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Abstract

Packing and decomposition of combinatorial objects such as graphs, digraphs, and hypergraphs
by smaller objects are central problems in combinatorics and combinatorial optimization. Their
study combines probabilistic, combinatorial, and algebraic methods. In addition to being among
the most fascinating purely combinatorial problems, they are often motivated by algorithmic
applications. There are a considerable number of intriguing fundamental problems and results in
this area, and the goal of this paper is to survey the state of the art.

1 Introduction

1.1 Background

A vertex-packing of a graph G with a smaller (usually fixed) graph H is a collection of pairwise
vertex-disjoint (not necessarily induced) subgraphs of G that are isomorphic to H. Vertex packing
is sometimes called H-matching, generalizing the usual notion of matching which is just the case
H = K2. Similarly, an edge-packing of a graph G with H is a collection of pairwise edge-disjoint
subgraphs of G that are isomorphic to H. Edge packing will be called H-packing throughout this
paper. The definitions of H-matching and H-packing are naturally extended to hypergraphs, where,
in most cases, the hypergraphs are assumed to be r-uniform for some fixed r. The definitions of
H-matching and H-packing are also naturally extended to vertex-colored graphs and edge-colored
graphs, where the subgraphs must also be color-isomorphic to H.

Naturally, the goal in combinatorial packing theory is to find a packing with maximum cardinal-
ity. We therefore denote by pH(G) the maximum cardinality of an H-packing and by mH(G) the
maximum cardinality of an H-matching. Notice that mK2(G) = m(G) is just the matching number
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of G, and that, trivially, pK2(G) = e(G). It is easy to see that mH(G) ≤ v(G)/v(H), and that
pH(G) ≤ e(G)/e(H). When equality holds for mH(G) we say that G has an H-factor and when
equality holds for pH(G) we say that G has an H-decomposition.

The combinatorial study of packing problems has a long and rich history. In fact, already in
1847 Kirkman [49] gave nontrivial constructions showing that Kn has a K3-decomposition if and
only if n ≡ 1, 3 mod 6. Some 100 year later, Tutte [77] gave nontrivial conditions that guarantee
that a graph G has a K2-factor (a perfect matching; also sometimes called a 1-factor). But it was
much later, dating back to the 70’s, when modern tools from combinatorics and theoretical computer
science were applied to these problems, resulting in a significant deepening of our understanding the
complex world of graph packing problems. To date, there is already a vast amount of literature on
these topics (see, e.g., [63]), and it would be hopeless to cover all of it. The goal of this survey is
to focus on the major results and methods, as well as to exhibit some challenging open problems
and conjectures. Whenever applicable, we will focus on both the combinatorial and computational
aspects of the problems.

Packing and decomposition have many applications ranging from information theory to the design
of efficient statistical experiments, as well as many others. Consider the following obvious, but
illuminating, example. A Kk-packing of Kn is simply an error-correcting code where each codeword
has length n and Hamming weight k, and the Hamming distance between any two codewords is
at least 2(k − 1). Thus, the code can correct k − 2 errors. As a binary code with length n and
Hamming weight k that corrects 2(k−1) errors can contain at most (n(n−1))/(k(k−1)) codewords,
a Kk-decomposition of Kn corresponds to an optimal code with these properties.

1.2 Overview of the survey

The survey is organized according to different topics in combinatorial packing theory, rather than
by the tools used to prove the results, although, in many case, there is a correlation. In Section
2 we consider H-factors and, more generally, H-matchings. An important tool used in this case
is the Regularity Lemma of Szemerédi [76]. In Section 3 we consider H-decompositions and, more
generally, H-packings. Important tools used in this case are Wilson’s Theorem [79], variants of the
Rödl Nibble, as well as the Regularity Lemma and probabilistic methods. In Section 4 we consider
packing problems in related combinatorial structures that include, in particular, random graphs,
hypergraphs, and directed graphs. Open problems and conjectures are stated throughout the paper,
in their appropriate sections.

1.3 Notations and conventions

As noted earlier, we use mH(G) and pH(G) for the H-matching and H-packing number of a graph G,
respectively. We let V (G) and E(G) (or, simply, V and E when this is not ambiguous) denote the set
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of vertices and edges of a graph G, respectively. We also denote v(G) = |V (G)| and e(G) = |E(G)|.
In many cases we will use n and m to denote v(G) and e(G), respectively, when this is not ambiguous.
The minimum degree is denoted by δ(G) and the maximum degree by ∆(G). For additional standard
graph theoretic notations we refer to [13] and to [27].

We say that a proof that shows that existence of a mathematical structure is algorithmic if the
proof yields a polynomial time algorithm for constructing that structure.

2 H-factors and H-matchings

In this section we focus on H-factors and, more generally, on H-matchings. We start with the
computational complexity of H-matching and H-factor recognition. We then turn to a few important
combinatorial results that guarantee the existence of Kk-factors, H-factors, and H-matchings that
are close to H-factors, in sufficiently dense graphs, as well as their algorithmic aspects.

2.1 Finding a large H-matching

An algorithm that finds a maximum matching in polynomial time was discovered by Edmonds
[29]. His algorithm, and consequently most of the other known algorithms for this problem, are
based on augmenting path techniques and are quite complicated. Currently, the fastest known
algorithm for this problem, obtained by Micali and Vazirani, runs in O(

√
n · m) time [64]. For

dense graphs, a slightly faster randomized algorithm was recently obtained by Mucha and Sankowski
[66]. The running time of their algorithm is O(nω) where ω < 2.376 is the matrix multiplication
exponent [22]. The algorithm is based on a relatively simple and beautiful algorithm of Lovász
[62], that computes, with high probability, the size of a maximum matching (without producing
the edges, though). Lovász’s algorithm is based on the observation that the rank of the symbolic
skew-symmetric adjacency matrix (Tutte Matrix) of a graph is just twice the size of a maximum
matching, and the fact that Gaussian elimination over a large (but not too large) finite field requires
O(nω) time. Lovász’s algorithm can also be implemented in RNC. It is still not known whether
maximum matching can be solved in NC.

Things change dramatically when switching from K2 to K3. It is well-known that deciding
whether a graph has a K3-factor is NP-complete, as a special case of this problem is 3-Dimensional
Matching (3DM). In fact, it is well-known [50] that:

Theorem 2.1 ([50]) Computing mH(G) is NP-hard, and the H-factor decision problem is NP-
complete, for every graph H that contains a connected component with at least three vertices.

Can we reasonably approximate mH(G) quickly? A simple strategy is the greedy algorithm:
simply find a maximal (with respect to containment) set of copies of H in G. As H is fixed, this can
be done in polynomial time. The greedy algorithm has approximation ratio v(H) and this is tight.
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Indeed, every copy in the proposed solution intersects at most v(H) copies of an optimal solution.
Already for H = K3 this yields an approximation ratio of 3. Can we do better? The following
Theorem, which is a special case of an approximation algorithm of Hurkens and Schrijver [44] shows
that we can do significantly better.

Theorem 2.2 ([44]) For every ε > 0, there exists a polynomial time approximation algorithm for
mKk

(G) whose approximation ratio is (k/2 + ε).

Proof (sketch). The algorithm works as follows: given a collection of vertex-disjoint Kk constructed
so far, check whether there are p ≤ 1/ε disjoint k-cliques that are not in the current collection that
intersect at most p − 1 cliques that are in it. If this happens, swap the cliques to form a larger
collection, and repeat; otherwise, terminate the search.

Kann [45] proved that computing mH(G) is APX-hard if H has a component which contains
at least three vertices. In other words, it is impossible to approximate the optimal solution within
an arbitrary factor unless P = NP. More recently, it was shown that computing mK3(G) is APX-
complete already for graphs with bounded degree [17].

It is possible to decide if a graph has an H-factor in case G has bounded tree-width (we refer the
reader to [27] for the definition of this important class of graphs):

Theorem 2.3 For every fixed graph H and every fixed positive integer t, there is a linear time
algorithm for deciding whether a graph with tree-width at most t has an H-factor.

Proof. It is well-known that for every graph property that can be expressed in monadic second-order
logic (MSOL), it is possible to decide if a given graph G with bounded tree width has this property
in polynomial (in fact, linear) time [24, 8]. Having an H-factor is expressible in MSOL. Here is an
MSOL expression describing a K3-factor: “There are sets of vertices V1, V2, V3 and sets of edges E1,
E2, E3, so that V = V1 ∪V2 ∪V3, V1 ∩V2 = V1 ∩V3 = V2 ∩V3 = ∅, E1 ∩E2 = E1 ∩E3 = E2 ∩E3 = ∅,
for each x ∈ V1 there exists unique y ∈ V2 and unique z ∈ V3 so that (x, y) ∈ E2, (x, z) ∈ E3 and
(y, z) ∈ E1, for each x ∈ V2 there exists unique y ∈ V3 and unique z ∈ V1 so that (x, y) ∈ E1,
(x, z) ∈ E3 and (y, z) ∈ E2, for each x ∈ V3 there exists unique y ∈ V1 and unique z ∈ V2 so that
(x, y) ∈ E2, (x, z) ∈ E1 and (y, z) ∈ E3”.

