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Abstract

For a tournament T , let ν3(T ) denote the maximum number of pairwise edge-disjoint trian-

gles (directed cycles of length 3) in T . Let ν3(n) denote the minimum of ν3(T ) ranging over all

regular tournaments with n vertices (n odd). We conjecture that ν3(n) = (1 + o(1))n2/9 and

prove that
n2

11.43
(1− o(1)) ≤ ν3(n) ≤ n2

9
(1 + o(1))

improving upon the best known upper bound of n2−1
8 and lower bound of n2

11.5 (1 − o(1)). The

result is generalized to tournaments where the indegree and outdegree at each vertex may differ

by at most βn.
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1 Introduction

A tournament is a digraph such that for every two distinct vertices u, v there is exactly one edge

with ends {u, v} (so, either the edge uv or vu is present), and in this paper, all tournaments are

finite. An edge uv is said to leave u and enter v. The number of edges leaving a vertex is its

outdegree and the number of edges entering v is its indegree. A regular tournament is a tournament

with the property that the indegree and outdegree of each vertex are equal. The semidegree of a

vertex is the minimum of its indegree and outdegree. Tournaments are a major object of study in

combinatorics and social choice theory. However, while complete graphs are unique for each order,

there are exponentially many tournaments with the same order. As perhaps the most obvious

property of a complete graph is its regularity, it seems interesting to study the properties of regular

tournaments, and more generally, tournament with high minimum semidegree. Indeed, regular
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tournaments have been studied by several researchers, see. e.g. [7, 9, 10, 13, 15]. As any connected

undirected graph has an Eulerian orientation if and only if every vertex is of even degree, we have

that there exist regular tournaments for every odd order. Eulerian tournaments are, therefore,

the same as regular tournaments. In fact, there are exponentially many non-isomorphic regular

tournaments with n vertices [10].

All regular tournaments have the same number of triangles and the same number of transitive

triples where a triangle is a set of three edges {xy, yz, zx} while a transitive triple is a set of three

edges {xy, yz, xz}. This follows from the obvious fact that the number of transitive triples (and

hence triangles) in any tournament is determined by the score of the tournament, which is the

sorted outdegree sequence. For regular tournaments this amounts to n(n − 1)(n − 3)/8 transitive

triples and therefore to
(
n
3

)
−n(n−1)(n−3)/8 = n(n2−1)/24 triangles. Asymptotically, this means

that a fraction of 1/4 of the triples are triangles while 3/4 of the triples are transitive. Throughout

this paper a triangle is denoted by C3.

An (edge) triangle packing of an undirected graph is a set of pairwise edge-disjoint subgraphs

that are isomorphic to a triangle. The study of triangle packings in graphs was initiated in the

classical result of Kirkman [8] who proved that the complete graph with n vertices has a triangle

packing of size n(n − 1)/6 whenever n ≡ 1, 3 mod 6. In other words, when n ≡ 1, 3 mod 6 there

always exists a Steiner triple system (STS), which is a set of triples of [n] with the property

that any pair of [n] appears in exactly one of these triples. This clearly implies that for other

moduli of n there are packings with (1− on(1))n2/6 triangles1, and this is asymptotically tight as

such packings cover (1− on(1))
(
n
2

)
edges. In the directed case, a triangle packing of a tournament

requires each subgraph to be isomorphic to C3. Triangle packings and packings by transitive triples

of digraphs have been studied by several researchers (see, e.g., [4, 6, 12]). Nontrivial lower bounds

on the number of edge-disjoint triangles give upper bounds regarding the so-called Erdős-Hajnal

coefficients of tournaments (see [2]). The number of edge-disjoint triangles is a natural measure of

how “non-transitive” a given tournament is.

For a tournament T , we denote by ν3(T ) the size of a largest triangle packing. Observe that

ν3(T ) ≥ c3(T )/(n− 2) for every tournament with n ≡ 1, 3 mod 6 where c3(T ) is the total number

of triangles. This can be seen by taking a random STS of n and observing that the expected

number of directed triangles in the STS is (n(n − 1)/6)c3(T )/
(
n
3

)
. In particular, this means that

ν3(T ) ≥ (1 − on(1))n2/24 for any regular tournament T with n vertices. On the other hand, we

always have the trivial upper bound ν3(T ) ≤ (1− on(1))n2/6.

Let, therefore ν3(n) denote the minimum of ν3(T ) ranging over all regular tournaments with n

vertices (assuming, of course, that n is odd). Hence, trivially

n2

24
(1− on(1)) ≤ ν3(n) ≤ n2

6
(1− on(1)) .

1Here on(1) means a function that goes to zero as n goes to infinity.
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While exact small values of ν3(n) are known by brute force computation, determining the asymp-

totic value of ν3(n) seems to be a difficult problem. The best known bounds were given in [15]:

n2

11.5
(1− on(1)) ≤ ν3(n) ≤ n2 − 1

8
.

The present paper improves both the lower bound and the upper bound. While the upper bound

is improved significantly, the improvement in the lower bound is milder.

Theorem 1.1 (
1

3
− 7

3
ln(

10

9
)

)
n2(1− on(1)) ≤ ν3(n) ≤ n2

9
(1 + on(1)) .

Notice that 1
3 −

7
3 ln(109 ) > 1/11.43. As explained in Section 2, it is natural to suspect that the

construction yielding the upper bound is, in a sense, a “worst case” construction. Thus, we make

the following conjecture.

Conjecture 1.1

ν3(n) =
n2

9
(1 + on(1)) .

While the proof of the upper bound in Theorem 1.1 is different from the one in [15], the proof

of the lower bound is similar in many aspects. The additional important ingredient that enables

us to obtain the improved lower bound is a strengthening of Lemma 3.3 there, replaced by the

significantly more involved Lemma 3.4 here, which bounds the number of triangles containing

“dense” edges (edges that appear in many triangles).

