Approximation algorithms and hardness results for the clique packing problem

F. Chataigner ${ }^{1 *} \quad$ G. Manić ${ }^{2} \dagger \quad$ Y.Wakabayashi ${ }^{1} \ddagger \quad$ R. Yuster ${ }^{3}$ §
${ }^{1}$ Instituto de Matemática e Estatística - Universidade de São Paulo, SP, Brazil
${ }^{2}$ Instituto de Computação - Universidade Estadual de Campinas, SP, Brazil
${ }^{3}$ Department of Mathematics, University of Haifa, Israel

October, 2007

Abstract

For a fixed family \mathcal{F} of graphs, an \mathcal{F}-packing in a graph G is a set of pairwise vertex-disjoint subgraphs of G, each isomorphic to an element of \mathcal{F}. Finding an \mathcal{F}-packing that maximizes the number of covered edges is a natural generalization of the maximum matching problem, which is just $\mathcal{F}=\left\{K_{2}\right\}$. In this paper we provide new approximation algorithms and hardness results for the \mathcal{K}_{r}-packing problem where $\mathcal{K}_{r}=\left\{K_{2}, K_{3}, \ldots, K_{r}\right\}$.

We show that already for $r=3$ the \mathcal{K}_{r}-packing problem is APX-complete, and, in fact, we show that it remains so even for graphs with maximum degree 4 . On the positive side, we give an approximation algorithm with approximation ratio at most 2 for every fixed r. For $r=3,4,5$ we obtain better approximations. For $r=3$ we obtain a simple $3 / 2$-approximation, achieving a known ratio that follows from a more involved algorithm of Halldórsson. For $r=4$, we obtain a $(3 / 2+\epsilon)$-approximation, and for $r=5$ we obtain a $(25 / 14+\epsilon)$-approximation.

Keywords: approximation algorithms, APX-hardness, clique, packing, triangle

1 Introduction

Let \mathcal{F} be a fixed family of graphs. An \mathcal{F}-packing in a graph G is a set of pairwise vertex-disjoint subgraphs of G, each isomorphic to an element of \mathcal{F}. We say that an \mathcal{F}-packing covers an edge (resp. vertex) of G if one of the subgraphs of the packing contains that edge (resp. vertex). In this paper the \mathcal{F}-packing problem is the problem of finding the maximum number of edges that can be covered by an \mathcal{F}-packing. When $\mathcal{F}=\left\{K_{2}\right\}$, this simply corresponds to the maximum matching problem. Apart from its theoretical interest, this problem is also important from a practical point of view, as it arises naturally in applications such as scheduling.

[^0]Another related problem is that of finding an \mathcal{F}-packing in a graph G that covers the maximum number of vertices. To avoid confusion, we refer to this problem as the \mathcal{F}_{V}-packing problem. This problem is NP-hard, even when \mathcal{F} consists of a single graph that has a component with at least three vertices [5]; and also when \mathcal{F} contains only complete graphs with at least three vertices [6]. On the other hand, the \mathcal{F}_{V}-packing problem is polynomially solvable for some non-trivial classes of families \mathcal{F}, and many important results in matching theory can be generalized to those cases. For example, when $\mathcal{F}=\left\{K_{2}, \ldots, K_{r}\right\}, r>2$, Hell and Kirkpatrick [6] showed that this problem is in P .

Let $\mathcal{K}_{r}=\left\{K_{2}, \ldots, K_{r}\right\}$. In contrast with the above result of Hell and Kirkpatrick, we show, in Section 3, that the \mathcal{K}_{r}-packing problem is APX-complete already for $r=3$, and, in fact, already for graphs with maximum degree 4 .

On the positive side, we show in Section 2 that a simple greedy algorithm yields a 2 -approximation for the \mathcal{K}_{r}-packing problem. A modified greedy algorithm, which is based on application of the local search method of Hurkens and Schrijver [7] yields better approximation ratios for $r=4,5$. The analysis of these ratios is also somewhat more complicated than the analysis of the simple greedy algorithm. In particular, for $r=4$ we obtain a $(3 / 2+\epsilon)$-approximation and for $r=5$ we obtain a $(25 / 14+\epsilon)$-approximation.

In Section 4 we specifically address the \mathcal{K}_{3}-packing problem. We show, in fact, that a tighter analysis of the simple greedy algorithm yields a $3 / 2$-approximation for it. More generally, we show that there is a $\left(1+\frac{1}{3} \rho\right)$-approximation algorithm for the \mathcal{K}_{3}-packing problem, whenever there is a ρ-approximation algorithm for the triangle packing problem. In particular, for the class of graphs with maximum degree 4, using a result of [8] for the triangle packing problem, we derive a 1.4-approximation algorithm for the \mathcal{K}_{3}-packing problem for this class of graphs.

An extended abstract mentioning the results of this paper has appeared in the Proceedings of Eurocomb 2007 [3].

1.1 Basic definitions and notation

All graphs considered here are simple. If G is a graph, then V_{G} (resp. E_{G}) denotes its vertex (resp. edge) set. The number of vertices of G is denoted by n_{G}, and the maximum degree by $\Delta(G)$.

Let \mathcal{F} be a fixed family of graphs. We recall that in the \mathcal{F}-packing problems to be investigated in this paper we are interested in maximizing the number of edges that are covered. The set $\left\{K_{2}, \ldots, K_{r}\right\}$ is abbreviated as \mathcal{K}_{r}. A complete graph of order k is called a k-clique. A 3-clique is called a triangle. If \mathcal{A} is an \mathcal{F}-packing of a graph G, then the value of \mathcal{A}, denoted $\operatorname{val}_{\mathcal{F}}(G, \mathcal{A})$ (or simply $\operatorname{val}(\mathcal{A})$), is the number of edges of G that it covers. We denote by $\mathcal{P}_{\mathcal{A}}$ (resp. $\mathcal{Q}_{\mathcal{A}}$, $\mathcal{T}_{\mathcal{A}}, \mathcal{E}_{\mathcal{A}}$) the collection of all 5 -cliques (resp. 4-cliques, triangles, edges) in \mathcal{A}. Furthermore, we denote by $G[\mathcal{A}]$ the subgraph of G induced by the set of edges in \mathcal{A}. If G is an instance of the \mathcal{F}-packing problem, then $\operatorname{opt}_{\mathcal{F}}(G)$ denotes the value of an optimal solution for G. We call a graph irredundant if each of its edges belongs to some triangle.

In this paper we refer to a heuristic of Hurkens and Schrijver [7], denoted as $\operatorname{HS}(k, t)$, that finds a maximum set of vertex-disjoint k-cliques in a graph G. It is a local search greedy heuristic that, starting with any collection of k-cliques, while possible, it replaces at most $p-1 k$-cliques in the current collection with a set of $p \leq t$ disjoint k-cliques that are not in the current collection,
and updates the current collection. The parameter t is an integer. Its approximation ratio is $k / 2+\varepsilon$, where ε depends on t.

Given a parameter $\rho \geq 1$, a ρ-approximation algorithm for a maximization problem Π is a polynomial-time algorithm that, for any instance I of Π produces a solution S whose value, $\operatorname{val}_{\Pi}(I, S)$, is at least $\frac{1}{\rho} \operatorname{opt}_{\Pi}(I)$, where $\operatorname{opt}_{\Pi}(I)$ is the value of an optimal solution for I (we also say that ρ is the approximation ratio). If such an algorithm exists, we say that Π belongs to APX. Let Π_{1} and Π_{2} be optimization problems. An L-reduction from Π_{1} to Π_{2} consists of a pair of polynomial-time computable functions (f, g) such that, for two fixed positive constants α and β the following holds:
(C1) For every input instance I_{1} of $\Pi_{1}, f\left(I_{1}\right)$ is an instance of Π_{2}, and $\left|\operatorname{opt}_{\Pi_{2}}\left(f\left(I_{1}\right)\right)\right| \leq \alpha\left|\operatorname{opt}_{\Pi_{1}}\left(I_{1}\right)\right|$.
(C2) Given an instance I_{1} of Π_{1}, and any feasible solution \mathcal{A} for $f\left(I_{1}\right)$, we have that $g\left(I_{1}, \mathcal{A}\right)$ is a feasible solution for the instance I_{1} of Π_{1}, and
$\left|\operatorname{opt}_{\Pi_{1}}\left(I_{1}\right)-\operatorname{val}_{\Pi_{1}}\left(I_{1}, g\left(I_{1}, \mathcal{A}\right)\right)\right| \leq \beta\left|\operatorname{opt}_{\Pi_{2}}\left(f\left(I_{1}\right)\right)-\operatorname{val}_{\Pi_{2}}\left(f\left(I_{1}\right), \mathcal{A}\right)\right|$.
We denote by $\Pi_{1} \leq_{L} \Pi_{2}$ the existence of an L-reduction from Π_{1} to Π_{2}. If $\Pi_{1} \leq_{L} \Pi_{2}$ and $\Pi_{2} \in$ APX, then $\Pi_{1} \in$ APX. A problem Π is APX-hard if, for every $\Pi^{\prime} \in \operatorname{APX}$, we have $\Pi^{\prime} \leq_{L} \Pi$. If an APX-hard problem belongs to the class APX, then it is APX-complete. It is known that an APX-hard problem does not admit a PTAS, unless $\mathrm{P}=\mathrm{NP}[1]$.

One of the reductions we show in Section 3 consider the following restricted version of the MAX SAT problem, denoted here simply as SAT, known to be APX-complete [1]. Given a collection of disjunctive clauses $C=\left\{c_{1}, c_{2}, \ldots, c_{l}\right\}$ over a set $X=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ of variables, such that each clause has at most 2 literals, and each variable appears in at most 3 of the clauses (counting both positive and negated occurrences), find a truth assignment for the variables of X that satisfies as many clauses as possible.

