(X0) in G.

Hence

|E(Vi, Vj)| ≥ |X0|(n− |N(X0)|) = |X0|(2n− k − |X0|).

Since 4n/3− k < |X0| < 2n/3 we have by elementary calculus

|E(Vi, Vj)| > 2n/3(4n/3− k) = 8n2/9− 2nk/3 > 2n2/9.

2

We are now ready to prove the first part of the theorem. Let G ∈ G(4, n) have ∆(G) < 2n/3.

We must show that G contains an independent transversal. Two cases are considered. Assume first

that there are two disjoint pairs of vertex classes that are non-sparse. W.l.o.g. assume that the

maximum matching in BC(1, 2) is k1 < n, and that the maximum matching in BC(3, 4) is k2 < n.

Assume, for the sake of contradiction, that there is no independent transversal. Then there are at

least k1 · k2 edges in E with one endpoint in V1 ∪ V2 and the other in V3 ∪ V4. Furthermore, by
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lemma 2.1 we have |E(V1, V2)| > 8n2/9−2nk1/3, and also |E(V3, V4)| > 8n2/9−2nk2/3. Summing

it all, we obtain:

|E| > k1 · k2 +
16

9
n2 − 2

3
n(k1 + k2).

Since k1, k2 > 2n/3 (by lemma 2.1), we have by elementary calculus that |E| > 4n2/9 + 16n2/9−

8n2/9 = 4n2/3. However, as ∆(G) < 2n/3 and G has 4n vertices, we must have |E| < 4n2/3, a

contradiction.

We may now assume that in any two disjoint pairs of vertex classes, at least one pair is sparse.

We claim that V1 must be a member of at least one sparse pair. If this were not the case, we would

have, by lemma 2.1, that |E(V1, Vj)| > 2n2/9 for j = 2, 3, 4. This means that more than 2n2/3

edges are incident with V1, but this contradicts our assumption that ∆(G) < 2n/3. Similarly, each

Vi is a member of at least one sparse pair. Consider the graph H whose vertex set is {1, 2, 3, 4}

and (i, j) ∈ EH iff (Vi, Vj) is a sparse pair. We have shown that the minimal degree of H is at

least 1, and according to our assumption the complement of H does not contain a matching. It

follows that H must contain a vertex of degree 3. We may therefore assume w.l.o.g. that (V1, Vj)

is a sparse pair for j = 2, 3, 4. Let k23(k24, k34) be the size of the maximum matching in BC(2, 3)

(BC(2, 4), BC(3, 4)). By lemma 2.1, we have,

n ≥ k23, k24, k34 > 2n/3. (2)

Assume for the sake of contradiction that there is no independent transversal. Hence, considering

k23, we have |E| > nk23 + |E(V1, V4)| + |E(V2, V3)|. Similar inequalities are obtained when con-

sidering k24 and k34. We will derive a contradiction by showing that at least one of the following

inequalities holds:

nk23 + |E(V1, V4)|+ |E(V2, V3)| > |E|

nk24 + |E(V1, V3)|+ |E(V2, V4)| > |E|

nk34 + |E(V1, V2)|+ |E(V3, V4)| > |E|.
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Summing these inequalities, it suffices to show that

n(k23 + k24 + k34) > 2|E|.

Recalling that |E| < 4n2/3, it suffices to show that

k23 + k24 + k34 > 8n/3. (3)

Consequently, establishing (3) will lead to the desired contradiction.

If two out of the three terms on the l.h.s. of (3) equal n, then by (2) we have that (3) is established.

If only one of k23, k24, k34 equals n, we proceed as follows. W.l.o.g. k23 = n. By lemma 2.1, we have

that |E(V4, V2)| > 8n2/9 − 2nk24/3 and that |E(V4, V3)| > 8n2/9 − 2nk34/3. Since ∆(G) < 2n/3

we have

2n2/3 >
16

9
n2 − 2

3
n(k24 + k34).

This implies k24 + k34 > 5n/3 which establishes (3).