We are able to extend our results to not necessarily regular tournaments. We say that a

tournament is β-almost-regular (or, for brevity, and slightly abusing terminology, β-regular) if the

indegree and outdegree at each vertex differ by at most βn, Notice that this is equivalent to saying

that the minimum semidegree is at least (1 − β)(n − 1)/2. Thus, β = 0 coincides with regular

tournaments and β = 1 coincides with the family of all tournaments. Notice that this is a very

general notion as for any β > 0, a sufficiently large random tournament is almost surely β-regular.

Here we no longer need to require that n has a certain parity. Generalizing the above notation, we

denote by ν3(β, n) the minimum of ν3(T ) ranging over all β-regular tournaments with n vertices.

The following extends Theorem 1.1.

Theorem 1.2

ν3(β, n) ≤ min

{
1− β2

9
,

(1− β)2

8

}
n2(1 + on(1)) .

ν3(β, n) ≥ ln

(
12(1 + β)

11 + 12β + 3β2

)
n2(1− on(1)) if β ≤ 1

2 ,

ν3(β, n) ≥ ln

(
6(1 + β)

5 + 9β − 3β2 + β3

)
n2(1− on(1)) if β > 1

2 .
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Plugging in β = 0, we note that the lower bound in this case given in Theorem 1.2 is slightly

worse than the lower bound given in Theorem 1.1. The bounds differ by less than 0.001. The

reason is that the proof of Theorem 1.1 is already quite computationally involved without adding

an extra parameter (namely β) to its computations, making them somewhat intractable, and the

gain would be marginal at the expense of the clarity of the proof we provide for Theorem 1.2. On

the other hand, as can be seen from the proof of Theorem 1.1 which is robust to degree deviations

of o(n) without affecting its statement, we note that Theorem 1.1 also holds for almost regular

tournaments, namely tournaments whose minimum semidegree is n/2− o(n). As in the case of the

proof of Theorem 1.1, the lower bound in Theorem 1.2 is similar in many aspects to the lower bound

proof given in [15], but with one additional important ingredient required for the generalization.

This is Lemma 4.1 which gives a (tight) lower bound for the number of triangles in β-regular

tournaments and which may be of independent interest.

The rest of this paper is organized as follows. In Section 2, we prove the upper bound in

Theorem 1.1. To this end, we need to define the fractional relaxation of the problem and consider

its dual covering problem. We also prove that the upper bound we obtain cannot be improved using

our construction. We explain why it is natural to suspect that this construction is “the worst”,

and hence the justification for conjecture 1.1. We also show how to generalize the construction

to β-regular tournaments and obtain the upper bound in Theorem 1.2. In Section 3 we prove the

lower bound in Theorem 1.1. As in [15] our main tool is a result of Haxell and Rödl [5] tailored to

the directed setting in [11] connecting the fractional value of a maximum packing with its integral

one. Section 4 addresses the changes needed in the statements given in Section 3 in order to apply

them to the more general setting of βn-regular tournaments, resulting in the proof of the lower

bound in Theorem 1.2.

2 Upper bounds

2.1 Fractional relaxation of packing and covering

We start this section by defining the fractional relaxation of the triangle packing problem together

with its dual fractional covering problem, and define the parameters ν∗3(n) and τ∗3 (n) that are the

fractional analogue of ν3(n) and its dual, respectively.

Let R+ denote the set of nonnegative reals. A fractional triangle packing of a digraph G is a

function ψ from the set F3 of copies of C3 in G to R+, satisfying
∑

e∈X∈F3
ψ(X) ≤ 1 for each edge

e ∈ E(G). Letting |ψ| =
∑

X∈F3
ψ(X), the fractional triangle packing number, denoted ν∗3(G), is

defined to be the maximum of |ψ| taken over all fractional triangle packings ψ. Since a triangle

packing is also a fractional triangle packing (by letting ψ = 1 for elements of F3 in the packing

and ψ = 0 for the other elements), we always have ν∗3(G) ≥ ν3(G). However, the two parameters

may differ. In particular, they may differ for regular tournaments. Consider, for example, the 5-

vertex regular tournament consisting of two edge-disjoint directed cycles of length 5 each. Clearly,
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ν3(T ) = 2. On the other hand, we may assign each of the five triangles of this tournament the

value 1/2 thereby obtaining a fractional triangle packing of value 2.5.

A fractional triangle cover of a digraph G is a function φ from the set of edges E(G) of G

to R+, satisfying
∑

e∈X∈F3
φ(e) ≥ 1 for each triangle X ∈ F3. Letting |φ| =

∑
e∈E(G) φ(e), the

fractional triangle cover number, denoted τ∗3 (G), is defined to be the minimum of |φ| taken over

all fractional triangle covers φ. It is worth mentioning that τ∗3 (G) is trivially a lower bound for its

integral counterpart, τ3(G), which is the minimum number of edges covering all triangles. Hence,

it is also a trivial lower bound for the minimum feedback edge set of a tournament, which is the

smallest set of edges whose removal makes the tournament acyclic. By linear programming duality,

τ∗3 (G) = ν∗3(G). For example, in the 5-vertex regular tournament of the previous paragraph, we

may assign the value 1/2 to each edge of a 5-cycle and obtain a valid fractional triangle cover of

value 2.5.

2.2 Upper bound for regular tournaments

In order to obtain a good upper bound, we must first construct a regular tournament which is

“as transitive as possible” so that it will not be able to accommodate many pairwise edge-disjoint

triangles. Naturally, any regular tournament on n vertices cannot have a transitive subset on more

than (n + 1)/2 vertices, since in such a subset the outdegree of the source would already be more

than (n − 1)/2. The following regular tournament, denoted Rn, does have a transitive subset on

(n + 1)/2 vertices, in fact it has many such subsets. It even has many pairs of edge-disjoint such

subsets (each pair sharing exactly one vertex). It is reasonable to suspect that a maximum triangle

packing of Rn yields the value of ν3(n).