2 Approximation algorithm for the \mathcal{K}_{r}-packing problem

All algorithms we describe in this paper have a common structure. This common structure will be presented in a form of a generic algorithm, called here BASIC_{r}. To distinguish the different algorithms we can derive from this basic algorithm, we assume this algorithm calls a generic Procedure \mathcal{P}_{q} that outputs a $\left\{K_{q}\right\}$-packing of a given input graph G. The different algorithms are then obtained by substituting \mathcal{P}_{q} by specific algorithms.

```
Algorithm \(\mathrm{BASIC}_{r}\)
    Input: A graph \(G\).
    Subroutine: Procedure \(\mathcal{P}_{q}\) that outputs a \(\left\{K_{q}\right\}\)-packing of a given input graph
    Output: A \(\left\{K_{2}, \ldots, K_{r}\right\}\)-packing of \(G\).
    for \(q=r\) downto 3 do
        \(F_{q} \leftarrow \mathrm{a}\left\{K_{q}\right\}\)-packing of \(G\) output by the Procedure \(\mathcal{P}_{q}\)
        \(G \leftarrow G-F_{q}\)
    \(F_{2} \leftarrow\) a maximum matching in \(G\)
    return \(F_{2} \cup \ldots \cup F_{q}\)
```


2.1 A simple greedy algorithm

Denote by \mathcal{G}_{r} the simple Greedy Algorithm that consists of the algorithm Basic_{r} in which the Procedure \mathcal{P}_{q} (called at line 2) is an algorithm that simply selects a maximal set of vertexdisjoint q-cliques in a graph. We say \mathcal{G}_{r} is a greedy algorithm because it selects first the larger cliques.

The next lemma is the key to obtain the approximation ratio of \mathcal{G}_{r}.
Lemma 2.1 Let G be a graph, $r \geq 2$ an integer, and \mathcal{A} a solution returned by the algorithm \mathcal{G}_{r} applied to G. If C is a q-clique in G, where $2 \leq q \leq r$, then $\sum_{v \in V_{C}} d_{G[\mathcal{A}]}(v) \geq \frac{1}{2} q(q-1)$.

Proof. The proof is by induction on r. For $r=2$, it suffices to note that if C is a 2-clique in G then at least one of its vertices intersects an edge of \mathcal{A} (a maximal matching returned by the algorithm). Thus, $\sum_{v \in V_{C}} d_{G[\mathcal{A}]}(v) \geq 1$ and the lemma holds.

Suppose now that $r>2$. Let C be a q-clique of $G, 2 \leq q \leq r$, and let l be the number of vertices in the intersection of C and F_{r}. Set $F^{\prime}:=\cup_{i=2}^{r-1} F_{i}$. Then, we have that

$$
\sum_{v \in V_{C}} d_{G[\mathcal{A}]}(v)=\sum_{v \in V_{C \cap F_{r}}} d_{G[\mathcal{A}]}(v)+\sum_{v \in V_{C \cap F^{\prime}}} d_{G[\mathcal{A}]}(v)=l(r-1)+\sum_{v \in V_{C-F_{r}}} d_{G\left[F^{\prime}\right]}(v) .
$$

Note that $C-F_{r}$ is isomorphic to K_{q-l}. When $q<r$ we have that $q-l<r$. When $q=r$, since \mathcal{P}_{r} is the algorithm that simply selects a maximal set of vertex-disjoint r-cliques, we have that $l \geq 1$, and again $q-l<r$. Thus, we can apply the induction hypothesis on the last term of the equation, obtaining

$$
\begin{equation*}
\sum_{v \in V_{C}} d_{G[\mathcal{A}]}(v) \geq l(r-1)+\frac{1}{2}(q-l)(q-l-1)=\frac{1}{2}\left(l^{2}+(2 r-2 q-1) l+q(q-1)\right) . \tag{1}
\end{equation*}
$$

If $q<r$, then $2 r-2 q-1>0$, so the minimum for the right-hand side of (1) is reached at $l=0$. In that case we thus have $\sum_{v \in V_{C}} d_{G[\mathcal{A}]}(v) \geq \frac{1}{2} q(q-1)$. If, however, $q=r$, then the minimum for the right-hand side of (1) is reached at $l=\frac{1}{2}$. Since \mathcal{P}_{r} selects a maximal set of vertex-disjoint r-cliques, we have that $l=0$ is not possible. Thus, the minimum for the right-hand side of (1) is reached at $l=1$ and is $\frac{1}{2} q(q-1)$. So, the proof is now complete.

Theorem 2.2 For $r \geq 2$, the algorithm \mathcal{G}_{r} is a 2-approximation algorithm for the \mathcal{K}_{r}-packing problem.

Proof. Let \mathcal{A} be a solution returned by the algorithm \mathcal{G}_{r} applied to a graph G. Consider an optimal \mathcal{K}_{r}-packing \mathcal{O} in G. Applying Lemma 2.1 to each clique C of \mathcal{O}, we get

$$
2 \operatorname{val}(\mathcal{A})=\sum_{v \in V_{G}} d_{G[\mathcal{A}]}(v) \geq \sum_{C \in \mathcal{O}} \sum_{v \in V_{C}} d_{G[\mathcal{A}]}(v) \geq \sum_{C \in \mathcal{O}} \frac{1}{2}\left|V_{C}\right|\left(\left|V_{C}\right|-1\right)=\sum_{C \in \mathcal{O}}\left|E_{C}\right|=\operatorname{val}(\mathcal{O}) .
$$

The first inequality follows from the fact that in the first sum we consider the degrees in $G[\mathcal{A}]$ of all vertices of G, and in the second sum we consider the degrees in $G[\mathcal{A}]$ of those vertices in
G that belong to the cliques of \mathcal{O} (we may have vertices in $G[\mathcal{A}]$ that do not belong to \mathcal{O}). The second inequality follows from Lemma 2.1.

Remark 1. In the proof of Lemma 2.1 we did not use the fact that F_{2} is a maximum matching (see step 4 of the algorithm BASIC_{r}). That is, we may substitute step 4 by " $F_{2} \leftarrow$ a maximal matching in $G^{\prime \prime}$, and obtain the same result. In other words, if we consider that \mathcal{G}_{r} (the Greedy Algorithm) simply uses the Procedure \mathcal{P}_{q} for $q=r, \ldots, 2$, the statement of Theorem 2.2 holds.

Remark 2. We note that the upper bound 2 for the approximation ratio of algorithm \mathcal{G}_{r} is not tight. In Section 4 we show that the algorithm \mathcal{G}_{3} has, in fact, approximation ratio $3 / 2$. The analysis is somewhat more delicate, however.

2.2 A modified greedy algorithm based on local search

Denote by \mathcal{B}_{r} the algorithm BASIC_{r} in which the Procedure \mathcal{P}_{q} is the heuristic $\operatorname{HS}(q, t)$, when $q=r$ (see Section 1.1), and for $2<q<r, \mathcal{P}_{q}$ is the algorithm that simply selects a maximal set of vertex-disjoint q-cliques.

Theorem 2.3 The algorithm \mathcal{B}_{4} is a $(3 / 2+\varepsilon)$-approximation algorithm for the \mathcal{K}_{4}-packing problem.

Proof. Let \mathcal{O} be an optimal solution and \mathcal{B} be the solution returned by the algorithm \mathcal{B}_{4}. Thus, $\operatorname{val}(\mathcal{O})=6\left|\mathcal{Q}_{\mathcal{O}}\right|+3\left|\mathcal{T}_{\mathcal{O}}\right|+\left|\mathcal{E}_{\mathcal{O}}\right|$ and $\operatorname{val}(\mathcal{B})=6\left|\mathcal{Q}_{\mathcal{B}}\right|+3\left|\mathcal{T}_{\mathcal{B}}\right|+\left|\mathcal{E}_{\mathcal{B}}\right|$.

Let $q_{i}, 0 \leq i \leq 4$, be the number of 4 -cliques of $\mathcal{Q}_{\mathcal{O}}$ that intersect precisely i vertices of $\mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$. Let $t_{i}, 0 \leq i \leq 3$, be the number of triangles of $\mathcal{T}_{\mathcal{O}}$ that intersect precisely i vertices of $\mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$. Note that since \mathcal{P}_{3} selects a maximal set of vertex-disjoint 3 -cliques, we have that $t_{0}=0$. Furthermore, since $\operatorname{HS}(4, t)$ returns a maximal collection of 4 -cliques, we have that $q_{0}=0$. Suppose now that $q_{1}>0$. Then, there is a 4 -clique, say D, in $\mathcal{Q}_{\mathcal{O}}$ that intersects precisely one vertex of $\mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$. The three other vertices of D would form a triangle that does not intersect $\mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$, contradicting the fact that \mathcal{P}_{3} selects a maximal set of vertex-disjoint 3-cliques. Thus, $q_{1}=0$.

Observe that the number of vertices of $\mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$ covered by $\mathcal{Q}_{\mathcal{O}} \cup \mathcal{T}_{\mathcal{O}}$ is $2 q_{2}+3 q_{3}+4 q_{4}+$ $t_{1}+2 t_{2}+3 t_{3}$. Thus, the number of vertices of $\mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$ not covered by $\mathcal{Q}_{\mathcal{O}} \cup \mathcal{T}_{\mathcal{O}}$ is $w:=$ $4\left|\mathcal{Q}_{\mathcal{B}}\right|+3\left|\mathcal{T}_{\mathcal{B}}\right|-\left(2 q_{2}+3 q_{3}+4 q_{4}+t_{1}+2 t_{2}+3 t_{3}\right)$. Hence, the number of edges of $\mathcal{E}_{\mathcal{O}}$ with at least one endpoint in a clique of $\mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$ is at most w.