Another class of graphs for which positive H-matching results were obtained are planar graphs.
Berman et al. [10] proved that, although the H-factor problem is NP-complete for any connected
outerplanar graph H with three or more vertices and input planar graph G, it is solvable in linear
time for triangulated H with four or more vertices. Baker [9] showed that finding an H-matching
of size mH(G) admits a polynomial time approximation scheme (PTAS) for any planar graph H

Namely, the solution can be approximated within any given constant factor in polynomial time.
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2.2 H-factors in graphs with sufficiently large minimum degree

A classical result of Dirac [26] asserts that if a graph has minimum degree at least n/2, then it
is Hamiltonian. In particular, minimum degree n/2 guarantees a perfect matching, or, in other
words, a K2-factor (when discussing H-factors we will always assume that n is a multiple of v(H)).
Dirac’s proof is algorithmic. Alternatively, Tutte’s Theorem [77] also shows that minimum degree
n/2 guarantees a perfect matching.

Trying to extend these results to a condition guaranteeing a Kk-factor is highly non-trivial.
Corrádi and Hajnal [23] proved that a K3-factor exists already when δ(G) ≥ 2n/3, and this is tight,
as can be seen by taking a complete three-partite graph with vertex class sizes n/3−1, n/3, n/3+1.
Finally, in a seminal result, Hajnal and Szemerédi [42] proved:

Theorem 2.4 ([42]) If n is a multiple of k then every graph G with n vertices and with δ(G) ≥
(k − 1)n/k has a Kk-factor.

Theorem 2.4 is tight as can be seen by taking a complete k-partite graph with each vertex class
having n/k vertices, except two which have n/k − 1 and n/k + 1 vertices. Somewhat surprising is
the fact that the proof of Hajnal and Szemerédi is not algorithmic. Namely, given a graph with
minimum degree, say, 3n/4, we know it has a K4-factor, but the proof does not yield a way to find
such a factor in polynomial time (the proof uses “improvement steps”, until finally reaching a Kk-
factor; the number of these steps may be exponential). To appreciate the difficulties, the reader may
try the following: Given a graph with 16 vertices and minimum degree 12, prove that it contains
four vertex-disjoint K4’s. Only recently, an alternative algorithmic proof of Theorem 2.4 has been
obtained by Mydlarz and Szemerédi [67]. Subsequently, an alternative simple and algorithmic proof
has been obtained by Kirstead and Kostochka [47]. Their algorithm employs a clever discharging
technique and runs in O(n5) time.

The situation concerning Kk-factors is well understood combinatorially and computationally.
What about other graphs H? Clearly, if H has k vertices, we can use Theorem 2.4 to obtain an
H-factor if δ(G) ≥ (k − 1)n/k. But is this really necessary? For example, if H is bipartite, already
very sparse graphs contain many vertex-disjoint copies of H, which suggests that a much smaller
minimum degree requirement is needed. As an extreme example, conside the case where H = Pk

is a path with k vertices. Dirac’s Theorem shows that δ(G) ≥ n/2 guarantees an H-factor (and
this is tight, by obvious divisibility restrictions). In fact, Erdős and Faudree conjectured in [31] that
δ(G) ≥ n/2 guarantees a C4-factor. Recently, Wang [78] announced a solution to this conjecture. A
much stronger conjecture of El-Zahar [30] is the following.

Conjecture 2.5 ([30]) If G is a graph with n = n1+. . .+nk vertices and δ(G) ≥ d1
2n1e+· · ·+d1

2nke
then G has a spanning subgraph consisting of cycles of lengths n1, . . . , nk.

It was first proved by Alon and Yuster in [7] that, in general, the correct parameter to look at,

5



when considering H-factors, is not the number of vertices of H; it is the chromatic number of H

(denote usually by χ(H)).

Theorem 2.6 ([7]) For every ε > 0 and for every positive integer h, there exists an n0 = n0(ε, h)
such that for every graph H with h vertices and for every n > n0, any graph G with hn vertices and
with minimum degree δ(G) ≥ ((χ(H)− 1)/χ(H) + ε)nh has an H-factor.

Theorem 2.6 is asymptotically tight, as can be easily seen by letting G be a complete k-partite graph
with non-equal color classes where H is any uniquely-colorable k-partite graph with equal color
classes. In fact, it is shown in [7] that, in the full generality, some error term is needed in Theorem
2.6; one cannot prove the same result with ε = 0.

Theorem 2.6 is algorithmic (the running time is polynomial in n, for ε and h fixed). This may
seem quite surprising given the fact that Theorem 2.6 uses Theorem 2.4, and cannot be proved
without it, while, as mentioned earlier, the original proof of Theorem 2.4, which was the only one
known when Theorem 2.6 was proved, is not algorithmic. In order to understand this phenomenon,
we need to introduce an important tool used in the proof of Theorem 2.6, as well as in many other
applications, some of which will be presented in this paper. To describe this tool, the Regularity
Lemma of Szemerédi [76], we need several definitions.

Let G = (V,E) be a graph, and let A and B be two disjoint subsets of V . If A and B are
non-empty, let E(A,B) denote the set of edges between them, and put e(A,B) = |E(A,B)|. The
density of edges between A and B is defined as

d(A,B) =
e(A,B)
|A||B|

.

For γ > 0 the pair (A,B) is called γ-regular if for every X ⊂ A and Y ⊂ B satisfying |X| > γ|A|
and |Y | > γ|B| we have

|d(X, Y )− d(A,B)| < γ.

An equitable partition of a set V is a partition of V into pairwise disjoint classes V1, . . . , Vt whose
sizes are as equal as possible. An equitable partition of the set of vertices V of a graph G into the
classes V1, . . . , Vt is called γ-regular if |Vi| < γ|V | for every i and all but at most γ

(t
2

)
of the pairs

(Vi, Vj) are γ-regular. The Regularity Lemma states the following:

Lemma 2.7 ([76]) For every γ > 0, there is an integer T (γ) > 0 such that for every graph G of
order n > T there is a γ-regular partition of the vertex set of G into t classes, for some 1/γ < t < T .

What the Regularity Lemma essentially says is that, for a fixed parameter γ, the set of vertices
of every graph can be partitioned into constantly many (almost) equal sized parts, so that (after
throwing away at most γn2 edges, those inside parts and those belonging to a non γ-regular pair;
a negligible quantity for dense graphs) the bipartite graph defined between any two parts behaves
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like a random bipartite graph. This is because γ-regularity guarantees a pseudo-random behavior.
The regular partition guaranteed by Lemma 2.7 can be associated with a complete weighted cluster
graph R having t vertices, where the weight of each edge (i, j) is just the density of the corresponding
pair (for non-regular pairs we can set this density to zero, since we just delete the edges between
non-regular pairs). For more details on the Regularity Lemma we refer the reader to the excellent
survey of Komlós and Simonovits [57], which discusses various applications of this powerful result.
Proof of Theorem 2.6 (sketch). Lemma 2.7 is used to prove Theorem 2.6 as follows. We obtain
a γ-regular partition where γ is chosen sufficiently small with respect to ε. Looking at the cluster
graph, which has constantly many vertices, we throw away the edges whose weight is too small
(again, this weight threshold is a function of ε). What remains of the cluster graph is a graph with
t− f(k) vertices which satisfies the conditions of Lemma 2.4 for k = χ(H) (if not, this would violate
the minimum degree assumption on G). Thus, the remaining cluster graph has a Kk-factor. Each
element in this Kk-factor corresponds to k vertex classes of G every pair of which is γ-regular and
sufficiently dense. We can greedily pack almost all of the vertices in these k vertex classes with
vertex-disjoint copies of H, just as we can do in a random k-partite graph (we don’t claim, and don’t
need, that all

(k
2

)
densities are the same). We do this for every Kk-factor in the cluster graph. This

shows that we can obtain an almost H-factor; there are only f(ε)n unpacked vertices. It is shown
in [7] that there is ample freedom to match up the remaining unpacked vertices so that there are no
leftovers at all. One way to do this is to actually find some H ′-factor for χ(H ′) = χ(H) and match
the leftovers with vertices of copies of H ′, where, in turn, each H ′ or what’s left of it after being used
to match leftover vertices, has, in turn, an H-factor.

As can be seen from the proof above, Theorem 2.4 is applied on a constant size graph, the cluster
graph. Thus, we do not care whether it is algorithmic. What we do care about is to find a γ-regular
partition in polynomial time (all other proof ingredients; most notably the greedy embedding part,
are polynomial). This is not so obvious, especially since deciding, for an input bipartite graph G

and a parameter γ, whether the two vertex classes of G are a γ-regular pair, is co-NP Complete,
as proved in [3]. In particular, computing, for a given bipartite graph, the smallest γ for which the
graph is γ-regular, is NP-hard. Fortunately, however, there is an efficient approximation algorithm;
for every constant γ, there is another constant γ′ < γ, depending only on γ, so that given a bipartite
graph G, if G is not γ-regular, the algorithm correctly reports this is the case, and provides evidence
showing that G is not γ′-regular. In case G is γ′ regular the algorithm decides it is γ-regular. In
any other case (i.e., if G is γ-regular but not γ′-regular) the algorithm behaves according to one of
the above two possibilities and we have no control on the possibility it chooses. The approximation
algorithm runs in time O(nω) = o(n2.376), as its bottleneck procedure needs to compute, for each
pair of vertices, the number of common neighbors they have. The latter can be found by squaring
the adjacency matrix. This approximation algorithm, combined with several additional ideas, yields
an algorithmic version of the Regularity Lemma, proved by Alon et al. in [3].
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Lemma 2.8 ([3]) For every fixed γ > 0, there is an integer T (γ) > 0 such that for every graph G of
order n > T there is a γ-regular partition of the vertex set of G into t classes, for some 1/γ < t < T ,
and such a partition can be found in O(nω) time.