For n odd, we define Rn as follows. Its vertices are {0, . . . , n − 1} (one can view them as

elements of the cyclic group Zn). Vertex i has an outgoing edge towards vertex j if and only if

1 ≤ (j−i) mod n ≤ (n−1)/2. Thus, if we think of the vertices as lying on a directed cycle of length

n, each vertex sends outgoing edges to the (n−1)/2 vertices following it on the cycle. Observe that

Rn is a regular tournament and that for any vertex i, the set of vertices {i, i+ 1, . . . , i+ (n− 1)/2}
(indices modulo n) forms a transitive subset. We will prove that ν3(Rn) ≤ (n+o(n))2

9 , which implies

that ν3(n) ≤ (n+o(n))2

9 . Since, by the previous subsection, τ∗3 (Rn) = ν∗3(Rn) ≥ ν3(Rn), it suffices to

prove the following.

Lemma 2.1

τ∗3 (Rn) ≤ (n+ o(n))2

9
.

Proof. We consider first case where n ≡ 1 mod 6. We will construct a particular covering

which attains the bound stated in the lemma. Define the length of an edge of Rn from i to j

by length(i, j) = (j − i) mod n. We give all the edges of length 1, . . . ,
⌊
n
6

⌋
the weight 0 (i.e.

φ(e) = 0 for length(e) ∈
{

1, . . . ,
⌊
n
6

⌋}
.) To each edge e of length ` >

⌊
n
6

⌋
we give the weight

φ(e) = 2
n+1

(
`−

⌊
n
6

⌋)
.
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Proposition 2.2 The assignment φ is a fractional triangle cover.

Proof. Let (h, i, j) be a triangle, without loss of generality h = 0 so the triangle is (0, i, j).

First case: i ∈
{

1, . . . ,
⌊
n
6

⌋}
. Then the other edges of the triangle must have length larger than⌊

n
6

⌋
and hence φ(ij) = 2

n+1

(
j − i−

⌊
n
6

⌋)
and φ(j0) = 2

n+1

(
n− j −

⌊
n
6

⌋)
. The sum of weights of

the edges of the triangle (0, i, j) is:

0 +
2

n+ 1

(
j − i−

⌊n
6

⌋)
+

2

n+ 1

(
n− j −

⌊n
6

⌋)
=

2

n+ 1

(
n− i− 2

⌊n
6

⌋)
≥ 2

n+ 1

(
n− 3

⌊n
6

⌋)
=

2

n+ 1

(
n− 3

n− 1

6

)
=

2

n+ 1

(
n− n− 1

2

)
= 1 .

Second case: i /∈
{

1, . . . ,
⌊
n
6

⌋}
. Then φ(0i) = 2

n+1

(
i−
⌊
n
6

⌋)
and we have three subcases for the

weight of edge ij and edge j0: the first subcase is φ(ij) = 2
n+1

(
j − i−

⌊
n
6

⌋)
and φ(j0) = 0,

the second subcase is φ(ij) = 0 and φ(j0) = 2
n+1

(
n− j −

⌊
n
6

⌋)
, and the last subcase is φ(ij) =

2
n+1

(
j − i−

⌊
n
6

⌋)
and φ(j0) = 2

n+1

(
n− j −

⌊
n
6

⌋)
. Now we calculate the weight of the triangle

(0, i, j) in the three subcases:

First subcase:

2

n+ 1

(
i−
⌊n

6

⌋)
+

2

n+ 1

(
j − i−

⌊n
6

⌋)
+ 0

=
2

n+ 1

(
j − 2

⌊n
6

⌋)
≥ 2

n+ 1

(
n− n− 1

6
− 2

n− 1

6

)
=

2

n+ 1

(
n+ 1

2

)
= 1 .

We used the fact that in this subcase we must have length(j, 0) ≤
⌊
n
6

⌋
so j ≥ n− (n− 1)/6.

Second subcase:

2

n+ 1

(
i−
⌊n

6

⌋)
+ 0 +

2

n+ 1

(
n− j −

⌊n
6

⌋)
=

2

n+ 1

(
n− j + i− 2

⌊n
6

⌋)
≥ 2

n+ 1

(
n− n− 1

6
− 2

n− 1

6

)
=

2

n+ 1

(
n+ 1

2

)
= 1 .

Recall that in this subcase length(i, j) = j − i ≤
⌊
n
6

⌋
.

Third subcase:

2

n+ 1

(
i−
⌊n

6

⌋)
+

2

n+ 1

(
j − i−

⌊n
6

⌋)
+

2

n+ 1

(
n− j −

⌊n
6

⌋)
=

2

n+ 1

(
n− 3

⌊n
6

⌋)
=

2

n+ 1

(
n− 3

n− 1

6

)
= 1 .
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This concludes the proof of Proposition 2.2.

We calculate the value of this fractional triangle cover. Observe that only lengths between bn/6c+1

until bn/2c (which is the maximum possible length of an edge by the definition of Rn) receive

nonzero weight which is the length minus bn/6c, normalized by multiplying it with 2/(n + 1).

Thus,

|φ| =
∑
e∈E

φ(e) = n
2

n+ 1

(
1 + 2 + 3 + . . .+

n− 1

3

)
(1)

=
2n

n+ 1

(
n−1
3

(
1 + n−1

3

)
2

)

=
n

n+ 1

(
(n− 1)(n+ 2)

9

)
<

n2

9
.

Hence τ∗3 (Rn) < n2

9 for n ≡ 1 mod 6.