We may now assume that k23, k24, k34 < n. Let G′ be the 3-partite induced subgraph of G on the

vertex classes V2, V3, V4. Clearly, ∆(G′) < 2n/3. Using the fact that ∆(3, n) = n (mentioned in the

introduction), we can obtain at least n/3 vertex disjoint independent transversals of G′. By our

assumption, none of these transversals can be extended to an independent transversal of G. This

means that the degree of each vertex of V1 is at least n/3. Hence,

e(V1, V2) + e(V1, V3) + e(V1, V4) ≥ n2/3. (4)

Consider the edges adjacent to V2. We know that e(V1, V2) + e(V2, V3) + e(V2, V4) < 2n2/3. Thus

by lemma 2.1

e(V1, V2) +
16

9
n2 − 2

3
n(k23 + k24) <

2

3
n2.

Corresponding inequalities can be obtained for V3 and V4. Summing these three inequalities and

using (4) we have

n2

3
+

16

3
n2 − 4

3
n(k23 + k24 + k34) < 2n2
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which implies that k23 + k24 + k34 > 11n/4 > 8n/3, and (3) is established.

We now prove the second part of Theorem 1.1. Let r ≥ 3 and let G ∈ G(2r, n) have ∆(G) <

∆(r, n)/2. We must show that G contains an independent transversal. Since ∆(G) < ∆(r, n)/2 ≤

n/2, we have that every pair of vertex classes of G is sparse. Let Mi for i = 1, . . . , r be a perfect

matching in BC(2i − 1, 2i). Note that every member of Mi is of the form (a, b) where a, b are

non-connected vertices of G, a ∈ V2i−1, b ∈ V2i. We construct a graph G′ ∈ G(r, n) as follows.

The vertex classes of G′ are M1, . . . ,Mr. Two vertices e = (a, b) ∈ Mi and f = (c, d) ∈ Mj

where i 6= j are connected iff at least one of (a, c), (a, d), (b, c), (b, d) is an edge of G. Clearly,

∆(G′) ≤ 2∆(G) < ∆(r, n). By the definition of ∆(r, n) we know that G′ contains an independent

transversal. Let (a1, b1), . . . , (ar, br) be an independent transversal of G′. It is easy to see from the

construction of G′ that a1, b1, a2, b2, . . . , ar, br is an independent transversal of G, as required.

The last part of Theorem 1.1 follows easily from the facts that ∆(3, n) = n, ∆(4, n) ≥ 2n/3

(established in the first part of the theorem), ∆(2r, n) ≥ ∆(r, n)/2 (established in the second part

of the theorem) and ∆(r, n) ≥ ∆(r + 1, n). 2

3 The upper bound

In this section we prove Theorem 1.2. The following lemma supplies the desired construction which

yields the upper bound.

Lemma 3.1 For every two positive integers p and q there exists a graph Gp,q ∈ G(2p, q(2p − 1))

with ∆(Gp,q) = q2p−1 and which does not contain an independent transversal.

Proof We will construct Gp,q by induction on p. In fact we will construct Gp,1 and for q > 1, Gp,q

is defined as follows. Replace every vertex of Gp,1 by q copies of it. Two vertices are connected

in the new graph Gp,q iff their origins were connected in Gp,1. All vertices that originate from

the same vertex are independent and belong to the same vertex class in Gp,q. Clearly, Gp,q ∈

7



calG(2p, q(2p − 1)) and ∆(Gp,q) = q∆(Gp,1) = q2p−1, and Gp,q does not contain an independent

transversal since Gp,1 does not. For p = 1, G1,1 is simply the graph consisting of a single edge.

Note that, trivially, G1,1 satisfies our requirements. For p = 2, the graph G2,1 resembles the

one constructed in [1]. Let the vertex classes of G2,1 be (a1, a2, a3), (b1, b2, b3), (c1, c2, c3) and

(d1, d2, d3). G2,1 contains twelve edges in three vertex disjoint cycles of length four, and hence is

2-regular. These cycles are (a1, b1, a2, b2), (c1, d1, c2, d2) and (a3, c3, b3, d3). Clearly G2,1 ∈ G(4, 3),

and G2,1 does not contain an independent transversal, since the first two cycles can contribute at

most one vertex to an independent transversal, and this means that one of a3 or b3 and one of c3

or d3 must belong to the independent transversal, but this is impossible due to the third cycle.