As a consequence, Theorem 2.6 can be implemented to find the desired H-factor in O(nω) time (the
other algorithmic parts of the proof require less time). In fact, the algorithm is a fixed parameter
algorithm with respect to ε and h. That is, these constants only affect the constant in the runtime
expression, and not the exponent. It should be noted that, naturally, the constant T in Lemma 2.8
is larger than the constant T in Lemma 2.7. This is not an issue, however, since already the latter
is a really huge constant. In fact, log∗(T ) is a polynomial in 1/γ, and this horrible dependency is, in
fact, necessary, as proved by Gowers [37]. Needless to say that algorithms that use Lemma 2.8 are
impractical. We mention also that Frieze and Kannan [35] obtained another algorithmic version of
the Regularity Lemma, which is somewhat simpler to prove, and which is based on computation of
singular values of matrices. A faster, and essentially optimal algorithmic version is given in [51].

Theorem 2.6, although very general, and algorithmic, still leaves much to be desired. The error
term in Theorem 2.6 is o(n), but can it be made not to depend on n at all? We know this is true
for some graphs, e.g. cliques and paths, for which the error term is 0. Can we characterize those
graphs for which the error term is zero? What about graphs H which are locally very sparse; can we
guarantee an H-factor already for a smaller minimum degree? Conjecture 2.5 suggests that minimum
degree 0.6n guarantees a C5-factor. All of these questions have been, at least partially, answered.

Komlós et al. [56] sharpened Theorem 2.6 and proved that the error term is only a constant,
depending on H.

Theorem 2.9 ([56]) Let H be a graph with h vertices and χ(H) = k. There exist constants c(H)
an n0(H) such that if n > n0(H) and G is a graph with hn vertices and minimum degree at least
(1 − 1/k)hn + c(H), then G contains an H-factor. In fact, if H has a k-coloring with color-class
sizes h1 ≤ h2 ≤ · · · ≤ hk, then the theorem holds for c(H) = hk + hk−1 − 1.

A crucial tool in the proof of Theorem 2.9, in addition to the Regularity Lemma, is the following
important embedding lemma, the Blow-up Lemma, that they have developed, and that turned out
to be an invaluable tool in extremal H-matching theory. In order to describe this lemma we need a
definition. We say that a γ-regular pair (A,B) is (γ, δ)-super regular if every vertex of A has at least
δ|B| neighbors in B and every vertex of B has at least δ|A| neighbors in A. The Blow-up Lemma
essentially says that regular pairs in the Regularity Lemma behave like complete bipartite graphs
from the point of view of embedding bounded degree subgraphs.

Lemma 2.10 ([53]) Given a fixed graph R with vertices v1, . . . , vr and positive parameters δ,∆
there exists a γ = γ(δ,∆, r) > 0 so that the following holds. Let V1, . . . , Vr be pairwise disjoint sets
and replace vi with Vi. We construct two graphs on V = ∪Vi. The first graph, Rb is obtained by
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replacing each edge (vi, vj) of R with the complete bipartite graph between Vi and Vj. A sparser graph
G is constructed by replacing each edge (vi, vj) arbitrarily with some (γ, δ)-super-regular pair between
Vi and Vj. Then: if a graph H with ∆(H) ≤ ∆ is a subgraph of Rb then it is also a subgraph of G.

Notice that the subgraph H in Lemma 2.10 is allowed to be a spanning subgraph of G. This is a
crucial fact, that explains the importance of Lemma 2.10 in obtaining extremal H-factor type results.

The original proof of the Blow-up Lemma is not algorithmic, and applies probabilistic methods.
An algorithmic version of the Blow-up Lemma is provided in [55]. The desired subgraph H, guaran-
teed to exist in G, can be found in time O(nω+1) = o(n3.376) time where n = v(G). The algorithm
can be parallelized and implemented in NC5. Perhaps the most striking application combining the
Blow-up Lemma and the Regularity Lemma is the proof of a conjecture of Seymour, for sufficiently
large graphs. It is a rare example where an exact result can be proved via tools that are asymptotic
in nature. Seymour’s conjecture asserts that every graph of order n and with minimum degree at
least kn/(k + 1) contains the k-th power of a Hamiltonian cycle. Pósa conjectured this first for the
case k = 2 of a square of a Hamiltonian cycle. The case k = 1 is simply Dirac’s Theorem.

Theorem 2.11 ([54]) For any positive integer k, there is an N(k) such that, if G has n > N(k)
vertices and δ(G) ≥ kn/(k + 1) then G contains the k-th power of a Hamiltonian cycle.

Notice that Seymour’s conjecture is a significant extension of Theorem 2.4, the Hajnal-Szemerédi
Theorem, as the k-th power of a Hamiltonian cycle contains a Kk+1-factor (assuming k + 1 divides
n).

While Theorem 2.9 supplies a satisfactory answer to the behavior of the error term in Theorem
2.6, it is still insensitive to the actual structure of the graph H. Both theorems yield asymptotically
the same bound, depending only on the chromatic number of H. An important result that does take
the structure of H into account (though, at the price of leaving a negligible fraction of vertices of
G unpacked) was given by Komlós [52]. In order to describe his result, we need a definition. For
an r-chromatic graph H on h vertices, let u = u(H) denote the smallest possible size of a color
class in an r-coloring of H. The critical chromatic number of H is χcr(H) = (r − 1)h/(h− u). It is
straightforward to verify that χ(H) − 1 < χcr(H) ≤ χ(H) where χcr(H) = χ(H) = r if and only if
every r-coloring of H has equal color class sizes. For example, The 5-cycle has χcr(C5) = 2.5, and
generally, χcr(C2k+1) = 2 + 1/k.

Unbalanced Turán graphs show that, for any graph H, one cannot improve Theorem 2.6 by
replacing χ(H) with a constant smaller than χc(H) [4]. Komlós proved that in Theorem 2.6 one can
replace χ(H) with χcr(H) at a price of obtaining an almost H-factor.

Theorem 2.12 ([52]) For any graph H and ε > 0 there is an n0 = n0(H, ε) so that if G is a graph
with n > n0 vertices and minimum degree at least (1− 1/χcr(H))n then G contains an H-matching
that covers all but at most εn vertices.
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Once again, the Blow-up Lemma and the Regularity Lemma play a crucial role in the proof of
Theorem 2.12. Komlós conjectured that the εn error term in his result can be replaced with a
constant that depends only on H. He also showed, as did his predecessors, that such a result, if
true, is best possible in the sense that one cannot, in general, replace εn with 0. Three year later,
Shokoufandeh and Zhao [74] confirmed the conjecture of Komlós. They have shown that the error
term in Theorem 2.12 can be replaced with the constant 5(r − 2)(h− u)2/(u(r − 1)) where h is the
number of vertices of H, r = χ(H), and u = u(H).

Still somewhat unsatisfactory, is the fact that we cannot, in general, replace χ(H) with χcr(H)
in Theorem 2.9. Can we characterize the cases when we can? Is there a dichotomy? Namely, is it
true that for each graph H, either χ(H) or χcr(H) is the “right” constant to place in Theorem 2.9,
guaranteeing an H-factor? Recently, Kühn and Osthus [59] gave a positive answer to this question.
They prove that for any graph H, either its critical chromatic number or its chromatic number is the
relevant parameter which guarantees the existence of H-factors in graphs of large minimum degree.
The exact classification depends on a parameter which they call the highest common factor of H and
which is defined as follows.

Given an optimal vertex coloring c of H with χ(H) = r colors, let x1 ≤ x2 ≤ · · · ≤ xr denote
the sizes of the color classes and put D(c) = {xi+1 − xi | i = 1 . . . , r − 1}. Let D(H) denote the
union of all the sets D(c) taken over all optimal colorings c. Denote by hcfχ(H) the highest common
factor of all integers in D(H). If D(H) = {0} define hcfχ(H) = ∞. Write hcfc(H) for the highest
common factor of all the orders of components of H. If χ(H) 6= 2 put hcf(H) = 1 if hcfχ(H) = 1.
If χ(H) = 2 then we say that hcf(H) = 1 if both hcfc(H) = 1 and hcfχ(H) ≤ 2. Note that if
all the optimal colorings of H have the property that all color classes have equal size (namely, if
χ(H) = χcr(H)), then D(H) = {0} and so hcf(H) 6= 1 in this case. Moreover, there are graphs H

with hcfχ(H) = 1 but such that for all optimal colorings c of H the highest common factor of all
integers in D(c) is bigger than one. For such graphs H one needs to consider all optimal colorings
of H.

Define χF (H) = χcr(H) if hcf(H) = 1 and χF (H) = χ(H) otherwise. Also, let δ(H,n) denote
the smallest integer k such that every graph G whose order n is divisible by v(H) and with δ(G) ≥ k

contains an H-factor.

Theorem 2.13 ([59]) (
1− 1

χF (H)

)
− 1 ≤ δ(H,n) ≤

(
1− 1

χF (H)

)
+ C.