Now, if n 6= 1 mod 6, then, as n is odd, either n ≡ 3 mod 6 or n ≡ 5 mod 6. Observe that since

Rn is a subgraph of Rn+2 (just delete vertices 0 and (n + 1)/2 from Rn+2 to obtain a subgraph

isomorphic to Rn) we have τ∗3 (Rn) ≤ τ∗3 (Rn+2) ≤ τ∗3 (Rn+4). Thus, for the case n ≡ 5 mod 6,

we have that n + 2 ≡ 1 mod 6 hence τ∗3 (Rn) ≤ τ∗3 (Rn+2) ≤ (n+2)2

9 = (n+o(n))2

9 . For the case

n ≡ 3 mod 6, we have that n + 4 ≡ 1 mod 6 hence τ∗3 (Rn) ≤ τ∗3 (Rn+4) ≤ (n+4)2

9 = (n+o(n))2

9 . This

completes the proof of Lemma 2.1 and hence the upper bound in Theorem 1.1.

One may wonder whether the fractional cover constructed in Lemma 2.1 is optimal for Rn.

Perhaps we can do better and improve the upper bound (regardless of whether one believes that

Rn is a worst case example). In the following lemma we show that our constructed covering is

asymptotically optimal for Rn.

Lemma 2.3

ν(Rn) ≥ (n− o(n))2

9
.

Proof. We prove this for n = 9k (k odd). In this case we will show that we can pack exactly
n2

9 = 9k2 pairwise edge-disjoint triangles.

We define the packing as follows. It consists of n = 9k sets of triangles, denoted S0, . . . , Sn−1.

Each set will contain k pairwise edge-disjoint triangles. Overall, the construction consists of nk =

n2/9 triangles. Furthermore, for any two sets Si, Sj , their triangles are pairwise edge-disjoint.

We describe Sj for j = 0, . . . , n − 1. It consists of the triangles (j, (j + ai) mod n, (j + ai +

bi) mod n) for i = 0, . . . , k − 1 where:

bi = (n− 1)/2− 3k/2 + (i+ 2)/2 for i odd.

bi = (n− 1)/2− 2k + i/2 + 1 for i even.
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ai = 2k + i/2 for i even.

ai = 3k/2 + i/2 for i odd.

For example, if k = 9 (hence n = 81) we have that S0 is:

{(0, 18, 41), (0, 14, 42), (0, 19, 43), (0, 15, 44), (0, 20, 45), (0, 16, 46), (0, 21, 47), (0, 17, 48), (0, 22, 49)} .

We need to prove that each of the listed triples in each of the Sj is indeed a directed triangle of

Rn, and that no edge repeats twice in any of the Sj .

Each triple is of the form (j, (j + ai) mod n, (j + ai + bi) mod n). The lengths of the edges in

this triangle are ai, bi and ci = n− ai − bi. Observe that ai is always between 1 and (n− 1)/2 by

its definition. Indeed, if i is even, then

2n

9
= 2k ≤ ai ≤ 2k +

k − 1

2
=

5k − 1

2
=

5n

18
− 1

2
≤ n− 1

2
.

If i is odd, then

n

6
+

1

2
=

3k

2
+

1

2
≤ ai ≤

3k

2
+
k − 2

2
=

4k − 2

2
=

2n

9
− 1 ≤ n− 1

2
.

In any case, the first edge of each triangle whose length is ai, is indeed an edge of Rn.

Observe similarly that bi is always between 1 and (n − 1)/2 by its definition. Indeed, if i is

even, then

5n

18
+

1

2
=
n− 1

2
− 2k + 1 ≤ bi ≤

n− 1

2
− 2k + 1 +

k − 1

2
=
n

3
≤ n− 1

2
.

If i is odd, then

n

3
+ 1 =

n− 1

2
− 3k

2
+

3

2
≤ bi ≤

n− 1

2
− 3k

2
+
k

2
=

7n

18
− 1

2
≤ n− 1

2
.

In any case, the second edge of each triangle whose length is bi, is indeed an edge of Rn.

Finally, ci is always between 1 and (n − 1)/2 since by the definitions of ai and bi we have

ci = (n− 1)/2− i.
We have proved that each triple in each Sj is a directed triangle of Rn. Observe also that the

interval of values of the ai is always between n/6 + 1/2 and 5n/18− 1/2. The interval of values of

the bi is always between 5n/18 + 1/2 and 7n/18 − 1/2. The interval of values of the ci is always

between 7n/18 + 1/2 and (n− 1)/2. As these three intervals are disjoint, this proves that no edge

is repeated twice in the construction. This proves the lemma when n = 9k and k is odd. Now, for

any other odd number n, let k be the largest odd number such that 9k ≤ n. Recalling that R9k is

a subgraph of Rn we have that

ν(Rn) ≥ ν(R9k) ≥ 9k2 =
(n− o(n))2

9
.
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2.3 Upper bound for β-regular tournaments

In this subsection we prove the upper bound for ν3(β, n) given in Theorem 1.2. Consider the regular

tournament graph R(1+β)n defined in the previous subsection. We can assume (1 + β)n is an odd

integer as rounding issues do not affect the asymptotic claim. Delete from R(1+β)n the vertices

{0, 1, . . . , βn − 1} and denote the resulting tournament by T . Notice that T has n vertices and

since Rn is regular, and we have removed only βn vertices from it, we have that T is a β-regular

tournament.