Assume, by induction, that we have constructed Gp−1,q. We now show how to construct Gp,1. We

will use Gp−1,2 in order to define Gp,1. Note that Gp−1,2 ∈ G(2p−1, 2p − 2) and ∆(Gp−1,2) = 2p−1,

and it does not contain an independent transversal. Denote the vertex classes of Gp,1 by V1, . . . , V2p .

Each vertex class is partitioned into two subsets, Vi = Ui∪Wi where |Ui| = 2p−1 and |Wi| = 2p−1−1.

For each j = 1, . . . , 2p−1, we join all the vertices of U2j−1 to all the vertices of U2j . Notice that

the degree of every vertex that belongs to a Ui is exactly 2p−1. We now show how to connect the

vertices of the Wi’s among themselves. Put Xj = W2j−1∪W2j for j = 1, . . . , 2p−1. Now assume that

the Xj ’s are the vertex classes of Gp−1,2. Notice that the degree of every vertex that belongs to a

Wi is exactly 2p−1. This completes the construction of Gp,1. Note that, indeed, Gp,1 ∈ G(2p, 2p−1)

and ∆(Gp,1) = 2p−1. It remains to show that Gp,1 does not contain an independent transversal.

If T were such a transversal, there could be at most one vertex in T from each of U2j−1 ∪ U2j

for j = 1, . . . , 2p−1. Hence T must contain at least one vertex from each Xj . This, however, is

impossible since Gp−1,2 does not contain an independent transversal. 2

Proof of Theorem 1.2: Fix r ≥ 2, and put p = blog rc. Recall from the introduction that

∆(r + 1, n) ≤ ∆(r, n). Thus, ∆(r, n) ≤ ∆(2p, n). Now, for every n which is divisible by 2p − 1, the
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graph Gp,q constructed in Lemma 3.1, where q = n/(2p − 1) shows that ∆(2p, n) ≤ q2p−1 Thus,

∆(r, n) ≤ n · 2blog rc−1

2blog rc − 1

holds for every n divisible by 2blog rc − 1. Thus

Cr = lim
n→∞

∆(r, n)

n
≤ 2blog rc−1

2blog rc − 1
.

2

4 Concluding remarks and open problems

Our proof of Theorem 1.1 is algorithmic. That is, given a graph G ∈ G(r, n) with

∆(G) < nmax{ 1

2dlog(r/3)e ,
1

3 · 2dlog re−3
}

we can find an independent transversal in it in O(n3) time. In the case r = 3 we can greedily search

all n3 sets of three vertices, one from each vertex class, until we find an independent transversal,

which must exist. In case r > 3, we need to apply, constantly many times, an algorithm which finds

a maximum matching in a bipartite graph. This requires O(n2.5) time, utilizing the best known

algorithm for bipartite matchings. However, recall from the proof that we still use as a subroutine

the result for r = 3, and hence the performance of the algorithm is still dominated by O(n3). The

other ingredients in the algorithmic version of the proof of Theorem 1.1 require less time. This

running time is better than the naive O(nr) algorithm that scans all possible transversals. As

mentioned in the introduction, for r ≥ 13, the bound obtained in Proposition 1.3 is better than

that of Theorem 1.1. However, the proof of the Alon-Spencer lemma which yields Proposition 1.3 is

non-constructive, as it uses the Lovász Local Lemma (cf. e.g. [2]). Therefore, from an algorithmic

perspective, Theorem 1.1 does not become worthless for r ≥ 13. For a sufficiently large r, however,

it will become worthless, as Beck in [3] has shown that in some instances (including ours) the Local
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Lemma can be made constructive. The price to pay, however, is a significant loss in the constants.

The 1/(2e) constant in Proposition 1.3 is replaced by a much smaller one, if an algorithmic version

is sought.

The most obvious open problem is that of finding Cr for r ≥ 5. Even for r = 5 we currently

only have that 2/3 ≥ C5 ≥ 1/2. A (slightly) less ambitious open problem is that of finding the

exact value of µ = limr→∞Cr or, at least, improving the current bounds. We currently have

1/2 ≥ µ ≥ 1/(2e). As mentioned in the introduction, it is conjectured in [5] that µ = 1/2.
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