It is not difficult to show that when χ(H) > 2 the −1 on the l.h.s. can be omitted.
We end this section by showing that the minimum degree condition in the Hajnal-Szemerédi

Theorem is not only a threshold for Kk-factor existence, but also a complexity threshold. In other
words:
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Theorem 2.14 Let k ≥ 3 be an integer, and let 1 − 1/k > γ > 0. The problem of deciding if a
given graph with n vertices and minimum degree at least n(1 − 1/k − γ) contains a Kk-factor is
NP-complete.

Proof. We use the simple reduction from the general Kk-factor problem given in [60]. Given an input
G for the general Kk-factor problem, we construct an instance graph G′ for the problem appearing
in the lemma as follows. Add to G a complete k-partite graph with vertex classes Z1, . . . , Zk of size
t := dn/γe each. Connect each vertex of G to each vertex of Zi for i = 1, . . . , k − 1. It is easy to see
that G′ has N = n + kdn/γe vertices and minimum degree at least N(1 − 1/k − γ). Clearly, if G

has a Kk-factor, so does G′. Now suppose that G does not have a Kk-factor, and that G′ has some
Kk-factor, denoted L. Let L′ ⊂ L be the elements of L containing a vertex of G. If S ∈ L′ then
S contains no vertex from Zk. Moreover, since G does not have a Kk-factor, at least one vertex of
Z1 ∪ · · · ∪ Zk−1 is contained in some element of L′. Consider the subgraph G0 of G′ obtained by
deleting the vertices in all the elements of L′. Then the k‘th vertex class of G0 still has size dn/γe
whereas the union of all the other vertex classes of G′ has size less than (k−1)dn/γe. Thus, G0 does
not contain a Kk-factor, contradicting the fact that L \ L′ is a Kk-factor of G0.

Although the extremal graph-theoretic aspects of H-factor and H-matching are now quite well
understood, there are still many interesting open problems that remain in this area. Let us mention
just two of these. Firstly, can Theorem 2.14 be extended to all graph H?

Problem 2.15 Is it true that for every fixed graph H, and for every 1 − 1/χF (H) > γ > 0 it is
NP-complete to decide if a given n-vertex graph with minimum degree n(1− 1/χF (H)− γ) contains
an H-factor?

Secondly, as we know that for complete graphs no error terms are needed in Theorem 2.13 it is
interesting to ask:

Problem 2.16 Characterize those graphs H for which no error terms are needed in Theorem 2.13.

Kawarabayashi conjectured [46] that if H = K−
k (i.e. a complete graph with one edge removed) then

no error terms are needed. Notice that χF (K−
k ) = (k − 2)k/(k − 1). He proved this for k = 4. His

conjecture was confirmed for all sufficiently large n (as a function of k) [25].

3 H-decomposition and H-packing

In this section we focus on H-decompositions and, more generally, on H-packings. We start with
the computational complexity of these problems. Unlike the H-factor case, the combinatorial nature
of H-decompositions turns out to be considerably more notorious. In fact, we devote a separate
subsection just to the case of H-decompositions and H-packings of complete graphs, which is already
far from trivial. We then proceed to survey the state of the art in the extremal graph-theoretic aspects
of H-decompositions.
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3.1 Finding a large H-packing

Computing pH(G) is, of course, trivial when H = K2. One can also quite easily see how to compute
pK1,2(G) in linear time. In fact, 2pK1,2(G) = e(G) − odd(G) where odd(G) is the number of odd
components of G. Several researchers considered other graphs H for which pH(G) can be computed
in polynomial time. It turned out that in all of these results (some of which are quite difficult) each
connected component of H is either K2 or K1,2. The case H = 3K2 was proved in [12], the case
H = tK2 in [1, 15], the case K1,2 ∪ tK2 in [69], the case tK1,2 in [61] and finally the case sK2 + tK1,2

in [16].
Holyer [43] conjectured that the H-decomposition problem is NP-complete for every graph H

with a connected component consisting of at least three edges. He proved this for complete graphs
H, and for a few other specific types of H. Holyer’s conjecture turned out to be a difficult one (unlike
Theorem 2.1, the analogous result for H-factors) and it was more than a decade later until it was
resolved by Dor and Tarsi [28].

Theorem 3.1 ([28]) The H-decomposition decision problem is NP-complete for every graph H that
contains a connected component with at least three edges. In particular, computing pH(G) is NP-hard
for such H.

Their proof reduces the exact k-cover problem to H-decomposition and is considered one of the
more complicated NP-completeness reduction proofs known. The general complexity status of H-
decomposition is therefore now completely settled.

The greedy algorithm clearly approximates pH(G) to within an e(H) factor, and it is easily seen
to be tight for some H, including all cliques. Kann [45] proved that already for H = K3, computing
pH(G) is APX-hard. As in the case of Theorem 2.2 for H-matchings, the general result of Hurkens
and Schrijver [44] yields a k/2+ε approximation for pKk

(G). Baker’s polynomial time approximation
scheme for the H-matching problem in planar graphs can be extended also to the H-packing problem
[9]. Caprara and Rizzi [17] prove that maximum triangle packing remains APX-hard even for planar
graphs with maximum degree 5 or more. On the positive side, they prove:

Theorem 3.2 ([17]) Maximum triangle packing can be solved in polynomial time for graphs with
maximum degree 4.

Proof. Clearly we can assume that the input graph is connected and that every edge belongs to
some triangle. Furthermore, we can assume that for every vertex, and for every partition of its
incident edges into two parts there is a triangle consisting of edges from the two parts (otherwise we
can simply split the vertex). Suppose now that G is such a “reduced” graph. If ∆(G) = 2 then G is
a triangle. If ∆(G) = 3 then it is easy to check that G is a K4 or a K−

4 . Thus, we assume ∆(G) = 4.
We define an auxiliary graph AG = (T ,F) where T are the triangles of G and F connects two
triangles that share an edge. Our goal is, therefore, to find a maximum independent set in AG. We
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show that AG is either claw-free (does not contain an induced K1,3) or else has a constant number of
vertices. Since maximum independent set can be solved in polynomial time for claw-free graphs [65],
the result follows. Assume that there is a claw in AG. That is, a triangle T of G and three triangles
T1, T2, T3 sharing an edge with T . These four triangles induce 6 vertices in G, and it is easily checked
that these must be the only vertices of G, by our assumption on the reduced structure of G.

Interestingly, the complexity status of H-decomposition for bounded tree-width graphs is not
yet settled. This is unlike Theorem 2.3 for the case of H-factors for bounded tree-width graphs.
The main obstacle lies in the fact that H-decomposition is not known to (and probably cannot)
be expressed in monadic second-order logic (MSOL). Still, for a large class of graphs H, we do
know that H-decomposition is in P. A graph H is chromatically k-connected if every vertex cutset
induces a subgraph with chromatic number at least k [36]. We consider Kk as being chromatically
(k − 1)-connected. For example, complete r-partite graphs with r ≥ 3 are (at least) chromatically
2-connected. A wheel on n ≥ 6 vertices and n − 1 spokes is chromatically 2-connected although
it is not complete r-partite for any r. Bipartite graphs are only chromatically 1-connected. The
property of being chromatically k-connected is monotone-increasing with respect to edge addition.
The following result was proved by Caro and Yuster in [20]:

Theorem 3.3 ([20]) For every fixed chromatically 2-connected graph H, and every fixed positive
integer t, there is a polynomial time algorithm for deciding whether a graph with tree-width at most
t has an H-decomposition.

Proof (sketch). The idea of the proof is to use divide and conquer on the tree-width decomposition
of the input graph. In each stage we obtain a (t + 1)-separator C of the current graph G, separating
it into parts A ∪ C and B ∪ C each of size at most 2v(G)/3. The crucial point is that any copy of
H that crosses the cut C must contain an edge with both endpoints in C. Indeed, if this were not
the case then the vertices of such a copy that belong to C form an independent disconnecting set of
H, contradicting the assumption that H is chromatically 2-connected. Now, since there are at most(t+1

2

)
edges in C there are only a constant (although a large one) number of possible configurations

that describe the possible partial H-decompositions of A ∪ C (resp. B ∪ C) when performing the
recursion for B ∪ C (resp. A ∪ C).

We note that Theorem 3.3, whose full proof is quite involved, does not yield a fixed parameter
tractable algorithm with respect to the parameter t. In addition to chromatically 2-connected graphs,
H-decomposition can be solved for bounded tree-width graphs whenever H is a star [20]. We do
suggest the following open problem.

Problem 3.4 Show that for every fixed graph H and every fixed positive integer t, there is a polyno-
mial time algorithm for deciding whether a graph with tree-width at most t has an H-decomposition.

In spite of the APX-hardness of H-packing, there is an interesting and important technique that
yields a polynomial time approximation scheme (PTAS) for computing pH(G) if G is a sufficiently
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dense graph. A fractional H-packing of a graph G is an assignment of nonnegative real weights to
the copies of H in G such that for each e ∈ E(G), the sum of the weights of copies of H containing
e is at most one. The value of a fractional packing is the sum of the weights of all copies of H.
The fractional packing number p∗H(G) is the maximum value of a fractional H-packing of a graph G.
We say that G has a fractional H-decomposition if p∗H(G) = e(G)/e(H). Notice that this occurs if
and only if the sum of the weights of copies of H containing each edge e is precisely one. Trivially,
p∗H(G) ≥ pH(G) as a fractional packing is a fractional relaxation of an integral one. Also notice
that there are cases where a strict inequality holds. Furthermore, a fractional decomposition can
exist even though an integral one cannot. For example, pK3(K4) = 1 while p∗K3

(K4) = 2 since we
can assign 1/2 to each triangle in K4. In fact, a trivial symmetry argument shows that Kn has a
fractional H-decomposition (assuming v(H) ≤ n).