We first consider the case where β ≤ 1/5. Let φ be the fractional triangle cover defined on

R(1+β)n, proved in (1) to satisfy |φ| ≤ (1 + on(1))(1 + β)2n2/9. Let φ′ be the fractional triangle

cover of T induced by φ. Namely, each edge of T retains its weight under φ. Now, |φ| − |φ′| is

just the sum of the weights of the edges incident with the removed vertices {0, 1, . . . , βn− 1}. By

(1), the sum of the weights of the edges leaving each vertex of R(1+β)n is (1 − on(1))(1 + β)n/9

and, by symmetry, the sum of the weights of the edges entering each vertex of R(1+β)n is also

(1− on(1))(1 + β)n/9. Now, for all β ≤ 1/5 we have that βn ≤ (1 + β)n/6. Hence all the edges ij

where i, j ∈ {0, 1, . . . , βn− 1} have φ(ij) = 0. Thus,

|φ| − |φ′| ≥ (βn) · 2(1− on(1))
1 + β

9
n .

It follows that

|φ′| ≤ |φ| − (1− on(1))
2β(1 + β)

9
n2

≤ (1 + on(1))
(1 + β)2

9
n2 − (1− on(1))

2β(1 + β)

9
n2

≤ (1 + on(1))
1− β2

9
n2 .

Since ν3(β, n) ≤ ν3(T ) ≤ ν∗3(T ) = τ∗3 (T ) ≤ |φ′| we have that ν3(β, n) ≤ (1 + on(1))(1− β2)n2/9 for

β ≤ 1/5.

The following triangle cover, denoted φ′′ is valid for all β < 1. Assign the weight 1 to all the

edges of T of the form ij where i > j. All other edges receive the weight 0. Notice that each

directed triangle must contain an edge having weight 1 and hence φ′′ is a valid triangle cover (in

fact, an integral cover). We count the number of edges receiving weight 1. Vertex (1 +β)n− 1 (the

vertex with largest index) has an outgoing edge in R(1+β)n to all vertices j with j < (1 + β)n/2.

Hence, it has at most (1 + β)n/2 − βn − 1 = n/2 − βn/2 − 1 edges leaving it in T having weight

1. Similarly, for all k = 1, . . . , n/2− βn/2, vertex (1 + β)n− k has at most n/2− βn/2− k edges

leaving it in T having weight 1. Hence,

|φ′′| ≤
n/2−βn/2∑

k=1

(n/2− βn/2− k) ≤ (1 + on(1))
(1− β)2

8
n2 .
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Since ν3(β, n) ≤ ν3(T ) ≤ ν∗3(T ) = τ∗3 (T ) ≤ |φ′′| we have that ν3(β, n) ≤ (1 + on(1))(1− β)2n2/8 for

β ≤ 1. Observe that for all β ≤ 1/17 ≤ 1/5 the bound obtained via φ′ is better than the bound

obtained via φ′′ hence we may summarize that

ν3(β, n) ≤ min

{
1− β2

9
,

(1− β)2

8

}
n2(1 + on(1)) .

3 A lower bound for regular tournaments

3.1 Integer versus fractional packings

A result of Nutov and Yuster [11] asserts that the integral and fractional parameters differ by o(n2).

The following is a very spacial case of their result.

Theorem 3.1 If T is an n-vertex tournament, then ν∗3(T )− ν3(T ) = o(n2).

An undirected version of Theorem 3.1 has been proved by Haxell and Rödl [5] who were the first to

prove this interesting relationship between integral and fractional packings. The proof of Theorem

3.1 makes use of the directed version of Szemerédi’s regularity lemma [14] that has been used

implicitly in [3] and proved in [1].

Let ν∗3(n) be the minimum of ν∗3(T ) ranging over all n-vertex regular tournaments T . Similarly,

let ν∗3(β, n) be the minimum of ν∗3(T ) ranging over all n-vertex β-regular tournaments T . By

Theorem 3.1 and the fact that fractional packings are at least as large as integral packings we have:

Corollary 3.2 ν∗3(n) ≥ ν3(n) ≥ ν∗3(n)− o(n2). Similarly, ν∗3(β, n) ≥ ν3(β, n) ≥ ν∗3(β, n)− o(n2).

3.2 Proof of the lower bound in Theorem 1.1

In this section we prove the following theorem that, together with Corollary 3.2, yields the lower

bound in Theorem 1.1.

Theorem 3.3 A regular tournament T with n vertices has ν∗3(T ) ≥ (1− on(1))(13 −
7
3 ln(109 ))n2.

As in [15], we call an edge α-dense if it is contained in at least αn triangles. Observe that no

edge is 1/2-dense as any edge of a regular tournament appears in at most (n− 1)/2 triangles. We

require the following lemma that bounds the number of triangles that contain α-dense edges where

α is relatively large. It is an improvement over Lemma 3.3 in [15].

Lemma 3.4 For all α ≥ 1/4, the number of triangles that contain α-dense edges is at most (1 −
2α)(53α−

1
3)n3.

Proof. As shown in [15], the total number of α-dense edges entering each vertex is at most

n(1− 2α). We repeat the details of this observation for completeness. For a vertex v, we compute

the number of α-dense edges entering it. Let Bv ⊂ N−(v) be the set of vertices x such that xv is

10



α-dense. Consider a vertex x of maximum indegree in the sub-tournament T [Bv] induced by Bv.

Since in any tournament with |Bv| vertices the maximum indegree is at least (|Bv| − 1)/2 we have

that x has at least (|Bv| − 1)/2 edges entering it in T [Bv]. On the other hand, as xv is α-dense, we

also have that x has at least αn vertices of N+(v) entering it. Since N+(v) ∩Bv = ∅ we have that

the indegree of x in T is at least (|Bv|−1)/2 +αn. But the indegree of x in T is (n−1)/2 and thus

(|Bv| − 1)/2 + αn ≤ (n− 1)/2 .

It follows that |Bv| ≤ n(1 − 2α). Similarly, if Cv ⊂ N+(v) is the set of vertices x such that vx is

α-dense, we have that |Cv| ≤ n(1− 2α).