Now, let $z:=\left|\mathcal{E}_{\mathcal{O}}\right|-w$. Note that at least $\max \{0, z\}$ edges of $\mathcal{E}_{\mathcal{O}}$ are disjoint from $\mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$. Furthermore, every triangle of $\mathcal{T}_{\mathcal{O}}$ (resp. 4 -clique of $\mathcal{Q}_{\mathcal{O}}$) that intersects precisely 1 vertex (resp. 2 vertices) of $\mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$ contributes an edge that is disjoint from $\mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$. Since $\mathcal{E}_{\mathcal{B}}$ is a maximum matching of $G-\left\{v: v\right.$ is a vertex in $\left.\mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}\right\}$, we have

$$
\begin{equation*}
\left|\mathcal{E}_{\mathcal{B}}\right| \geq q_{2}+t_{1}+\max \{0, z\} . \tag{2}
\end{equation*}
$$

Using the facts that $\left|\mathcal{Q}_{\mathcal{O}}\right|=q_{2}+q_{3}+q_{4}$ and $\left|\mathcal{T}_{\mathcal{O}}\right|=t_{1}+t_{2}+t_{3}$, we can rewrite z obtaining

$$
\begin{equation*}
z=\left|\mathcal{E}_{\mathcal{O}}\right|-4\left|\mathcal{Q}_{\mathcal{B}}\right|-3\left|\mathcal{T}_{\mathcal{B}}\right|+3\left|\mathcal{Q}_{\mathcal{O}}\right|+2\left|\mathcal{T}_{\mathcal{O}}\right|-q_{2}+q_{4}-t_{1}+t_{3} . \tag{3}
\end{equation*}
$$

Since $\operatorname{val}(\mathcal{B})=6\left|\mathcal{Q}_{\mathcal{B}}\right|+3\left|\mathcal{T}_{\mathcal{B}}\right|+\left|\mathcal{E}_{\mathcal{B}}\right|$, using (2) we get

$$
\operatorname{val}(\mathcal{B}) \geq 6\left|\mathcal{Q}_{\mathcal{B}}\right|+3\left|\mathcal{T}_{\mathcal{B}}\right|+q_{2}+t_{1}+\max \{0, z\} \geq 6\left|\mathcal{Q}_{\mathcal{B}}\right|+3\left|\mathcal{T}_{\mathcal{B}}\right|+q_{2}+t_{1}+z
$$

Now substituting the value of z given in (3), we obtain

$$
\begin{equation*}
\operatorname{val}(\mathcal{B}) \geq 2\left|\mathcal{Q}_{\mathcal{B}}\right|+3\left|\mathcal{Q}_{\mathcal{O}}\right|+2\left|\mathcal{T}_{\mathcal{O}}\right|+\left|\mathcal{E}_{\mathcal{O}}\right| \tag{4}
\end{equation*}
$$

Combining the fact that $\mathcal{Q}_{\mathcal{B}}$ is the solution output by $\operatorname{HS}(4, t)$, which has an approximation ratio $2+\varepsilon$, and the fact that $\operatorname{opt}_{\mathcal{K}_{4}}(G) \geq\left|\mathcal{Q}_{\mathcal{O}}\right|$, we have

$$
\left|\mathcal{Q}_{\mathcal{B}}\right| \geq\left(\frac{1}{2}-\varepsilon^{\prime}\right) \operatorname{opt}_{\mathcal{K}_{4}}(G) \geq\left(\frac{1}{2}-\varepsilon^{\prime}\right)\left|\mathcal{Q}_{\mathcal{O}}\right|
$$

The above inequality together with (4) imply that

$$
\operatorname{val}(\mathcal{B}) \geq\left(4-2 \varepsilon^{\prime}\right)\left|\mathcal{Q}_{\mathcal{O}}\right|+2\left|\mathcal{T}_{\mathcal{O}}\right|+\left|\mathcal{E}_{\mathcal{O}}\right| \geq\left(\frac{2}{3}-\varepsilon^{\prime}\right)\left(6\left|\mathcal{Q}_{\mathcal{O}}\right|+3\left|\mathcal{T}_{\mathcal{O}}\right|+\left|\mathcal{E}_{\mathcal{O}}\right|\right)=\left(\frac{2}{3}-\varepsilon^{\prime}\right) \operatorname{val}(\mathcal{O})
$$

Theorem 2.4 The algorithm \mathcal{B}_{5} is a $(25 / 14+\varepsilon)$-approximation algorithm for the \mathcal{K}_{5}-packing problem.

Proof. The proof is similar to the one presented for Theorem 2.3. Let \mathcal{O} be an optimal solution and \mathcal{B} be the solution returned by the algorithm \mathcal{B}_{5}. Thus, $\operatorname{val}(\mathcal{O})=10\left|\mathcal{P}_{\mathcal{O}}\right|+6\left|\mathcal{Q}_{\mathcal{O}}\right|+3\left|\mathcal{T}_{\mathcal{O}}\right|+\left|\mathcal{E}_{\mathcal{O}}\right|$ and $\operatorname{val}(\mathcal{B})=10\left|\mathcal{P}_{\mathcal{B}}\right|+6\left|\mathcal{Q}_{\mathcal{B}}\right|+3\left|\mathcal{T}_{\mathcal{B}}\right|+\left|\mathcal{E}_{\mathcal{B}}\right|$.

Let $p_{i}, 0 \leq i \leq 5$, be the number of 5 -cliques of $\mathcal{P}_{\mathcal{O}}$ that intersect precisely i vertices of $\mathcal{P}_{\mathcal{B}} \cup \mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$. Let $q_{i}, 0 \leq i \leq 4$, be the number of 4-cliques of $\mathcal{Q}_{\mathcal{O}}$ that intersect precisely i vertices of $\mathcal{P}_{\mathcal{B}} \cup \mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$. Let $t_{i}, 0 \leq i \leq 3$, be the number of triangles of $\mathcal{T}_{\mathcal{O}}$ that intersect precisely i vertices of $\mathcal{P}_{\mathcal{B}} \cup \mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$. Similarly as in the proof of Theorem 2.3 , we get $p_{0}=q_{0}=t_{0}=q_{1}=p_{1}=p_{2}=0$.

Observe that the number of vertices of $\mathcal{P}_{\mathcal{B}} \cup \mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$ not covered by $\mathcal{P}_{\mathcal{O}} \cup \mathcal{Q}_{\mathcal{O}} \cup \mathcal{T}_{\mathcal{O}}$ is $5\left|\mathcal{P}_{\mathcal{B}}\right|+$ $4\left|\mathcal{Q}_{\mathcal{B}}\right|+3\left|\mathcal{T}_{\mathcal{B}}\right|-\left(3 p_{3}+4 p_{4}+5 p_{5}+2 q_{2}+3 q_{3}+4 q_{4}+t_{1}+2 t_{2}+3 t_{3}\right)$. We now define $z:=\left|\mathcal{E}_{\mathcal{O}}\right|-$ $5\left|\mathcal{P}_{\mathcal{B}}\right|-4\left|\mathcal{Q}_{\mathcal{B}}\right|-3\left|\mathcal{T}_{\mathcal{B}}\right|+3 p_{3}+4 p_{4}+5 p_{5}+2 q_{2}+3 q_{3}+4 q_{4}+t_{1}+2 t_{2}+3 t_{3}$.

Observe that at least $\max \{0, z\}$ edges of $\mathcal{E}_{\mathcal{O}}$ are disjoint from $\mathcal{P}_{\mathcal{B}} \cup \mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$. Furthermore, every triangle of $\mathcal{T}_{\mathcal{O}}$ (resp. 4-clique of $\mathcal{Q}_{\mathcal{O}}, 5$-clique of $\mathcal{P}_{\mathcal{O}}$) that intersects precisely 1 vertex (resp. 2 vertices, 3 vertices) of $\mathcal{P}_{\mathcal{B}} \cup \mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$ contributes an edge that is disjoint from $\mathcal{P}_{\mathcal{B}} \cup \mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}$. Since $\mathcal{E}_{\mathcal{B}}$ is a maximum matching of $G-\left\{v: v\right.$ is a vertex in $\left.\mathcal{P}_{\mathcal{B}} \cup \mathcal{Q}_{\mathcal{B}} \cup \mathcal{T}_{\mathcal{B}}\right\}$, we have

$$
\begin{equation*}
\left|\mathcal{E}_{\mathcal{B}}\right| \geq t_{1}+q_{2}+p_{3}+\max \{0, z\} \tag{5}
\end{equation*}
$$

Using the facts that $\left|\mathcal{P}_{\mathcal{O}}\right|=p_{3}+p_{4}+p_{5},\left|\mathcal{Q}_{\mathcal{O}}\right|=q_{2}+q_{3}+q_{4}$ and $\left|\mathcal{T}_{\mathcal{O}}\right|=t_{1}+t_{2}+t_{3}$, we can rewrite z obtaining

$$
\begin{equation*}
z=\left|\mathcal{E}_{\mathcal{O}}\right|-5\left|\mathcal{P}_{\mathcal{B}}\right|-4\left|\mathcal{Q}_{\mathcal{B}}\right|-3\left|\mathcal{T}_{\mathcal{B}}\right|+4\left|\mathcal{P}_{\mathcal{O}}\right|+3\left|\mathcal{Q}_{\mathcal{O}}\right|+2\left|\mathcal{T}_{\mathcal{O}}\right|-p_{3}+p_{5}-q_{2}+q_{4}-t_{1}+t_{3} \tag{6}
\end{equation*}
$$

Now, using (5) we get

$$
\operatorname{val}(\mathcal{B})=10\left|\mathcal{P}_{\mathcal{B}}\right|+6\left|\mathcal{Q}_{\mathcal{B}}\right|+3\left|\mathcal{T}_{\mathcal{B}}\right|+\left|\mathcal{E}_{\mathcal{B}}\right| \geq 10\left|\mathcal{P}_{\mathcal{B}}\right|+6\left|\mathcal{Q}_{\mathcal{B}}\right|+3\left|\mathcal{T}_{\mathcal{B}}\right|+p_{3}+q_{2}+t_{1}+\max \{0, z\}
$$