Computing p∗H(G) amounts to solving a linear programming problem with polynomially many
variables and constraints. Hence, p∗H(G) can be computed in polynomial time, and deciding fractional
H-decomposability is in P. It is therefore interesting to examine those cases where p∗H(G) is close to
pH(G), since this immediately yields an approximation algorithm for pH(G). An important result in
this direction was obtained by Haxell and Rödl in [41].

Theorem 3.5 ([41]) For every fixed graph H, if G has n vertices then p∗H(G) ≤ pH(G) + o(n2).
Furthermore, there is a deterministic polynomial time algorithm that finds an H-packing of G of size
p∗H(G)− o(n2).

The proof of Theorem 3.5 is quite difficult. A simpler and more general randomized algorithm is
given in [84]. The main idea in both proofs is to use the Regularity Lemma and compute an optimal
fractional H-packing on the corresponding cluster graph of the regular partition (recall that this graph
has a constant number of vertices). Then, each copy of H in the cluster graph with some weight γ is
blown up, using Rödl nibble techniques, to obtain a set of edge-disjoint copies of H in G that occupy
an almost γ fraction of the edges belonging to the cluster pairs that correspond to the edges of H in
the cluster graph. Theorem 3.5 obviously implies an approximation algorithm for H-packing with an
o(n2) additive error. Since Turán’s Theorem asserts that graphs with n2(1−1/(χ(H)−1))+εn2 have
Θ(n2) edge-disjoint copies of H we have that Theorem 3.5 is a PTAS for pH(G) if G is a sufficiently
dense graph.

Finally, we note that the error term o(n2) appearing in Theorem 3.5 cannot essentially be im-
proved. It is shown in [84] that for every ε > 0 there exist k = k(ε) and N = N(ε) such that for all
n > N there exists a graph G with n vertices for which p∗Kk

(G)− pKk
(G) > n2−ε.

3.2 H-decompositions and H-packings of complete graphs

The H-decomposition problem for complete graphs has a long and rich history. The problem of
constructing Kk-decompositions of Kn is, in fact, at the heart of a major branch of combinatorics
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known as design theory. A t-(n, k, λ) design is a family D of k-element subsets of [n] (called blocks)
so that any t-element subset appears in precisely λ elements of D. A t-(n, k, 1) design is also called
a S(t, k, n)-Steiner system. Notice that a Kk-decomposition of Kn is simply a S(2, k, n)-Steiner
system. For more information on block designs we refer to [11].

Clearly, for an S(2, k, n)-Steiner system to exist we must have that k − 1 divides n− 1 and that(k
2

)
divides

(n
2

)
. Notice that these two conditions hold if n ≡ 1, k mod k(k − 1). More generally, for

an H-decomposition of G to exist we must have that e(H) divides e(G) and that gcd(H) divides
gcd(G) where the gcd of a graph is the largest integer dividing the degree of each vertex of the
graph. If these two necessary conditions hold we say that G is H-divisible. Obviously, H-divisibility
does not guarantee an H-decomposition. For example, K4 is K1,3-divisible, but there is no K1,3-
decomposition of K4. A more complicated analysis shows that K16, as well as K21 and K36 do not
have a K6-decomposition.

The first non-trivial problem is to construct an S(2, 3, n)-Steiner system, also known as a Steiner
triple system STS(n). Is it true that K3-divisibility of Kn guarantees a K3-decomposition? This
non-trivial question was solved affirmatively by Kirkman in 1847 [49]. Indeed:

Theorem 3.6 ([49]) An STS(n) exists if and only if n ≡ 1, 3 mod 6.

Proof. We will show the case n ≡ 3 mod 6 using a construction known as the Bose Construction.
The case n ≡ 1 mod 6 is constructed using similar techniques, such as Skolem Constuctions. Let
n = 6m + 3, and consider any Latin square L of order 2m + 1 which is symmetric and idempotent.
That is, L can be thought of as a square symmetric matrix of order 2m + 1, where each row and
each column constitutes a permutation of Q = {1, . . . , 2m + 1}, and, furthermore, L[i, i] = i. Such
Latin squares are easily obtained by taking the addition table of Z2m+1 and renaming the elements
so that L[i, i] = i for i = 1, . . . , 2m + 1. Our n-element ground set S is Q × {0, 1, 2}. The set of
triples consists of two types. The first type is {(i, 0), (i, 1), (i, 2)} for each i ∈ Q. The second type is
{(i, k), (j, k), (L[i, j], k + 1 (mod 3))} for i, j ∈ Q with i < j and for k = 0, 1, 2. Notice that there
are 2m + 1 triples of the first type and 3m(2m + 1) triples of the second type, altogether there are
n(n−1)/6 triples as necessarily required. It remains to show that each pair of distinct elements of S

appears in a triple. Let (a, b) and (c, d) be distinct elements of S. If a = c then this pair is in a triple
of the first type. Assume now that a 6= c. If b = d, the pair is in a triple of the second type. We
now also assume that b 6= d. If d = b + 1 (mod 3), let x be the unique index satisfying L[a, x] = c.
The triple containing the pair is thus {(a, b), (x, b), (c, d)}. If d = b−1 (mod 3), let y be the unique
index satisfying L[y, c] = a. The triple containing the pair is thus {(y, d), (c, d), (a, b)}.

The smallest nontrivial Steiner triple system, STS(7), is unique and is isomorphic to the Fano
plane, the smallest non-trivial finite projective geometry. For general n, it is not yet known how
many non-isomorphic STS(n) exist, nor is it known how to sample such an STS(n) uniformly.
Some successful randomized heuristics, such as hill climbing, are useful for generating an arbitrary
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STS(n) [75].
Although Theorem 3.6 settles the K3-decomposition problem of Kn, we still do not have a

complete theory for H-decompositions of Kn, even when H = Kk. We do know that K4-divisibility
of Kn (that is, n ≡ 1, 4 mod 12) guarantees a K4-decomposition, but the constructions are much
more involved (see, for example, [14]). Some other small sporadic cases have also been fully analyzed
(H = Kk, for k ≤ 7, H = C4, H = C5, trees on at most 7 vertices, the d-cube when d is even or
d ≤ 5, as well as a few other specific graphs, see [11]). It was therefore a major breakthrough when
Wilson proved in [79], building upon his earlier work on pairwise balanced designs, that H-divisibility
is sufficient in order to guarantee an H-decomposition of Kn, for all sufficiently large n.

Theorem 3.7 ([79]) For every fixed graph H, there exists N = N(H) so that for all n > N , if Kn

is H-divisible then Kn has an H-decomposition.

Wilson’s proof is deep. It uses, among other things, tools from linear algebra, finite fields, and
design theory. In a qualitative sense, the theorem is best possible, since, as demonstrated earlier,
H-divisibility does not generally guarantee H-decomposition for all n. The value N(H) in Wilson’s
proof is quite large, and probably far from optimal, but an exact determination of the smallest
possible N(H) seems to be beyond reach, in general. Theorem 3.7 does settle the H-decomposition
decision problem for Kn, which can now be trivially solved in polynomial time. However, it does not
supply an efficient algorithm for producing an H-decomposition. We do note that if we only wish
to find an asymptotically optimal H-packing of Kn, that is, a set of

(n
2

)
/e(H)− o(n2) edge-disjoint

copies of H in Kn, the problem becomes more tractable using Rödl’s nibble method [71, 33] and an
algorithmic version of it [38]. We shall elaborate more on these important techniques in Section 4 as
these result are most striking in the hypergraph setting.

If Kn is H-divisible, and n > N(H), we obviously have from theorem 3.7 that pH(Kn) =(n
2

)
/e(H). In particular, pH(Kn) can be computed in polynomial time when Kn is H-divisible

(checking if a graph G is H-divisible can trivially be done in linear time). Can we also compute
pH(Kn) efficiently when Kn is not H-divisible? This may not seem like a difficult question at first
glance. After all, there is a constant difference between any two consecutive values of n for which
Kn is H-divisible, which immediately implies that pH(Kn) can be approximated within an additive
O(n) error. Still, computing pH(Kn) precisely turns out to be a much more demanding task. As
an illuminating example, suppose that H is a tree with h edges. We know that pH(Kn) ≤

(n
2

)
/h

and we know that equality holds if h divides
(n
2

)
(and n is sufficiently large). Can we show that

pH(Kn) = b
(n
2

)
/hc for all sufficiently large n? Although this is known to be true, there is no

known simple direct proof of this fact. If we knew that H-divisibility of a very dense graph G (say,
with very high minimum degree) guarantees H-decomposition, then pH(Kn) = b

(n
2

)
/hc would be a

trivial consequence. Indeed, given Kn, delete at most h− 1 independent edges so that the resulting
graph would be H-divisible and with minimum degree at least n− 2. Fortunately, it was proved in
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1991 by Gustavsson [39] that H-divisible graphs with sufficiently many vertices and with a (very)
high minimum degree, are H-decomposable (the exact statement of his result is given in the next
subsection). Using Gustavsson’s result, together with several additional ideas, including a theorem
of Erdős and Gallai on realizable degree sequences, Caro and Yuster [19] were able to obtain a closed
formula for pH(Kn), for all sufficiently large n.