But we are not interested in counting the number of α-dense edges incident with a vertex, rather

we wish to count the number of triangles containing α-dense edges. To this end, we need to define

certain parameters.

1. Let r(v) denote the number of triangles containing v in which the edge entering v is α-dense

and the edge leaving v is not α-dense.

2. Let s(v) denote the number of triangles containing v in which the edge leaving v is α-dense

and the edge entering v is not α-dense.

3. Let t(v) denote the number of triangles containing v in which both edges incident to v are

α-dense.

4. Let b(v) = r(v) + t(v) denote the number of triangles containing v in which the edge entering

v is α-dense.

5. Let c(v) = s(v) + t(v) denote the number of triangles containing v in which the edge leaving

v is α-dense.

6. Let q(v) = 1
2r(v) + 1

2s(v) + 1
3 t(v).

We claim that
∑

v∈V q(v) is an upper bound for the total number of triangles containing an α-dense

edge. Indeed, consider some triangle (x, y, z) containing an α-dense edge. If it contains a single

α-dense edge, say xy, then this triangle is counted 1/2 for s(x) and 1/2 for r(y). If it contains

three α-dense edges, then it is counted 1/3 for each of t(x), t(y), t(z). If it contains precisely two

α-dense edges, say xy and yz, then it is counted 1/2 for s(x), 1/2 for r(z) and 1/3 for t(y), so it

contributes more than 1. In any case, each triangle containing an α-dense edge contributes at least

1 to the sum
∑

v∈V q(v).

It remains to upper bound
∑

v∈V q(v). We will upper bound each q(v) separately, and multiply

the bound by n. Notice that by the definitions of b(v) and c(v),

q(v) =
1

2
b(v) +

1

2
c(v)− 2

3
t(v) . (2)

11



Let βn = |Bv| and γn = |Cv| and recall that β ≤ 1 − 2α and γ ≤ 1 − 2α. We start by giving

upper bounds for b(v) and c(v) in terms of β and γ respectively. For any x ∈ Bv, let f(x) denote

the number of triangles containing the α-dense edge xv. By the definition of Bv we have that

f(x) ≥ αn. Let d(x) denote the indegree of x in T [Bv]. As in the argument at the beginning

of the proof, we have that d(x) + f(x) ≤ (n − 1)/2. Now, by the definition of b(v) we have that

b(v) =
∑

x∈Bv
f(x) and therefore

b(v) =
∑
x∈Bv

f(x) ≤
∑
x∈Bv

(
n− 1

2
− d(x)) .

On the other hand,
∑

x∈Bv
d(x) = |Bv|(|Bv| − 1)/2. Hence,

b(v) ≤ |Bv|
n− 1

2
− |Bv|(|Bv| − 1)

2
=
β(1− β)

2
n2 . (3)

Analogously, we have that

c(v) ≤ |Cv|
n− 1

2
− |Cv|(|Cv| − 1)

2
=
γ(1− γ)

2
n2 . (4)

We next give a lower bound for t(v). Consider any edge xy that goes from Cv to Bv. This means

that (v, x, y) is a triangle where both yv and vx are α-dense. Hence, this triangle contributes to

t(v). Thus, the number of edges going from Cv to Bv is equal to t(v). There are at least |Bv| ×αn
edges going from N+(v) to Bv. At most (|N+(v)| − |Cv|)|Bv| of them go from N+(v) \ Cv to Bv.

Hence,

t(v) ≥ |Bv|αn− (|N+(v)| − |Cv|)|Bv| = αβn2 − (
n− 1

2
− γn)βn ≥ β(α− 1

2
+ γ)n2 .

We can similarly estimate t(v) by the fact that there are at least |Cv| ×αn edges going from Cv to

N−(v). At most (|N−(v)| − |Bv|)|Cv| of them go from Cv to N−(v) \Bv. Hence,

t(v) ≥ |Cv|αn− (|N−(v)| − |Bv|)|Cv| = αγn2 − (
n− 1

2
− βn)γn ≥ γ(α− 1

2
+ β)n2 .

Using the last two inequalities we obtain that

t(v) ≥

(
βγ −

(12 − α)(β + γ)

2

)
n2 . (5)

By (2), (3), (4), (5) we get that

q(v) ≤
(

(
5

12
− α

3
)(β + γ)− (β + γ)2

4
− βγ

6

)
n2 . (6)

Hence, our remaining task is to maximize the expression ( 5
12 −

α
3 )(β + γ)− (β+γ)2

4 − βγ
6 subject to

the constraints 0 ≤ β ≤ 1−2α and 0 ≤ γ ≤ 1−2α (and recall that α ≤ 1/2). Simple analysis of the
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partial derivatives show that for all α ≥ 3/8, the maximum is obtained when β = γ = 1−2α. When

1/4 ≤ α ≤ 3/8 the bound in the statement of the lemma trivially holds as (1− 2α)(53α−
1
3) ≥ 1/24

in this range (and recall that a regular tournament has less than n3/24 triangles). Thus, in any

case, plugging in β = γ = 1− 2α in (6) and rearranging the terms we obtain that

q(v) ≤ (1− 2α)(
5

3
α− 1

3
)n2 .

Consequently, for all α ≥ 1/4, the number of triangles that contain α-dense edges is at most∑
v∈V

q(v) ≤ (1− 2α)(
5

3
α− 1

3
)n3 .

This finishes the proof of Lemma 3.4.

For an edge e let f(e) denote the number of triangles that contain e. We define a fractional

triangle packing ψ as in [15] by assigning to a triangle X the value

ψ(X) =
1

maxe∈X f(e)
. (7)

In other words, we consider the three edges of X and take the edge e with f(e) maximal, setting

ψ(X) to 1/f(e). Notice that ψ is a valid fractional triangle packing. Indeed, the sum of the weights

of triangles containing any edge e is at most f(e) · f(e)−1 = 1.