Thus,

$$
\operatorname{val}(\mathcal{B}) \geq 10\left|\mathcal{P}_{\mathcal{B}}\right|+6\left|\mathcal{Q}_{\mathcal{B}}\right|+3\left|\mathcal{T}_{\mathcal{B}}\right|+p_{3}+q_{2}+t_{1}+z
$$

Substituting the value of z given in (6) and discarding some terms we obtain

$$
\begin{equation*}
\operatorname{val}(\mathcal{B}) \geq 5\left|\mathcal{P}_{\mathcal{B}}\right|+2\left|\mathcal{Q}_{\mathcal{B}}\right|+4\left|\mathcal{P}_{\mathcal{O}}\right|+3\left|\mathcal{Q}_{\mathcal{O}}\right|+2\left|\mathcal{T}_{\mathcal{O}}\right|+\left|\mathcal{E}_{\mathcal{O}}\right| . \tag{7}
\end{equation*}
$$

Observe now that each element of $\mathcal{P}_{\mathcal{B}} \cup \mathcal{Q}_{\mathcal{B}}$ intersects $\mathcal{P}_{\mathcal{O}} \cup \mathcal{Q}_{\mathcal{O}}$ in at most 5 vertices. Thus,

$$
\begin{equation*}
\left|\mathcal{P}_{\mathcal{B}}\right|+\left|\mathcal{Q}_{\mathcal{B}}\right| \geq \frac{1}{5}\left(\left|\mathcal{P}_{\mathcal{O}}\right|+\left|\mathcal{Q}_{\mathcal{O}}\right|\right) . \tag{8}
\end{equation*}
$$

Indeed, if $\left|\mathcal{P}_{\mathcal{B}}\right|+\left|\mathcal{Q}_{\mathcal{B}}\right|<\frac{1}{5}\left(\left|\mathcal{P}_{\mathcal{O}}\right|+\left|\mathcal{Q}_{\mathcal{O}}\right|\right)$, there would be an element of $\mathcal{P}_{\mathcal{O}} \cup \mathcal{Q}_{\mathcal{O}}$ that does not intersect any of the elements from $\mathcal{P}_{\mathcal{B}} \cup \mathcal{Q}_{\mathcal{B}}$, contradicting the fact that the set $\mathcal{P}_{\mathcal{B}} \cup \mathcal{Q}_{\mathcal{B}}$ was found by algorithm \mathcal{B}_{5}.

Since $\operatorname{HS}(5, t)$ has an approximation ratio $5 / 2+\varepsilon$, we have

$$
\left|\mathcal{P}_{\mathcal{B}}\right| \geq\left(\frac{2}{5}-\varepsilon^{\prime}\right)\left|\mathcal{P}_{\mathcal{O}}\right| .
$$

Now multiplying inequality (8) by 2 and adding with the inequality above multiplied by 3 , we get $5\left|\mathcal{P}_{\mathcal{B}}\right|+2\left|\mathcal{Q}_{\mathcal{B}}\right| \geq\left(8 / 5-3 \varepsilon^{\prime}\right)\left|\mathcal{P}_{\mathcal{O}}\right|+2 / 5\left|\mathcal{Q}_{\mathcal{O}}\right|$. Combining this inequality with inequality (7) we obtain

$$
\begin{aligned}
\operatorname{val}(\mathcal{B}) & \geq\left(8 / 5-3 \varepsilon^{\prime}\right)\left|\mathcal{P}_{\mathcal{O}}\right|+2 / 5\left|\mathcal{Q}_{\mathcal{O}}\right|+4\left|\mathcal{P}_{\mathcal{O}}\right|+3\left|\mathcal{Q}_{\mathcal{O}}\right|+2\left|\mathcal{T}_{\mathcal{O}}\right|+\left|\mathcal{E}_{\mathcal{O}}\right| \\
& =\left(28 / 5-3 \varepsilon^{\prime}\right)\left|\mathcal{P}_{\mathcal{O}}\right|+17 / 5\left|\mathcal{Q}_{\mathcal{O}}\right|+2\left|\mathcal{T}_{\mathcal{O}}\right|+\left|\mathcal{E}_{\mathcal{O}}\right| \\
& =\frac{1}{10}\left(\frac{28}{5}-3 \varepsilon^{\prime}\right) 10\left|\mathcal{P}_{\mathcal{O}}\right|+\frac{1}{6}\left(\frac{17}{5}\right) 6\left|\mathcal{Q}_{\mathcal{O}}\right|+\frac{1}{3}(2) 3\left|\mathcal{T}_{\mathcal{O}}\right|+\left|\mathcal{E}_{\mathcal{O}}\right| \\
& \left.\geq\left(\frac{28}{50}-\varepsilon^{\prime}\right)\left(10\left|\mathcal{P}_{\mathcal{O}}\right|\right)+6\left|\mathcal{Q}_{\mathcal{O}}+3\right| \mathcal{T}_{\mathcal{O}}|+| \mathcal{E}_{\mathcal{O}}\right) \\
& =\left(\frac{14}{25}-\varepsilon^{\prime}\right) \operatorname{val}(\mathcal{O}) .
\end{aligned}
$$

We are not sure whether the ratio $(3 / 2+\varepsilon)$ (resp. $(25 / 14+\varepsilon))$ for the algorithm \mathcal{B}_{4} (resp. $\left.\mathcal{B}_{5}\right)$ is tight. We note that for $r \geq 6$, using the same approach it is not possible to show that the ratio of the algorithm \mathcal{B}_{r} is smaller than 2 (as we need a better ratio for $\operatorname{HS}(r, t)$).

3 The APX-hardness of the \mathcal{K}_{3}-packing problem

In this section we prove that the \mathcal{K}_{3}-packing problem is APX-hard on graphs with maximum degree 5. We also show that this problem is APX-hard even on irredundant graphs with maximum degree 4. We recall that we defined a graph to be irredundant if each of its edges belongs to some triangle. As we know that the \mathcal{K}_{3}-packing problem has a constant approximation algorithm, we can conclude that it is an APX-complete problem.

We show first the result for graphs with maximum degree 5 , and then for graphs with maximum degree 4. In both cases we consider the problem of finding the maximum number of vertex-disjoint
triangles in a graph, denoted here as VTP, and known to be APX-complete [2]. (This problem is equivalent to the $\left\{K_{3}\right\}$-packing problem; it is just more convenient to simplify the counting arguments.)

The second proof is significantly more elaborate than the first: its structure is analogous to the reduction presented by Caprara and Rizzi [2] to show that the VTP problem is APX-complete on graphs with maximum degree 4 .

Theorem 3.1 The \mathcal{K}_{3}-packing problem is APX-hard on graphs with maximum degree 5.
Proof. We show an L-reduction from the VTP problem to the \mathcal{K}_{3}-packing problem. For that, we shall exhibit a pair of functions (f, g), and constants α and β, in accordance with the definition of L-reduction given in Section 1.

Let G be an irredundant graph with $\Delta(G)=4$. Define $G^{\prime}:=f(G)$ as the union of two copies, say G_{1} and G_{2}, of G together with the set of edges

$$
\left\{u_{1} u_{2}: u_{1} \in V_{G_{1}}, u_{2} \in V_{G_{2}}, \text { and } u_{1}, u_{2} \text { correspond to the same vertex } u \in V_{G}\right\}
$$

We first show that

$$
\begin{equation*}
\operatorname{opt}_{\mathcal{K}_{3}}\left(G^{\prime}\right)=3 \mathrm{opt}_{\mathrm{VTP}}(G)+n_{G} \tag{9}
\end{equation*}
$$

Indeed, if \mathcal{T}^{*} is an optimal solution of the VTP problem in G, then there is a $\left\{K_{2}, K_{3}\right\}$-packing of G^{\prime} consisting of the triangles in G_{1} and G_{2} that are copies of triangles in \mathcal{T}^{*}, and set of edges $\left\{u_{1} u_{2}: u_{1} \in V_{G_{1}}, u_{2} \in V_{G_{2}}\right.$, and u_{1}, u_{2} correspond to the same vertex u of G not covered by $\left.\mathcal{T}^{*}\right\}$. Since the number of vertices of G not covered by \mathcal{T}^{*} is $n_{G}-3 \operatorname{opt}_{\mathrm{VTP}}(G)$, we have opt $\mathcal{K}_{3}\left(G^{\prime}\right) \geq$ $6 \mathrm{opt}_{\mathrm{VTP}}(G)+n_{G}-3 \mathrm{opt}_{\mathrm{VTP}}(G)=3 \mathrm{opt}_{\mathrm{VTP}}(G)+n_{G}$. On the other hand, if an optimal solution of the \mathcal{K}_{3}-packing problem in G^{\prime} has t^{\prime} triangles and e^{\prime} edges, since $e^{\prime} \leq \frac{n_{G^{\prime}}-3 t^{\prime}}{2}=n_{G}-\frac{3}{2} t^{\prime}$, we have $\operatorname{opt}_{\mathcal{K}_{3}}\left(G^{\prime}\right)=3 t^{\prime}+e^{\prime} \leq \frac{3}{2} t^{\prime}+n_{G}$. Of course, $t^{\prime} \leq 2 \operatorname{opt}_{\mathrm{VTP}}(G)$, and thus $\operatorname{opt}_{\mathcal{K}_{3}}\left(G^{\prime}\right) \leq$ 3 opt $_{\mathrm{VTP}}(G)+n_{G}$. Hence, statement (9) holds.