Theorem 3.8 ([19]) Let H be a fixed graph with h edges and d = gcd(H). There exists N = N(H)
such that for all n > N ,

pH(Kn) =
⌊
dn

2h

⌊
n− 1

d

⌋⌋
,

unless n ≡ 1 mod d and n(n− 1)/d ≡ b mod (2h/d) where 1 ≤ b ≤ d, in which case

pH(Kn) =
⌊
dn

2h

⌊
n− 1

d

⌋⌋
− 1.

In particular, pH(Kn) can be computed in polynomial time.

Proof (sketch). It is first shown that the claimed value of pH(Kn) is an upper bound. It is
next shown how to construct an H-divisible spanning subgraph G with very high minimum degree
having the property that e(G)/h equals the claimed value. The construction of G is done by first
determining the degree sequence required from G, and then using a result of Erdős and Gallai in
order to realize this degree sequence. After obtaining G, one uses Gustavsson’s Theorem to show
that G has an H-decomposition.

3.3 H-decompositions in graphs with sufficiently large minimum degree

We begin this subsection by showing that if one searches for sufficient extremal conditions that
guarantee H-decomposition (in addition to H-divisibility), the “correct” parameter to look at is the
minimum degree.

Proposition 3.9 For each k ≥ 3 there are infinitely many n for which there exist Kk-divisible graphs
with n vertices and minimum degree at least k

k+1n− 1 that are not Kk-decomposable.

Proof. We show a construction of Nash-Williams for the case k = 3. It can be quite easily
generalized to arbitrary k. Let n = 24m + 12 and consider four vertex-disjoint cliques on 6m + 3
vertices each. Denote their vertex sets by Vi for i = 1, . . . , 4. Construct a complete bipartite graph
between Vi and Vi+1 (indices modulo 4). The resulting graph G has n vertices, it is regular of degree
18m + 8 and it has (9m + 4)(24m + 12) edges. Thus, it is K3-divisible. Any K3-decomposition of G

consists of (9m+4)(8m+4) triangles. However, there are 4(6m+3)2 edges with endpoints in distinct
cliques, and since each triangle of G contains at least one edge both of whose endpoints are in the
same clique, we need at least 2(6m + 3)2 triangles in any K3-decomposition of G. The contradiction
follows since 2(6m + 3)2 > (9m + 4)(8m + 4).
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Nash-Williams conjectured [68] that the construction for triangles is best possible. That is, any
K3-divisible graph with minimum degree at least 3n/4 is K3-decomposable. This conjecture is still
wide open. For general k we have the following conjecture (see [39]).

Conjecture 3.10 For each k ≥ 3 there exists N = N(k) so that for all n > N , if an n-vertex graph
G is Kk-divisible and δ(G) ≥ k

k+1n then G is Kk-decomposable.

In light of Conjecture 3.10 one can wonder whether any minimum degree condition guarantees
a Kk-decomposition, or more generally, an H-decomposition. Let us denote by ρ(H) the largest
constant for which δ(G) ≥ (1− ρ)(n− 1) + o(n) and H-divisibility of G guarantee H-decomposition,
for n sufficiently large. The above conjecture, if true, asserts that ρ(Kk) = 1/(k + 1). Notice that
ρ(H) ≥ 0 is just Wilson’s Theorem. Can we show that ρ(H) > 0 for every graph H? This (extremely
difficult) question was solved by Gustavsson [39].

Theorem 3.11 ([39]) For every fixed graph H there exists c = c(H) > 0 and N = N(H) so
that every graph G with n > N vertices that is H-divisible and with δ(G) ≥ (1 − c)n, is also H-
decomposable.

Proof (ultra sketch). Gustavsson’s proof is long and difficult, and no short proof of this result is
known (and probably no such proof exists). Before sketching some of his arguments, we note that
the proof is only existential. Furthermore, the constant c(H) obtained is extremely small. Already
c(K3) = 10−24, while Conjecture 3.10 asserts that taking c(K3) = 1/4 suffices. That is, the obtained
c(H) is probably much (much) smaller than ρ(H).

The first observation is that it suffices to prove Theorem 3.11 for H = Kk. Indeed, if H is not
a complete graph, let k be the smallest integer for which Kk is H-decomposable. Such a k exists
by Theorem 3.7. Now, given a graph G with very high minimum degree, which is H-divisible, it is
not difficult to show that we can always greedily delete a small number of edge-disjoint copies of H

from G (in fact, each vertex of G appears in at most constantly many deleted copies), and obtain
a spanning subgraph that is Kk-divisible. The minimum degree is only reduced by a constant.
Another, more subtle important argument is that it suffices to prove Theorem 3.11 for k-partite
graphs with n vertices in each vertex class, and that have minimum degree n(k− 1)(1− c′(Kk)); we
call such graphs G(k, n) graphs. Indeed, if G is a graph with nk vertices with very high minimum
degree we can arbitrarily split its vertex set to k parts of size n each. Each vertex class Vi induces
an n-vertex graph G[Vi] with very high minimum degree. We can think of each G[Vi] as if it were
a complete graph and Kk-decompose it using Theorem 3.7. Now, the “illegal” copies of H in these
k decompositions (those that contain a missing edge) can be ignored, and the other “true” edges in
those ignored copies can be repacked with edge-disjoint partite copies of Kk ones that use a single
vertex from each partite graph. After doing this, and taking care about maintaining Kk-divisibility,
which is not straightforward, but manageable, one remains with the need to Kk-decompose a G(k, n)
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graph whose minimum degree fraction 1 − c′(Kk) is still very high, although slightly smaller than
the original minimum degree fraction 1− c(Kk).

Proving Kk-decomposability of a G(k, n) graph transforms the problem to a significantly more
manageable setting. Two Latin squares L1 and L2 are orthogonal if for any symbol, then n cells con-
taining that symbol in one of the squares contain all n symbols in the other square. One can interpret
a system of k − 2 mutually orthogonal Latin squares L1, . . . , Lk−2 of order n as n2 ordered k-tuples
of [n] where each tuple is of the form (i, j, L1(i, j), . . . , Lk−2(i, j)). Notice that the orthogonality
implies that no two coordinates have the same pair of values in two distinct k-tuples. In other words,
the n2 ordered k-tuples form a Kk-decomposition of a complete G(k, n). Notice that the converse is
equally true. Any Kk-decomposition of a complete G(k, n) defines a set of k−2 mutually orthogonal
Latin squares of order n. Consider for example the case k = 3. This case simply states that a
Latin square is isomorphic to a K3-decomposition of a complete G(3, n). Now assume that G(3, n) is
not complete, but has very high minimum degree. The tripartite complement of G(3, n) is another
G(3, n) with very small minimum degree. Clearly, it corresponds to a partially filled Latin square,
where each row and column contain a very small number of occupied cells, and each symbol appears
only a small number of times. If we can fill this partial Latin square, and obtain a complete Latin
square, this filling corresponds to a triangle decomposition of the original dense G(3, n). Similarly,
if we can fill a partially filled system of k − 2 orthogonal Latin squares, the filling corresponds to a
Kk-decomposition of a G(k, n) with very high minimum degree. Gustavson’s main technical work
focuses, therefore, on completion of systems of orthogonal, partially filled, Latin squares. It uses
clever applications of the marriage theorem, chain rotations, and case analysis.

Theorem 3.11 immediately yields a trivial polynomial time algorithm for computing pH(G) when-
ever G is H-divisible and has sufficiently high minimum degree. It turns out that significantly more
effort in required if one drops the H-divisibility requirement. A polynomial time algorithm for
computing pH(G) in graphs with sufficiently high minimum degree was given by Alon et al. [2].

Theorem 3.12 ([2]) For every fixed graph H there exist positive constants ε(H) and N(H) such
that if G is a graph with n > N(H) vertices and has minimum degree at least (1 − ε(H))n, then
pH(G) can be computed in polynomial time.

The idea of the proof is to find a minimum cardinality set of edges whose deletion from G results in
an H-divisible spanning subgraph with (still) very high minimum degree, and use Theorem 3.11 to
H-decompose it. Finding such a minimum cardinality set of edges is non-trivial, but can be reduced
to a maximum weighted matching problem.

As we do not know ρ(H) even for very small graphs such as K3, it is interesting to see for which
graphs we can determine ρ(H). We first notice that for any (say, connected) graph H other than K2,
we have ρ(G) ≤ 1/2. Indeed, this is so already for K1,2. Let n be even and such that

(n/2
2

)
is odd.

Then, a graph composed of two vertex-disjoint Kn/2 is K1,2-divisible, but not K1,2-decomposable.
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Similar examples hold for any other graph. In fact, it is not difficult to show that ρ(G) > 1/2 if G

is not bipartite. As the Turán number of bipartite graphs is o(n2), it is tempting to conjecture:

Conjecture 3.13 For every bipartite graph H we have ρ(H) = 1/2.