Proof of Theorem 3.3: Let k be a positive integer, and let 1 > x > 3/4 be a parameter to be

chosen later. Define c = x1/(k+1) and let αi = 1
2c
i+1 for i = 0, . . . , k. Observe that αk = x/2 so

1/2 > αi ≥ αk > 3/8. Define as in [15]

Ei = {e ∈ E(T ) : f(e) ≥ αin} .

So, Ei is the set of all αi-dense edges and notice that E0 ⊂ E1 ⊂ · · · ⊂ Ek. For i = 0, . . . , k, let

Si denote the set of all triangles that contain an edge from Ei and do not contain an edge from Ej

where j < i. In particular, S0 is just the set of triangles that contain an edge from E0. Finally, let

Sk+1 be the triangles that are not in ∪ki=0Si and observe that S0, . . . , Sk+1 is a partition of the set

of all n(n2 − 1)/24 triangles of T .

For i = 0, . . . , k, all the elements of S0 ∪ · · · ∪ Si contain edges that are αi-dense and therefore

by Lemma 3.4 we have that for i = 0, . . . , k:

ti = | ∪ij=0 Sj | ≤ (1− 2αi)(
5

3
αi −

1

3
)n3 . (8)

By the definition of ti we have that for i = 1, . . . , k, |Si| = ti − ti−1 and that |S0| = t0. Thus, we

also have that

|Sk+1| =
n(n2 − 1)

24
− tk . (9)
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For i = 1, . . . , k + 1, all the elements of Si receive weight that is greater than 1/(αi−1n). Indeed,

consider X ∈ Si. We know that it does not contain an edge from Ej for j < i. So the maximum

value of f(e) for an edge e of X is smaller than αi−1n. By the definition of ψ we therefore have

that ψ(X) > 1/(αi−1n). For elements X ∈ S0 we use the trivial bound ψ(X) > 2/n. Summing up

the weights of all the triangles of T we find that:

|ψ| ≥ t0 ·
2

n
+

k∑
i=1

(ti − ti−1)
1

αi−1n
+

(
n(n2 − 1)

24
− tk

)
1

αkn
.

Rearranging the terms we have:

|ψ| ≥ n2 − 1

24αk
− t0
n

(
1

α0
− 2

)
−

k∑
i=1

ti
n

(
1

αi
− 1

αi−1

)
. (10)

Using (8) we have that:

|ψ| ≥ n2 − 1

24αk
− n2(1− 2α0)(

5

3
α0 −

1

3
)

(
1

α0
− 2

)
−

k∑
i=1

n2(1− 2αi)(
5

3
αi −

1

3
)

(
1

αi
− 1

αi−1

)
.

Thus, we must choose k and x so as to maximize

1

24αk
− (1− 2α0)(

5

3
α0 −

1

3
)

(
1

α0
− 2

)
−

k∑
i=1

(1− 2αi)(
5

3
αi −

1

3
)

(
1

αi
− 1

αi−1

)
.

Recalling that ai/ai−1 = c the last expression is identical to

1

24αk
+

1

3α0
− 3 + 8α0 −

20

3
α2
0 +

1

3αk
− 1

3α0
− 7

3
k +

7

3
ck + (

10

3

k∑
i=1

αi)− (
10

3
c

k∑
i=1

αi) .

Since
∑

i=1 kαi = 0.5c2(ck − 1)/(c− 1) the last expression is identical to

3

4ck+1
− 3 + 4c− 5

3
c2 +

7

3
k(c− 1)− 5

3
c2(ck − 1) .

Finally, recalling that c = x1/(k+1), the last expression is identical to

3

4x
− 3 + 4x1/(k+1) − 5

3
x2/(k+1) +

7

3
k(x1/(k+1) − 1)− 5

3
x2/(k+1)(xk/(k+1) − 1) .

Taking the limit of the last expression as k →∞ we obtain

3

4x
+ 1 +

7

3
lnx− 5

3
x .

The maximum of the last expression for 1 > x > 3/4 is obtained at x = 9/10 in which case the

expression amounts to
1

3
− 7

3
ln(

10

9
) .

This proves that

|ψ| ≥
(

1

3
− 7

3
ln(

10

9
)

)
n2(1− on(1)) .
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4 Lower bound for β-regular tournaments

In order to generalize the lower bound for β-regular tournaments we need to address three issues.

The first is that the number of triangles in β-regular tournaments may not be the same for all

such tournaments, (unlike regular tournaments which all have precisely n(n2 − 1)/24 triangles),

and we must therefore determine a tight lower bound in terms of β. The second issue requires an

analogue of Lemma 3.4 suitable for β-regular tournaments. The third issue concerns the analysis

of the fractional packing, generalizing the one given in the proof of Theorem 3.3. We start with a

lower bound for the number of triangles in β-regular tournaments.

Lemma 4.1 The number of C3 in a β-regular tournament with n vertices is at least 1−3β2

24 n3(1−
on(1)) for β ≤ 1/2 and at least (1−β)3

12 n3(1− on(1)) for β > 1/2. This is asymptotically tight for all

0 ≤ β ≤ 1.

Proof. The number of transitive triples (and hence the number of triangles) in any tournament

is determined by the outdegrees of the vertices. Let di denote the outdegree of vertex i in a

tournament with vertices 1, . . . , n. The number of transitive triples is clearly

n∑
i=1

(
di
2

)
.

and we wish to maximize this amount. In β-regular tournaments we have the additional restriction

that n(1 − β)/2 ≤ di ≤ n(1 + β)/2. Now, suppose the degrees are sorted so that di ≤ di+1 for

i = 1, . . . , n − 1. In order for the tournament to be realized we have the further restriction that

d1 + . . . + di ≥
(
i
2

)
since already the first i vertices induce a tournament whose outdegree sum is(

i
2

)
. Similarly, (n− 1− dn−i+1) + . . .+ (n− 1− dn) ≥

(
i
2

)
since already the last i vertices induce a

tournament whose indegree sum is
(
i
2

)
.