Let \mathcal{T}^{*} be an optimal solution of the VTP problem in G. Suppose that there exists a triangle $T \in \mathcal{T}^{*}$, such that T has 5 neighbouring vertices in $V_{G} \backslash V_{T}$ that are not covered by \mathcal{T}^{*}. Since $\Delta(G)=4$, one pair of them, say v_{1}, v_{2} is adjacent to the same vertex, say x from V_{T}; another pair, say v_{3}, v_{4} (disjoint from v_{1}, v_{2}), is adjacent to the same vertex, say y from V_{T}. Note that the third vertex of V_{T}, say z, has degree at least 3 . Furthermore, since G is irredundant and $\Delta(G)=4$, we have that $v_{1} v_{2}, v_{3} v_{4} \in E_{G}$. Indeed, since G is irredundant, edge $v_{1} x$ (resp. $v_{2} x$) has to be in some triangle. Since $d_{G}(x)=d_{G}(y)=\Delta(G)=4$, the only possible triangle having edge $x v_{1}$, not using $v_{1} v_{2}$, is the triangle $\left[x, v_{1}, z\right]$ (see the Figure 1). But now, the only possible triangle having edge $x v_{2}$ is the triangle $\left[x, v_{2}, v_{1}\right]$, and hence, $v_{1} v_{2} \in E_{G}$. Similarly, $v_{3} v_{4} \in E_{G}$.

Thus, by replacing T with $\left[x, v_{1}, v_{2}\right]$ and $\left[y, v_{3}, v_{4}\right]$, we obtain a solution for the VTP problem that has more triangles than \mathcal{T}^{*} does, a contradiction. Hence, each triangle from \mathcal{T}^{*} has at most 4 neighbours not covered by \mathcal{T}^{*}. Note, furthermore, that since G is irredundant, each vertex not covered by \mathcal{T}^{*} is adjacent to at least one vertex covered by \mathcal{T}^{*}. Indeed, suppose that there is a vertex v not covered by \mathcal{T}^{*}, and not adjacent to any vertex covered by \mathcal{T}^{*}. Since G is irredundant, v is a vertex of a triangle T. Observe that none of the vertex of T is covered by \mathcal{T}^{*}, and thus, \mathcal{T}^{*} is not an optimal solution of the VTP problem in G, a contradiction. It thus follows that the number of vertices in G not covered by \mathcal{T}^{*} is at most $4 \mathrm{opt}_{\mathrm{VTP}}(G)$, that

Figure 1: Vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and v_{5} are the neighbours of V_{T} that are not covered by \mathcal{T}^{*}.
is, $n_{G}-3 \operatorname{opt}_{\mathrm{VTP}}(G) \leq 4 \mathrm{opt}_{\mathrm{VTP}}(G)$. Using (9) we have $\operatorname{opt}_{\mathcal{K}_{3}}\left(G^{\prime}\right) \leq 10 \operatorname{opt}_{\mathrm{VTP}}(G)$. Thus, for $\alpha=10$ condition (C1) of the definition of L-reduction is satisfied.

Given a $\left\{K_{2}, K_{3}\right\}$-packing \mathcal{A} of $G^{\prime}=f(G)$, we define $g(G, \mathcal{A})$ as a largest of the two sets $\mathcal{T}_{\mathcal{A}} \cap G_{1}, \mathcal{T}_{\mathcal{A}} \cap G_{2}$. Suppose, without loss of generality, that $g(G, \mathcal{A})=\mathcal{T}_{\mathcal{A}} \cap G_{1}$. Let $t_{1}^{\prime}:=\left|\mathcal{T}_{\mathcal{A}} \cap G_{1}\right|$, $t_{2}^{\prime}:=\left|\mathcal{T}_{\mathcal{A}} \cap G_{2}\right|, e_{1}^{\prime}:=\left|\mathcal{E}_{\mathcal{A}} \cap G_{1}\right|, e_{2}^{\prime}:=\left|\mathcal{E}_{\mathcal{A}} \cap G_{2}\right|$, and e^{\prime} be the number of edges in $\mathcal{E}_{\mathcal{A}}$ with one endpoint in G_{1} and the other in G_{2}. Of course, $t_{1}^{\prime} \leq$ opt $_{\mathrm{VTP}}(G)$. Thus, $\frac{1}{2} t_{1}^{\prime}+\frac{3}{2} t_{1}^{\prime}-2$ opt $_{\mathrm{VTP}}(G) \leq 0$. Since $t_{2}^{\prime} \leq t_{1}^{\prime}$, we have $\frac{1}{2} t_{1}^{\prime}+\frac{3}{2} t_{2}^{\prime}-2 \operatorname{opt}_{\mathrm{VTP}}(G) \leq 0$, or equivalently,

$$
\begin{equation*}
\operatorname{opt}_{\mathrm{VTP}}(G)-t_{1}^{\prime} \leq 3 \mathrm{opt}_{\mathrm{VTP}}(G)+\left(\frac{3}{2} t_{1}^{\prime}+\frac{3}{2} t_{2}^{\prime}+e_{1}^{\prime}+e_{2}^{\prime}+e^{\prime}\right)-\left(3 t_{1}^{\prime}+3 t_{2}^{\prime}+e_{1}^{\prime}+e_{2}^{\prime}+e^{\prime}\right) \tag{10}
\end{equation*}
$$

Now, $3 t_{1}^{\prime}+3 t_{2}^{\prime}+2 e_{1}^{\prime}+2 e_{2}^{\prime}+2 e^{\prime} \leq n_{G^{\prime}}=2 n_{G}$, and hence, $\frac{3}{2} t_{1}^{\prime}+\frac{3}{2} t_{2}^{\prime}+e_{1}^{\prime}+e_{2}^{\prime}+e^{\prime} \leq n_{G}$. Thus, from (10) we have opt $\operatorname{VTP}^{(G)-t_{1}^{\prime} \leq 3 \text { opt }_{\mathrm{VTP}}(G)+n_{G}-\left(3 t_{1}^{\prime}+3 t_{2}^{\prime}+e_{1}^{\prime}+e_{2}^{\prime}+e^{\prime}\right) \text {. Using (9), we }}$ get $\operatorname{opt}_{\mathrm{VTP}}(G)-t_{1}^{\prime} \leq \operatorname{opt}_{\mathcal{K}_{3}}\left(G^{\prime}\right)-\operatorname{val}_{\mathcal{K}_{3}}\left(G^{\prime}, \mathcal{A}\right)$. Thus, condition (C2) holds with $\beta=1$.

Theorem 3.2 The \mathcal{K}_{3}-packing problem is APX-hard on the class of irredundant graphs with maximum degree 4.

Proof. We show an L-reduction from the Sat problem we have defined in Section 1. For that, as in the previous proof, we shall exhibit a pair of functions (f, g), and constants α and β, according to the definition of L-reduction given in Section 1. Let $\varphi=(C, X)$ with $C=\left\{c_{1}, c_{2}, \ldots, c_{l}\right\}$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ be an instance of SAT. Let m_{i} denote the number of occurrences of x_{i}. We may assume, without loss of generality, that $m_{i} \geq 2$ (for if x_{i} appears only in one clause we can set x_{i} to the value which satisfies that clause). We define $G^{\prime}:=f(\varphi)$ in the following way.

To each clause c_{j} we associate a test component \mathcal{C}_{j}. The test component of a clause with two literals consists of 4 triangles $\left[t_{j}^{1}, s_{j}^{1}, r_{j}^{1}\right],\left[s_{j}^{1}, r_{j}^{1}, r_{j}^{2}\right],\left[s_{j}^{2}, r_{j}^{1}, r_{j}^{2}\right],\left[s_{j}^{1}, r_{j}^{2}, t_{j}^{2}\right]$ (see Figure 2(a)), whereas the test component associated with a clause with one literal consists of 3 triangles $\left[t_{j}^{1}, s_{j}^{1}, r_{j}^{1}\right]$, $\left[s_{j}^{1}, r_{j}^{1}, r_{j}^{2}\right],\left[s_{j}^{2}, r_{j}^{1}, r_{j}^{2}\right]$ (see Figure 2(b)).

To each variable x_{i} we associate a truth component \mathcal{X}_{i}, (see Figure 2(c)). This component consists of $2 m_{i}$ triangles $T_{1}, \ldots, T_{2 m_{i}}$, where $T_{2 k-1}=\left[a_{i}^{k}, v_{i}^{k-1}, u_{i}^{k}\right]$ and $T_{2 k}=\left[b_{i}^{k}, u_{i}^{k}, v_{i}^{k}\right], k=$ $1, \ldots, m_{i}$ (all upper indices being modulo m_{i}). The parity of T_{k} is the parity of k.

The graph G^{\prime} is obtained by connecting the test and truth components as follows. Let c_{j} be a clause with two literals and let x_{1}, x_{2} be the variables which occur in c_{j}. If x_{i} occurs positive (resp. negated) in c_{j}, then identify the vertex t_{j}^{i} of the test component \mathcal{C}_{j}, with a vertex a_{i}^{k} (resp.

Figure 2: (a) The test component of a clause c_{j} that has two literals. (b) The test component of a clause c_{j} that has one literal. (c)The truth component of a variable x_{i} with $m_{i}=3$.
b_{i}^{k}) of the truth component \mathcal{X}_{i} which has not yet been involved in any identification. Similarly, let c_{j} be a clause with one literal, say, x_{1}. If x_{1} occurs positive (resp. negated) in c_{j}, then identify the vertex t_{j}^{1} of \mathcal{C}_{j}, with a vertex a_{1}^{k} (resp. b_{1}^{k}) of \mathcal{X}_{1} which has not yet been involved in any identification. Note that G^{\prime} is irredundant and $\Delta\left(G^{\prime}\right)=4$.

A maximal $\left\{K_{2}, K_{3}\right\}$-packing \mathcal{A} of G^{\prime} is called canonical if, for each truth component, it contains either all even or all odd triangles, and for each test component \mathcal{C}_{j} it contains the triangle $\left[r_{j}^{1}, r_{j}^{2}, s_{j}^{2}\right]$, and possibly one of the edges $t_{j}^{1} s_{j}^{1}$ or $t_{j}^{2} s_{j}^{1}$. First, we show that the following statement holds.