Even this conjecture is far from being solved. In fact, it is open even for H = C4. It has been
proved by the author in a very precise form for trees in [80, 81]:

Theorem 3.14 ([81]) Let H be any tree with h edges. Let G be a graph on n ≥ (12h)10 vertices
with δ(G) ≥ bn/2c. Then pH(G) = be(G)/hc, and, in particular, if h divides e(G), then G has an
H-decomposition.

Proof (sketch). The first step (and the most difficult one) is to prove that graphs which are rela-
tively good expanders satisfy the theorem. It is proved in [80] that if G has the property that for every
set X ⊂ V with |X| ≤ n/2 there are at least |X|10h4

√
n log n edges between X and V = \X, then

pH(G) = be(G)/hc (provided n is sufficiently large). The proof uses several probabilistic arguments
and applications of the marriage theorem. Notice that, in particular, graphs with minimum degree
n/2+10h4

√
n log n satisfy the condition. This already gives ρ(H) = 1/2 for trees. To prove the sharp

result in the statement of the theorem one now needs only to consider graphs with minimum degree
at least n/2 that are not good expanders. However, it is not difficult to show that the structure of
such graphs is very similar to two large almost cliques that are almost disjoint. One therefore needs
to carefully embed trees that intersect both of these almost cliques (there are not too many edges in
all of these trees together) so as to be able to decompose the remaining two (now disjoint, and still
very dense) sets of unused edges.

The largest class of bipartite graphs for which Conjecture 3.13 has been verified is given in [82].

Theorem 3.15 ([82]) For every bipartite graph H with δ(H) = 1 we have ρ(H) = 1/2.

Notice that the class of bipartite graphs with δ(H) = 1 contains all trees, as well as many other
interesting bipartite graphs, including many dense ones. Both Theorem 3.14 and 3.15 are algorithmic.
They yield a randomized algorithm that, given as input a graph G satisfying the requirements, finds
an H-decomposition of G in polynomial time.

A conjecture of Thomassen suggests that sufficient connectivity suffices in order to guarantee an
H-decomposition when H is a tree.

Conjecture 3.16 For every tree H, there is a constant c = c(H) so that every c-edge connected
graph whose number of edges is divisible by e(H) has an H-decomposition.

Thomassen’s conjecture allows for the decomposed graph G to be sparse, as opposed to the graphs
G in Theorem 3.14 that are always dense.
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Finally, recalling the definition of fractional H-decomposition and Theorem 3.5, let us denote
by ρ∗(H) the largest constant for which δ(G) ≥ (1 − ρ)(n − 1) + o(n) guarantees a fractional H-
decomposition. Clearly we have ρ∗(H) ≥ ρ(H). Interestingly, it is shown in [85] that a somewhat
more complicated construction to the one used in Proposition 3.9 gives ρ∗(Kk) ≤ 1/(k+1) for k ≥ 3.
We therefore conjecture:

Conjecture 3.17 ρ∗(H) = ρ(H) for every non-bipartite graph H.

We mention that, unlike the horribly small lower bound for ρ(Kk) that follows from Gustavsson’s
Theorem (this bound is roughly 10−37k−94), a “reasonable” lower bound of 1/9k10 for ρ∗(Kk) is
given in [85]. That result also yields a polynomial time algorithm for finding a fractional Kk-
decomposition, and an asymptotically optimal Kk-packing in graphs with minimum degree at least
n(1− 1/9k10) + o(n).

4 Packing problems in other combinatorial structures

4.1 Hypergraphs

The H-packing and H-matching problems are naturally extended to the hypergraph settings, and
all definitions remain intact. However, unlike the graph-theoretic case, obtaining H-factor and H-
decomposition results that are based upon the density of the input hypergraph is generally wide
open. In fact, for all but a few specific hypergraphs we still do not even know the Turán number.
Namely we cannot even tell, in general, how many edges guarantee pH(G) > 0.

Still, an important set of results that turned out to be extremely useful in asymptotic hyper-
graph H-packing is based upon the Rödl nibble method. Let Kr

k denote the complete r-uniform
hypergraph with k vertices. Clearly, pKr

k
(Kr

n) ≤
(n
r

)
/
(k
r

)
and equality holds if and only if Kn

r has a
Kr

k-decomposition. Solving a longstanding conjecture of Erdős and Hanani, Rödl proved in [71]:

Theorem 4.1 ([71])

pKr
k
(Kr

n) =
(n
r

)(k
r

) (1 + on(1)).

Notice that the case r = 2 (the case of graphs) is just an asymptotic version of Theorem 3.8 that
gives exact values for pKk

(Kn). However, already for r = 3, no result analogous to Theorem 3.8 is
known, and even Wilson’s theorem has no hypergraph equivalent. In this respect, Theorem 4.1 is
very strong. Moreover, it also has an algorithmic version (see [38]). That is, an almost complete Kr

k

packing of Kn
k can be produced in polynomial time. This algorithmic result is also interesting in the

case r = 2 of graphs. Several researchers noted that Rödl’s result can be expressed as a result on
matchings of hypergraph. Indeed, consider an r′-uniform hypergraph X with r′ =

(k
r

)
whose vertices

are all the r-subsets of [n] and whose edges are all the r′ r-tuples that lie in a k-subset of [n]. Then,
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pKk
(Kn) is just the cardinality of a maximum matching of X. Thus, Theorem 4.1 can be interpreted

as saying that X has an almost perfect matching. Notice that X is regular of degree D =
(n−r
k−r

)
and every pair of vertices of X lie together in at most

(n−r−1
k−r−1

)
= o(D) common edges. It turns out

that every hypergraph with such properties has an almost perfect matching, as proved by Frankl
and Rödl [33]. Recall that if x, y are two vertices of a hypergraph then deg(x) denotes the degree of
x and deg(x, y) denotes the number of edges that contain both x and y (their co-degree).

Theorem 4.2 ([33]) For an integer r ≥ 2 and a real β > 0 there exists a real µ > 0 so that: If the
r-uniform hypergraph L on q vertices has the following properties for some D:
(i) (1− µ)D < deg(x) < (1 + µ)D holds for all vertices,
(ii) deg(x, y) < µD for all distinct x and y,
then L has a matching of size at least (q/r)(1− β).

The proof of Theorem 4.2, which immediately implies Theorem 4.1, is based on probabilistic argu-
ments, in particular repeated applications of the second moment method. We refer the reader to [5]
for a proof of Theorem 4.2 due to Pippenger, which is slightly stronger and simpler than the original
proof.

When the hypergraph G is not complete, one can resort again to fractional decompositions. This
turns out to be beneficial also in the hypergraph setting. An analogue of Theorem 3.5 also holds for
r-uniform hypergraphs. The following has been proved by Rödl et al. in [72].

Theorem 4.3 ([72]) For a fixed r-uniform hypergraph H, if G is an n-vertex r-uniform hypergraph
then p∗H(G)− pH(G) = o(nr).

The proof is a non-trivial generalization of Theorem 3.5. In particular, a strong hypergraph version
of the Regularity Lemma that has only recently been obtained is a crucial ingredient in the proof.

Let G = (V,E) be an r-uniform hypergraph. For S ⊂ V with 1 ≤ |S| ≤ r − 1, let deg(S) be
the number of edges of H that contain S. For 1 ≤ d ≤ r − 1 let δd(H) = minS⊂V,|S|=d deg(S) be
the minimum d-degree of H. For 0 ≤ β ≤ 1 we say that H is β-dense if δd(H) ≥ β

(n−d
r−d

)
for all

1 ≤ d ≤ r−1. Notice that Kr
n is 1-dense and that H is β-dense if and only if δr−1(H) ≥ β(n−r+1).

The following result has been proved by the author in [86].

Theorem 4.4 Let k and r be integers with k > r ≥ 3. There exists a positive β = β(k, r) and
an integer N = N(k, r) such that if H is a (1 − β)-dense r-uniform hypergraph with more than N

vertices then H has a fractional Kr
k-decomposition.

We note that the constant β = β(k, r) obtain in the proof is larger than 6−kr. Combining Theorem
4.4 and 4.3 we immediately obtain:

Corollary 4.5 Let H be a fixed r-uniform hypergraph. There exists a positive constant β = β(H) so
that if G = (V,E) is a (1− β)-dense r-uniform hypergraph with n vertices then G has an H-packing
that covers |E|(1− on(1)) edges.
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4.2 Random graphs

Let G = G(n, p) denote, as usual, the random graph with n vertices and edge probability p. In the
extensive study of the properties of random graphs many researchers observed that there are sharp
threshold functions for various natural graph properties. For a graph property A and for a function
p = p(n), we say that G(n, p) satisfies A almost surely if the probability that G(n, p(n)) satisfies A

tends to 1 as n tends to infinity. We say that a function f(n) is a sharp threshold function for the
property A if there are two positive constants c and C so that G(n, cf(n)) almost surely does not
satisfy A and G(n, Cf(n)) satisfies A almost surely.

Problems concerning sharp threshold functions for H-factors and H-decompositions of G(n, p)
have been studied by several researchers. Already Erdős and Rényi proved [32] that log n/n is a
sharp threshold function for K2-factor. Many subsequent papers by various authors that supply
more detailed information regarding perfect matchings in random graphs. The following problem is
attributed to Erdős.

Problem 4.6 For every fixed graph H, determine a threshold function fH(n) for the property that
G(n, p) has an H-factor (assuming v(H) divides n).

It is not difficult to prove that a threshold function for H-factors exists (this follows, in particular from
the fact that H-factor existence is a monotone graph property [34]). However, already for H = K3

we still do not know what this threshold is. Erdős conjectured that a Kk-factor occurs already when
G(n, p) has the property that every vertex lies on some Kk. The latter property, denoted EP (k), is
certainly a necessary condition for having an H-factor. Sharp thresholds for EP (k) are known. It is
an easy exercise to show that log n/n is a threshold for EP (2). The threshold for EP (3) (every point
on some triangle) is also not too difficult to compute. It is (log n)1/3n−2/3. Thus, it is conjectured
that (log n)1/3n−2/3 is a threshold for K3-factor. At present, the best upper bound that guarantees a
K3-factor follows from the result of Kim [48] who proved that p = Ω(n−2/3+1/18) already guarantees
a K3-factor, improving an earlier n−2/3+1/15 bound of Krivelevich [58]. Recently, Johansson obtained
a bound which is very close to the conjectured bound, and this was subsequently further improved by
Kahn and Vu, but these results are still not published. We also note that if one settles for an almost
Kk-factor, namely a factor that misses a small constant proportion of the vertices, it is not difficult
to show that the conjectured threshold of EP (k) is sufficient. This follows by applying Theorem 4.2
on the hypergraph whose edges are the Kk-copies.

There is, however, a wide class of graphs H for which problem 4.6 has been solved. Define the
fractional arboricity of H as

a(H) = max{ |E′|
|V ′| − 1

},

where the maximum is taken over all subgraphs (V ′, E′) of H with |V ′| > 1. The reason for name
fractional arboricity is that da(H)e, the arboricity of H, is the minimum number of forests whose
union covers all edges of H. The following theorem has been proved in [73] and independently in [6].
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Theorem 4.7 ([73, 6]) Let H be a graph with δ(H) < a(H). Then n−1/a(H) is a sharp threshold
function for H-factors.

Proof (sketch). It is an easy large deviation argument to show that if p = cn−1/a(H) and c is a small
constant then almost surely G(n, p) does not even have n/h copies of the dense subgraph of H that
yields its arboricity. In particular G(n, p) almost surely cannot have an H-decomposition. This part
does not assume that δ(H) < a(H). For the other direction, one can show using Janson’s inequality
that almost surely G(n, Cn−1/a(H)) has n/h vertex-disjoint copies of the subgraph H ′ obtained from
H by deleting a vertex of minimum degree. Notice that by our assumption, a(H ′) = a(H). What now
remains is to match the n/h remaining uncovered vertices with the n/h copies of H ′ so that a matched
vertex plays the role of the deleted minimum degree vertex. This can be done by constructing an
appropriate bipartite matching problem and using the above-mentioned result of Erdős and Rényi
[32]. One just needs the neighborhoods of the n/h remaining vertices to still be random. This is
easy to achieve using a standard two-stage uncovering technique of the edges of G(n, p).

The class of graphs with δ(H) < a(H) contains many interesting graphs. For example, it contains
all graphs that have at least one cycle and that have a vertex with degree 1.

It is interesting to note that the fractional version of Kk-factor thresholds is completely settled.
In a fractional H-factor one assigns weights to the copies of H so that for each vertex, the sum of
the weights is at most one, and the sum of all weights of all H-copies is n/v(H) (notice that in
this version we do not require than v(H) divides n). The lower bound of a threshold for EP (k)
clearly also applies to thresholds for fractional Kk-factors. Haber and Krivelevich [40] proved that
the threshold for EP (k) is, in fact, also a threshold for fractional Kk-factors (they also showed it for
a larger class of graphs H).

We now turn to H-decompositions. Threshold functions for H-decompositions in the G(n, p)
model are not well defined because of the enforced H-divisibility requirements. There are several
ways to overcome this obstacle. One can ask for the threshold in the random regular model, where
all r-regular graphs with n vertices are equally likely. For example, if H = Kk one can ask for
the minimum rk = rk(n) so that if r ≥ rk and k − 1 divides r then a random r-regular n-vertex
graph has brn/(k(k − 1))c edge-disjoint Kk, almost surely. This problem is wide open already for
H = K3. An easy lower bound of r3 = Ω(

√
n log n) follows from the requirement that every edge

be on a triangle. It is therefore conjectured that r3 = Θ(
√

n log n). Another way to overcome the
H-divisibility obstacle is to ask for an H-packing of G(n, p) that leaves at most, say, nv(H) unpacked
edges. It is not even clear that a sharp threshold function for this property exists, in particular since
this property is not monotone. Still, it is conjectured that p = (log n/n)1/2 is a sharp threshold
function for containing a K3-packing that leaves at most 3n edges unpacked.

Whenever gcd(H) = 1 it is well-defined to ask for a threshold function for an H-packing of G(n, p)
that leaves less than e(H) edges unpacked (in particular, such a packing is an H-decomposition if
the number of edges of G(n, p) divides e(H), and this occurs with probability approaching 1/e(H)
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as n tends to infinity). Although this problem is generally wide open, it has been settled for trees
[83].

Theorem 4.8 ([83]) if H is a tree with more than one edge, then log n/n is a sharp threshold
function for the property that G(n, p) contains be(G)/e(H)c edge-disjoint copies of H.

The proof of Theorem 4.8, as well as the proofs of the other theorems in this subsection, yield a
corresponding polynomial time randomized algorithm.

Problem 4.9 Find a sharp threshold function for even one single graph H that is not a tree.

Finally, it is well-defined to ask for the threshold of a fractional H-decomposition. Here there are no
H-divisibility obstacles. In particular, we state the following open problem.

Problem 4.10 Find a sharp threshold function for fractional K3-decomposition of G(n, p).

4.3 Directed and oriented graphs

For a directed graph H, let us denote by gcd(H) the smallest positive integer so that there exist
integers xv for v ∈ V so that

∑
v∈V xvd

+(v) =
∑

v∈V xvd
−(v) = gcd(H). For example, the gcd of a

directed triangle is 1 while the gcd of D3, the complete directed graph with 3 vertices, is 2. Clearly,
in order for Dn, the complete directed graph with n vertices, to be H-decomposable, we must have
that gcd(H) divides n− 1 and that e(H) divides n(n− 1).

Wilson’s Theorem [79] also applies to directed graph.

Theorem 4.11 For every fixed directed graph H, there exists N = N(H) so that for all n > N , if
e(H) divides n(n− 1) and gcd(H) divides n− 1 then Dn has an H-decomposition.

Theorem 4.11 essentially settles the H-decomposition problem for Dn, but the situation becomes
significantly more complicated for tournaments. Suppose H is a fixed oriented graph (orientation,
for short). When is it true that a tournament with n vertices is H-decomposable?

Problem 4.12 Characterize those fixed orientations H for which it is NP-complete to decide if a
given tournament is H-decomposable.

For some nontrivial orientations H it is plausible that each tournament Tn with n vertices has
a packing with edge-disjoint H that leaves at most o(n2) edges of Tn unpacked. In particular, this
means that for such H, there is a trivial PTAS for pH(Tn). Let TTk denote the transitive tournament
with k vertices. We propose the following exact conjecture.

Conjecture 4.13 For every tournament Tn with n vertices, pTT3(Tn) ≥ dn(n− 1)/6− n/3e.
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The bound in the conjecture is tight. To see this consider a tournament constructed from three
disjoint sets of n/3 vertices V1, V2, V3. All edges are oriented from Vi to Vi+1 (indices modulo 3).
Edges within each set are oriented arbitrarily. It is easy to see that any TT3 packing of such a
tournament has size at most dn(n− 1)/6− n/3e.

Interestingly, already for TT4 there are tournaments with the property that any TT4-packing
misses Θ(n2) edges. There is a well-known construction of a tournament with seven vertices that
has no copy of TT4. Blowing up this tournament into 7 vertex sets of size n/7 each and orienting
the edges within each set arbitrarily yields a tournament Tn in which every TT4-packing misses at
least n2/14 edges.

For every fixed orientation H, a random tournament almost surely has an H-packing that misses
only o(n2) edges. This is an easy consequence from Theorem 4.2 applied to the hypergraph whose
vertices are the edges of Tn and whose edges are the copies of H in Tn. This hypergraph is e(H)-
uniform, and the conditions in Theorem 4.2 hold almost surely if Tn is a random tournament.

Turning to H-factors, we note that it is very easy to show that any Tn (with n > 3) has bn/3c
vertex-disjoint TT3. This follows from the easy observation that any T6 has a TT3-factor. Thus, the
greedy algorithm easily produces bn/3c transitive triangles in a Tn. Is it true that any Tn has bn/kc
vertex-disjoint TTk, assuming n is sufficiently large? Let g(k) denote the minimum integer n that
guarantees that every Tn has a TTk-factor, assuming k divides n. The (nontrivial) existence of g(k)
is attributed to Erdős in [70] and currently the best upper bound is g(k) < 4k obtained by Caro
[18], but is probably still far from being optimal. Chen et al. [21] proved that every T4m2−6m has an
H-factor where H is the star with m vertices where all m− 1 edges either all emanate from or enter
the root.

We end with the following conjecture:

Conjecture 4.14 Every regular tournament with 6n + 3 vertices has a directed triangle factor.
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[59] D. Kühn and D. Osthus, The minimum degree threshold for perfect graph packings, manuscript.
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