Given a non-canonical $\left\{K_{2}, K_{3}\right\}$-packing \mathcal{A} of G^{\prime}, one can find in polynomial time a canonical packing of G^{\prime} whose value is at least the value of \mathcal{A}.
We will construct the desired packing \mathcal{A}^{\prime} from \mathcal{A} (we start with $\mathcal{A}^{\prime}=\mathcal{A}$). Initially, for each test component $\mathcal{C}_{j}, 1 \leq j \leq l$, we remove from \mathcal{A}^{\prime} the triangles and edges that are in \mathcal{C}_{j} and add $\left[r_{j}^{1}, r_{j}^{2}, s_{j}^{2}\right]$ to it. Furthermore, if one of the edges $t_{j}^{1} s_{j}^{1}, t_{j}^{2} s_{j}^{1}$ is covered by \mathcal{A}, then we add to \mathcal{A}^{\prime} the one that is covered by \mathcal{A}. Observe that for each \mathcal{C}_{j}, the value of \mathcal{A} restricted to \mathcal{C}_{j} is at most 4 . Moreover, if the value of \mathcal{A} restricted to \mathcal{C}_{j} is exactly 4 , then one of the edges $t_{j}^{1} s_{j}^{1}, t_{j}^{2} s_{j}^{1}$ is covered by \mathcal{A}. Thus, so far the resulting packing \mathcal{A}^{\prime} has a value that is at least the value of \mathcal{A}.

Moreover, for each $i, 1 \leq i \leq p$, if the triangles of the truth component \mathcal{X}_{i} that are in $\mathcal{T}_{\mathcal{A}}$ are not all of the same parity, we do the following (depending on the number of occurrences of x_{i}).

1. $m_{i}=3$.

We may assume, without loss of generality, that x_{i} appears negated in one clause, say c_{j}, and positive in two clauses (for if x_{i} appears only negated or only positive, we can set it to the value that satisfies all the clauses in which it appears in). Let $t_{j}^{k}, k \in\{1,2\}$ be the vertex of \mathcal{C}_{j} incident with \mathcal{X}_{i}. Then, we remove from \mathcal{A}^{\prime} the triangles and edges that are in \mathcal{X}_{i}, and add all even triangles of \mathcal{X}_{i} to \mathcal{A}^{\prime}. Furthermore, if $t_{j}^{k} s_{j}^{1}$ is in \mathcal{A}^{\prime}, we remove it. We next show that after those changes the value of \mathcal{A}^{\prime} is at least the value of \mathcal{A}.
(a) If there is no triangle of \mathcal{X}_{i} that is in $\mathcal{T}_{\mathcal{A}}$, then there are at most 6 edges of \mathcal{X}_{i} that are in \mathcal{E}_{A}, one from each triangle. Hence, the value of packing decreases by at most 7 . Since the value of the packing increases by 9 , we have that the value of \mathcal{A}^{\prime} increases.
(b) If there is exactly one triangle of \mathcal{X}_{i} that is in $\mathcal{T}_{\mathcal{A}}$, then there are at most 5 edges of \mathcal{X}_{i} that are in \mathcal{E}_{A}, one from each other triangle. Thus, the value of \mathcal{A}^{\prime} decreases by at most 9 , and increases by 9 .
(c) If there are exactly two triangles of \mathcal{X}_{i} that are in $\mathcal{T}_{\mathcal{A}}$, then, there are at most 2 edges of \mathcal{X}_{i} that are in \mathcal{E}_{A} (see examples on Figure 3(a) and (b)). Hence, we have that the value of packing \mathcal{A}^{\prime} decreases by at most 9 , and increases by 9 .

(a)

(b)

(c)

Figure 3: Triangles and edges with full lines are in \mathcal{A}. (a) $m_{i}=3$, there are exactly two triangles of \mathcal{X}_{i} that are in $\mathcal{T}_{\mathcal{A}}$, and they are of the same parity. (b) $m_{i}=3$ and there are exactly two triangles of \mathcal{X}_{i} that are in $\mathcal{T}_{\mathcal{A}}$, not of the same parity. (c) $m_{i}=2$ and there is a triangle of \mathcal{X}_{i} that is in $\mathcal{T}_{\mathcal{A}}$. In all cases, there are at most 2 edges of \mathcal{X}_{i} that are in \mathcal{E}_{A}.
2. $m_{i}=2$.

We may assume, without loss of generality, that x_{i} appears negated in one clause, say c_{j}, and positive in another. Then, we remove from \mathcal{A}^{\prime} the triangles and edges that are in \mathcal{X}_{i}, and add two even triangles of \mathcal{X}_{i} to \mathcal{A}^{\prime}. Furthermore, if $t_{j}^{1} s_{j}^{1}$ is in \mathcal{A}^{\prime}, we remove it. We next show that those changes yield a packing \mathcal{A}^{\prime} whose value is at least the value of \mathcal{A}.
(a) If there is no triangle of \mathcal{X}_{i} that is in $\mathcal{T}_{\mathcal{A}}$, then there are at most 4 edges of \mathcal{X}_{i} that are in \mathcal{E}_{A}, one from each triangle. Hence, the value of packing \mathcal{A}^{\prime} decreases by at most 5 . Since the value of the packing increases by 6 , we have that the value of \mathcal{A}^{\prime} increases.
(b) If there is a triangle of \mathcal{X}_{i} that is in $\mathcal{T}_{\mathcal{A}}$, then there is only one such triangle, say T_{k}. Furthermore, there are at most 2 edges of \mathcal{X}_{i} that are in \mathcal{E}_{A}, since the number of vertices in $\mathcal{X}_{i}-V_{T_{k}}$ is 5 (see an example on Figure 3(c)). Hence, the value of \mathcal{A}^{\prime} decreases by at most 6 , and increases by 6 .

Finally, for each test component \mathcal{C}_{j}, if s_{j}^{1} is not already an endpoint of an edge in $\mathcal{E}_{\mathcal{A}^{\prime}}$, then whenever possible, we add one of the edges $t_{j}^{1} s_{j}^{1}$ or $t_{j}^{2} s_{j}^{1}$ to \mathcal{A}^{\prime}. That is, if the corresponding clause c_{j} has two literals, then, if t_{j}^{1} is not covered by \mathcal{A}^{\prime}, we add $t_{j}^{1} s_{j}^{1}$ to \mathcal{A}^{\prime}; otherwise, if t_{j}^{2} is not covered by \mathcal{A}^{\prime}, we add $t_{j}^{2} s_{j}^{1}$ to \mathcal{A}^{\prime}. If, however, the clause c_{j} has one literal, then if t_{j}^{1} is not covered by \mathcal{A}^{\prime}, we add $t_{j}^{1} s_{j}^{1}$ to \mathcal{A}^{\prime}.

An example of the construction of \mathcal{A}^{\prime} is shown in Figure 4.

Note that the resulting packing \mathcal{A}^{\prime} is a canonical packing of G^{\prime} whose value is at least the value of \mathcal{A}. We have thus proved (11).

Figure 4: An example of the construction of \mathcal{A}^{\prime} (case $m_{i}=3$, and x_{i} appears negated in only one clause, say c_{j}, and positive in two other clauses). Dotted lines indicate edges of another truth component. (a) Shows a non-canonical $\left\{K_{2}, K_{3}\right\}$-packing \mathcal{A} restricted to \mathcal{X}_{i} and \mathcal{C}_{j} (highlighted edges and triangles are in $\mathcal{A})$. In the first step, $\left[t_{j}^{1}, s_{j}^{1}, r_{j}^{1}\right]$ and $s_{j}^{2} r_{j}^{2}$ are removed from \mathcal{A}^{\prime}, and $\left[r_{j}^{1}, r_{j}^{2}, s_{j}^{2}\right], t_{j}^{1} s_{j}^{1}$ are added to \mathcal{A}^{\prime}. In the second step, $T_{1}, T_{3}, u_{i}^{0} b_{i}^{0}, v_{i}^{2} b_{i}^{2}, t_{j}^{1} s_{j}^{1}$ are removed from \mathcal{A}^{\prime} and triangles T_{2}, T_{4}, T_{6} are added to \mathcal{A}^{\prime}. (b) The resulting packing \mathcal{A}^{\prime}.

We observe that a given canonical packing \mathcal{A}^{\prime} of G^{\prime} corresponds to a truth assignment for the variables in X in the following way. If \mathcal{A}^{\prime} contains all even (resp. odd) triangles of the truth component \mathcal{X}_{i}, then x_{i} is set to true (resp. false). On the other hand, given a truth assignment for the variables in X, we can construct a canonical packing \mathcal{A}^{\prime} of G^{\prime} in the following way. If x_{i} is true (resp. false), we add all even (resp. odd) triangles of \mathcal{X}_{i} to \mathcal{A}^{\prime}. For each test component \mathcal{C}_{j} we add the triangle $\left[r_{j}^{1}, r_{j}^{2}, s_{j}^{2}\right]$ to \mathcal{A}^{\prime}. Moreover, if the corresponding clause c_{j} has two literals, then if t_{j}^{1} is not covered by \mathcal{A}^{\prime}, we add $t_{j}^{1} s_{j}^{1}$ to \mathcal{A}^{\prime}; otherwise, if t_{j}^{2} is not covered by \mathcal{A}^{\prime}, we add $t_{j}^{2} s_{j}^{1}$ to the packing. If, however, the clause c_{j} has one literal, then if t_{j}^{1} is not covered by \mathcal{A}^{\prime}, we add $t_{j}^{1} s_{j}^{1}$ to \mathcal{A}^{\prime}.

Consider now a canonical packing \mathcal{A}^{\prime} and the corresponding truth assignment for the variables in X. Let c_{j} be a clause with two literals, and let x_{1}, x_{2} be the variables which occur in c_{j}. Note that t_{j}^{i} (for $i=1,2$) is not covered by a triangle of \mathcal{A}^{\prime} that belongs to the corresponding truth component \mathcal{X}_{i}, if and only if, x_{i} is set to the value that satisfies c_{j}. Thus, from the construction of the canonical packing we have that the following statements are equivalent: clause c_{j} is satisfiable; at least one of t_{j}^{1}, t_{j}^{2} is not covered by a triangle of \mathcal{A}^{\prime} that belongs to the corresponding truth component; exactly one of $t_{j}^{1} s_{j}^{1}, t_{j}^{2} s_{j}^{1}$ is in $\mathcal{E}_{\mathcal{A}^{\prime}}$; the value of \mathcal{A}^{\prime} restricted to \mathcal{C}_{j} is 4 . Similar statements hold for a clause with one literal. Thus, the value of \mathcal{A}^{\prime} restricted to \mathcal{C}_{j} is 4 (resp. 3), if and only if, c_{j} is satisfiable (resp. not satisfiable). Moreover, exactly m_{i} triangles of each \mathcal{X}_{i}
are in \mathcal{A}^{\prime}. Thus, the following claim holds.
A canonical packing \mathcal{A}^{\prime} of G^{\prime} with value $\sum_{i=1}^{p} 3 m_{i}+4 k+3(l-k)$ corresponds to a truth assignment for the variables in X that satisfies exactly k clauses of φ, and vice versa.

Figure 5: An example of a canonical packing \mathcal{A}^{\prime} of G^{\prime} and a corresponding truth assignment for the variables of the SAT problem instance $\varphi=\left(x_{1} \vee x_{2}\right) \wedge \neg x_{1} \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)$: x_{1} and x_{3} are set to true, x_{2} is set to false.

Now, given a $\left\{K_{2}, K_{3}\right\}$-packing \mathcal{A} of $G^{\prime}:=f(\varphi)$, we define a truth assignment $g(\varphi, \mathcal{A})$ in the following way. First, find a canonical packing \mathcal{A}^{\prime} of G^{\prime} with value at least the value of \mathcal{A}. Set a variable x_{i} to true (resp. false) if \mathcal{A}^{\prime} contains all even (resp. odd) triangles of the truth component \mathcal{X}_{i}.

We next show that

$$
\begin{equation*}
\operatorname{opt}_{\mathcal{K}_{3}}\left(G^{\prime}\right)=\sum_{i=1}^{p} 3 m_{i}+\operatorname{opt}_{\mathrm{SAT}}(\varphi)+3 l . \tag{13}
\end{equation*}
$$

Indeed, from (12) we have that an optimal solution of $\operatorname{SAT}(\varphi)$ corresponds to a canonical packing \mathcal{A}^{\prime} of G^{\prime} with the value $\sum_{i=1}^{p} 3 m_{i}+4 \operatorname{opt}_{\mathrm{SAT}}(\varphi)+3\left(l-\operatorname{opt}_{\mathrm{SAT}}(\varphi)\right)$. Thus, opt $\mathcal{K}_{3}\left(G^{\prime}\right) \geq$ $\sum_{i=1}^{p} 3 m_{i}+\operatorname{opt}_{\text {Sat }}(\varphi)+3 l$. On the other hand, let \mathcal{A} be a $\left\{K_{2}, K_{3}\right\}$-packing of G^{\prime}. If the corresponding feasible solution $g(\varphi, \mathcal{A})$ of $\operatorname{SAT}(\varphi)$ satisfies k clauses, we have that $k \leq \operatorname{opt}_{\text {SAT }}(\varphi)$. Furthermore, $\operatorname{val}_{\mathcal{K}_{3}}\left(G^{\prime}, \mathcal{A}\right) \leq \operatorname{val}_{\mathcal{K}_{3}}\left(G^{\prime}, \mathcal{A}^{\prime}\right)$, and by $(12), \operatorname{val}_{\mathcal{K}_{3}}\left(G^{\prime}, \mathcal{A}^{\prime}\right)=\sum_{i=1}^{p} 3 m_{i}+k+3 l$. Hence, we have that $\operatorname{opt}_{\mathcal{K}_{3}}\left(G^{\prime}\right) \leq \sum_{i=1}^{p} 3 m_{i}+\operatorname{opt}_{\mathrm{SAT}}(\varphi)+3 l$. We have thus proved (13).

Since each clause has at most 2 literals, we have $\sum_{i=1}^{p} m_{i} \leq 2 l$. Furthermore, note that the optimal value of Sat problem on φ is at least $\frac{l}{2}$, since at least half of the clauses can be satisfied by a simple greedy approach. Thus, from (13) we have $\operatorname{opt}_{\mathcal{K}_{3}}\left(G^{\prime}\right) \leq 9 l+\operatorname{opt}_{\text {SAT }}(\varphi) \leq 19 \operatorname{opt}_{\text {SAT }}(\varphi)$. Hence, taking $\alpha=19$ we can conclude that condition (C1) of the definition of L-reduction holds.

Finally, suppose that $\operatorname{val}_{\mathrm{SAT}}(\varphi, g(\varphi, \mathcal{A}))=k$, that is, the truth assignment $g(\varphi, \mathcal{A})$ satisfies exactly k clauses of φ. Hence, from (12) we have $\operatorname{val}_{\mathcal{K}_{3}}\left(G^{\prime}, \mathcal{A}^{\prime}\right)=\sum_{i=1}^{p} 3 m_{i}+k+3 l$. From this,
the equality (13), and the fact that $\operatorname{val}_{\mathcal{K}_{3}}\left(G^{\prime}, \mathcal{A}^{\prime}\right) \geq \operatorname{val}_{\mathcal{K}_{3}}\left(G^{\prime}, \mathcal{A}\right)$, we have

$$
\operatorname{opt}_{\mathrm{SAT}}(\varphi)-\operatorname{val}_{\mathrm{SAT}}(\varphi, g(\varphi, \mathcal{A})) \leq \operatorname{opt}_{\mathcal{K}_{3}}\left(G^{\prime}\right)-\operatorname{val}_{\mathcal{K}_{3}}\left(G^{\prime}, \mathcal{A}\right)
$$

Thus, (C2) holds if we take $\beta=1$.

4 Approximation algorithm for the \mathcal{K}_{3}-packing problem

Let us denote by $\mathcal{C}_{3}(\rho)$ an algorithm for the \mathcal{K}_{3}-packing problem that consists of the algorithm BASIC_{3} together with a Procedure \mathcal{P}_{3} that is a ρ-approximation algorithm for the VTP problem. We are interested in the performance ratio of $\mathcal{C}_{3}(\rho)$.

Theorem 4.1 Let \mathcal{P}_{3} be a ρ-approximation algorithm for the VTP problem which produces for any input graph G a triangle packing that is maximal. Then the algorithm $\mathcal{C}_{3}(\rho)$ is a $\left(1+\frac{1}{3} \rho\right)$ approximation algorithm for the \mathcal{K}_{3}-packing problem.

Proof. Let G be a graph and \mathcal{A} the solution returned by the algorithm $\mathcal{C}_{3}(\rho)$ applied to G. Let \mathcal{O} be an optimal solution for the \mathcal{K}_{3}-packing problem on G with the largest possible number of triangles in common with \mathcal{A}. Let t_{i} (resp. o_{i}), $0 \leq i \leq 3$, be the number of triangles of \mathcal{A} (resp. \mathcal{O}) that intersect exactly i vertices of $\mathcal{T}_{\mathcal{O}}\left(\right.$ resp. $\left.\mathcal{T}_{\mathcal{A}}\right)$.

We show first that $t_{0}=0$. Suppose that $t_{0}>0$ and that T is a triangle of \mathcal{A} that intersects no triangle of \mathcal{O}. If at most two edges of $\mathcal{E}_{\mathcal{O}}$ are adjacent to T, then we can replace these edges with T, obtaining a $\left\{K_{2}, K_{3}\right\}$-packing with value greater than the value of \mathcal{O}, a contradiction. Thus, there are 3 edges of $\mathcal{E}_{\mathcal{O}}$ adjacent to T. Removing these edges and adding T to \mathcal{O}, we get an optimal solution of the \mathcal{K}_{3}-packing problem that has more triangles in common with \mathcal{A} than \mathcal{O} does, which is again a contradiction. Thus, $t_{0}=0$. Since \mathcal{P}_{3} returns a maximal triangle packing, o_{0} must be zero.

Now, counting the vertices that are in the intersection of triangles from \mathcal{A} and \mathcal{O} we get

$$
\begin{equation*}
3 t_{3}+2 t_{2}+t_{1}=3 o_{3}+2 o_{2}+o_{1} \tag{14}
\end{equation*}
$$

We next define e_{1} (resp. e_{0}) as the number of edges in $\mathcal{E}_{\mathcal{O}}$ with at least one (resp. none) of its endpoints in a triangle of \mathcal{A}. Clearly, e_{1} is at most the number of vertices v of the triangles in \mathcal{A} such that v is not covered by a triangle from \mathcal{O}, that is,

$$
\begin{equation*}
e_{1} \leq 2 t_{1}+t_{2} \tag{15}
\end{equation*}
$$

Let $G^{\prime}:=G-\left\{v: v\right.$ is a vertex of a triangle in $\left.\mathcal{T}_{\mathcal{A}}\right\}$. Note that a matching of G^{\prime} can be obtained by taking one edge of each triangle of \mathcal{O} that has exactly one vertex in common with a triangle of \mathcal{A}, and taking the edges of $\mathcal{E}_{\mathcal{O}}$ that have no vertex in common with any triangle of \mathcal{A}. Hence, as $\mathcal{E}_{\mathcal{A}}$ is a maximum matching of G^{\prime}, we have $\left|\mathcal{E}_{\mathcal{A}}\right| \geq o_{1}+e_{0}$. From this, and the inequality (15), we have

$$
\begin{equation*}
\left|\mathcal{E}_{\mathcal{O}}\right|=e_{1}+e_{0} \leq 2 t_{1}+t_{2}+\left|\mathcal{E}_{\mathcal{A}}\right|-o_{1} \tag{16}
\end{equation*}
$$

We now consider the ratio r of the value of \mathcal{O} to the value of \mathcal{A}, that is, $r:=\left(3\left|\mathcal{T}_{\mathcal{O}}\right|+\left|\mathcal{E}_{\mathcal{O}}\right|\right) /\left(3\left|\mathcal{T}_{\mathcal{A}}\right|+\right.$ $\left.\left|\mathcal{E}_{\mathcal{A}}\right|\right)$. Using (16) and the fact that $\left|\mathcal{T}_{\mathcal{O}}\right|=o_{3}+o_{2}+o_{1}$, we get

$$
r \leq \frac{3\left(o_{3}+o_{2}+o_{1}\right)+\left(2 t_{1}+t_{2}+\left|\mathcal{E}_{\mathcal{A}}\right|-o_{1}\right)}{3\left|\mathcal{T}_{\mathcal{A}}\right|+\left|\mathcal{E}_{\mathcal{A}}\right|}
$$

Since $\left|\mathcal{E}_{\mathcal{A}}\right| \geq 0$, and $r \geq 1$, we can remove $\left|\mathcal{E}_{\mathcal{A}}\right|$ in the last inequality, obtaining

$$
r \leq \frac{3\left(o_{3}+o_{2}+o_{1}\right)+\left(2 t_{1}+t_{2}-o_{1}\right)}{3\left|\mathcal{T}_{\mathcal{A}}\right|}
$$

Using (14), we have

$$
r \leq \frac{\left(3 t_{3}+2 t_{2}+t_{1}\right)+\left(o_{2}+2 o_{1}\right)+\left(2 t_{1}+t_{2}-o_{1}\right)}{3\left|\mathcal{T}_{\mathcal{A}}\right|}=\frac{3\left(t_{3}+t_{2}+t_{1}\right)+\left(o_{2}+o_{1}\right)}{3\left|\mathcal{T}_{\mathcal{A}}\right|}=\frac{3\left|\mathcal{T}_{\mathcal{A}}\right|+\left(o_{2}+o_{1}\right)}{3\left|\mathcal{T}_{\mathcal{A}}\right|} .
$$

Since $o_{2}+o_{1} \leq\left|\mathcal{T}_{\mathcal{O}}\right|$, we have $r \leq 1+\frac{1}{3} \frac{\left|\mathcal{T}_{\mathcal{O}}\right|}{\mathcal{T}_{\mathcal{A}} \mid}$. As $\left|\mathcal{T}_{\mathcal{O}}\right| \leq \operatorname{opt}_{\mathrm{VTP}}(G)$, and \mathcal{P}_{3} is a ρ-approximation algorithm for the VTP problem,

$$
\frac{\left|\mathcal{T}_{\mathcal{O}}\right|}{\left|\mathcal{T}_{\mathcal{A}}\right|} \leq \frac{\operatorname{opt}_{\mathrm{VTP}}(G)}{\left|\mathcal{T}_{\mathcal{A}}\right|} \leq \rho, \text { and hence, } r \leq 1+\frac{1}{3} \rho
$$

Corollary 4.2 There is a $\left(\frac{3}{2}+\varepsilon\right)$-approximation algorithm for the \mathcal{K}_{3}-packing problem.
Proof. Hurkens and Schrijver [7] showed that $\operatorname{HS}(3, t)$ is a $\left(\frac{3}{2}+\varepsilon\right)$-approximation algorithm for the VTP problem (ε is inversely proportional to t). So it suffices to apply Theorem 4.1 with $\mathcal{P}_{3}=\operatorname{HS}(3, t)$ and $\rho=\frac{3}{2}+\varepsilon$.

Corollary 4.3 There is a 1.4-approximation algorithm for the \mathcal{K}_{3}-packing problem on graphs with maximum degree 4 .

Proof. It follows from Theorem 4.1 and the result of [8] showing that there is a ρ-approximation algorithm for the triangle packing problem on graphs with maximum degree 4 , where ρ is slightly less than 1.2.

A more precise analysis of the greedy algorithm \mathcal{G}_{3} gives the following result.
Theorem 4.4 The algorithm \mathcal{G}_{3} is a 3/2-approximation for the \mathcal{K}_{3}-packing problem. Furthermore, the ratio $3 / 2$ is tight.

Proof. It is similar to the proof of Theorem 2.3. Let \mathcal{O} be an optimal solution and \mathcal{B} be the solution returned by the algorithm \mathcal{G}_{3}. Let $t_{i}, 0 \leq i \leq 3$, be the number of triangles of $\mathcal{T}_{\mathcal{O}}$ that intersect precisely i vertices of $\mathcal{T}_{\mathcal{B}}$. Note that $t_{0}=0$.

Now let $z:=\left|\mathcal{E}_{\mathcal{O}}\right|-3\left|\mathcal{T}_{\mathcal{B}}\right|+t_{1}+2 t_{2}+3 t_{3}$. Then at least $\max \{0, z\}$ edges of $\mathcal{E}_{\mathcal{O}}$ are disjoint from $\mathcal{T}_{\mathcal{B}}$. Furthermore, every triangle of $\mathcal{T}_{\mathcal{O}}$ that intersects precisely 1 vertex of $\mathcal{T}_{\mathcal{B}}$ contributes an
edge that is disjoint from $\mathcal{T}_{\mathcal{B}}$. Since $\mathcal{E}_{\mathcal{B}}$ is a maximum matching of $G-\left\{v: v\right.$ is a vertex in $\left.\mathcal{T}_{\mathcal{B}}\right\}$, we have

$$
\begin{equation*}
\left|\mathcal{E}_{\mathcal{B}}\right| \geq t_{1}+\max \{0, z\} \tag{17}
\end{equation*}
$$

Using the facts that $\left|\mathcal{T}_{\mathcal{O}}\right|=t_{1}+t_{2}+t_{3}$, we can rewrite z obtaining

$$
\begin{equation*}
z=\left|\mathcal{E}_{\mathcal{O}}\right|-3\left|\mathcal{T}_{\mathcal{B}}\right|+2\left|\mathcal{T}_{\mathcal{O}}\right|-t_{1}+t_{3} \tag{18}
\end{equation*}
$$

Now substituting the value of z in the inequality $\operatorname{val}(\mathcal{B}) \geq 3\left|\mathcal{T}_{\mathcal{B}}\right|+t_{1}+z$, we get

$$
\operatorname{val}(\mathcal{B}) \geq 3\left|\mathcal{T}_{\mathcal{B}}\right|+t_{1}+\left|\mathcal{E}_{\mathcal{O}}\right|-3\left|\mathcal{T}_{\mathcal{B}}\right|+2\left|\mathcal{T}_{\mathcal{O}}\right|-t_{1}+t_{3} \geq 2\left|\mathcal{T}_{\mathcal{O}}\right|+\left|\mathcal{E}_{\mathcal{O}}\right| \geq \frac{2}{3} \operatorname{val}(\mathcal{O})
$$

To see that the ratio $3 / 2$ of algorithm \mathcal{G}_{3} is tight, consider the following graph G : it consists of 4 triangles $T_{0}, T_{1}, T_{2}, T_{3}$, such that T_{1}, T_{2} and T_{3} are pairwise vertex-disjoint and each of them "hangs" in a different vertex of T_{o} (G has 3 vertices of degree 4 and 6 vertices of degree 2).

5 Concluding remarks

The approximation algorithm $\mathcal{C}_{3}(\rho)$ that we presented for the \mathcal{K}_{3}-packing problem makes use of a routine to find an approximate solution for the VTP problem. From our result, it follows that any improvement on the $\left(\frac{3}{2}+\varepsilon\right)$-approximation ratio for the VTP problem would yield an improvement on the approximation ratio for the \mathcal{K}_{3}-packing problem.

Halldórsson [4] presented an algorithm for a version of the minimum 3-set cover problem, with the constraint that the sets found are pairwise disjoint, in addition to forming a cover of the vertices of the input graph. His algorithm is also another approach for the \mathcal{K}_{3}-packing problem. Using the results presented in [4], one can deduce that its approximation ratio is $3 / 2$. This algorithm is however not as simple as the greedy algorithm \mathcal{G}_{3}.

It would be interesting to study the \mathcal{F}-packing problem for other families \mathcal{F}.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and approximation, Springer-Verlag, 1999.
[2] A. Caprara and R. Rizzi. Packing triangles in bounded degree graphs. Inform. Process. Lett., 84(4):175-180, 2002.
[3] F. Chataigner, G. Manic, Y. Wakabayashi and R. Yuster. Approximation algorithms and hardness results for the clique packing problem. In Proceedings of Eurocomb 2007, volume 29 of Electron. Notes Discrete Math., pages 397-401 (electronic), Amsterdam, 2007. Elsevier.
[4] M. Halldórsson. Approximating k-set cover and complementary graph coloring. Lecture Notes in Computer Science, 1084:118-131, 1996.
[5] P. Hell and D. G. Kirkpatrick. On the complexity of general graph factor problems. SIAM J. Comput., 12(3):601-609, 1983.
[6] P. Hell and D. G. Kirkpatrick. Packings by cliques and by finite families of graphs. Discrete Math., 49(1):45-59, 1984.
[7] C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete Math., 2(1):68-72, 1989.
[8] G. Manić and Y. Wakabayashi. Packing triangles in low degree graphs and indifference graphs. Discrete Math., 308(8):1455-1471, 2008.

[^0]: *frederic@ime.usp.br; supported by FAPESP, Proc. 05/53840-0.
 † gocam@ime.usp.br; supported by FAPESP, Proc. 2006/01817-7.
 ${ }^{\ddagger}$ yw@ime.usp.br; partially supported by CNPq (Proc. 490333/04-4, 308138/04-0) and PRONEXFAPESP/CNPq (Proc. 2003/09925-5).
 ${ }^{\S}$ raphy@math.haifa.ac.il