As the statement of the lemma is asymptotic, it is more convenient to formulate the analogous

continuous convex optimization problem.

maximize

∫ 1

0

f(x)2

2
dx

s.t. f(x) is monotone nondecreasing

1− β
2
≤ f(x) ≤ 1 + β

2∫ α

0
f(x)dx ≥ α2

2∫ 1

α
(1− f(x))dx ≥ (1− α)2

2
.

When β ≤ 1/2 the obvious solution, by convexity, is obtained by setting f(x) = (1 − β)/2 for

0 ≤ x ≤ 1/2 and f(x) = (1 + β)/2 for 1/2 ≤ x ≤ 1. Observe that since β ≤ 1/2, the last two
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restrictions of the convex minimization problem trivially hold. In this case we obtain that∫ 1

0

f(x)2

2
dx =

1 + β2

8

and correspondingly,
n∑
i=1

(
di
2

)
≤ 1 + β2

8
n3(1 + on(1)) .

The number of triangles is therefore always at least(
1

6
− 1 + β2

8

)
n3(1− on(1)) =

(
1− 3β2

24

)
n3(1− on(1)) .

When β > 1/2, the last two restrictions of the convex minimization problem force f(x) to linearly

increase in the range 1− β ≤ x ≤ β and we obtain the optimal solution

f(x) =


1−β
2 0 ≤ x ≤ 1− β

x 1− β < x < β

1+β
2 β ≤ x ≤ 1 .

In this case we obtain that∫ 1

0

f(x)2

2
dx =

(1− β)2

8
(1− β) +

(1 + β)2

8
(1− β) +

β3

6
− (1− β)3

6
=

1

12
+

1

4
β − 1

4
β2 +

1

12
β3

and correspondingly,

n∑
i=1

(
di
2

)
≤
(

1

12
+

1

4
β − 1

4
β2 +

1

12
β3
)
n3(1 + on(1)) .

The number of triangles is therefore always at least(
1

12
− 1

4
β +

1

4
β2 − 1

12
β3
)
n3(1− on(1)) =

(1− β)3

12
n3(1− on(1)) .

The result is asymptotically tight for every β as the extremal degree sequences are realizable as

β-regular tournaments. For β ≤ 1/2 we can take two disjoint regular tournaments A and B on

n/2 vertices each. We can then take (1/4−β/2)n disjoint perfect matchings between A and B and

direct all edges of these matchings from A to B. The remaining edges between A and B are directed

from B to A. In the resulting tournament, each vertex of A has outdegree n(1−β)/2−1/2 and each

vertex of B has outdegree n(1 + β)/2 − 1/2, hence a β-regular tournament realizing the extremal

degree sequence. For β > 1/2 we can take two disjoint regular tournaments A and B on βn vertices

each, and an additional set of vertices denoted as x1, . . . , xn(1−2β). Now, for i = 1, . . . , n(1 − 2β),

direct edges from xi to all vertices of A and to all vertices xj with j < i. Direct edges to xi from all
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vertices of B and from all vertices xj with j > i. Also direct all edges from B to A. The resulting

tournament has n vertices, is β-regular, and its degree sequence realizes the extremal case.

We next need to obtain an analogue of Lemma 3.4 that applies to β-regular tournaments.

Although it is possible to generalize Lemma 3.4 directly, the (already involved) analysis become

less tractable. We settle for a somewhat simpler version with only a small loss in the upper bound.

Lemma 4.2 Let T be a β-regular tournament with n vertices. For all 0 < α < (1 + β)/2, the

number of triangles of T that contain α-dense edges is at most n3(1+β−2α)
2 .

Proof. For a vertex v, we compute the number of α-dense edges entering it. Let Bv ⊂ N−(v)

be the set of vertices x such that xv is α-dense. Consider a vertex x of maximum indegree in the

sub-tournament T [Bv] induced by Bv. Since in any tournament with |Bv| vertices the maximum

indegree is at least (|Bv| − 1)/2 we have that x has at least (|Bv| − 1)/2 edges entering it in T [Bv].

On the other hand, as xv is α-dense, we also have that x has at least αn vertices of N+(v) entering

it. Since N+(v)∩Bv = ∅ we have that the indegree of x in T is at least (|Bv| − 1)/2 +αn. But the

indegree of x in T is at most (n(1 + β)− 1)/2 and thus

(|Bv| − 1)/2 + αn ≤ (n(1 + β)− 1)/2 .

It follows that |Bv| ≤ n(1 + β − 2α). Similarly, if Cv ⊂ N+(v) is the set of vertices y such that

vy is α-dense, we have that |Cv| ≤ n(1 + β − 2α). Now, each x ∈ Bv lies in at most |N+(v)|
triangles and each y ∈ Cv lies in at most |N−(v)| triangles. We therefore have that the number

of triangles containing v and an α-dense edge incident with v (either entering v or leaving v) is at

most n(1 + β − 2α)(|N+(v)|+ |N−(v)|) < n2(1 + β − 2α). Summing this value for each v ∈ V and

observing that each triangle that contains an α-dense edge is counted at least twice, we obtain that

the number of triangles containing α-dense edges is at most n3(1 + β − 2α)/2.

Finally, we need to generalize the analysis given in the proof of Theorem 3.3. We use the exact

same fractional packing ψ defined in (7). As in the proof of Theorem 3.3 we let k be a positive

integer, let x < 1 be a parameter to be chosen later, define c = x1/(k+1) and define αi = (1+β)ci+1/2

for i = 0, . . . , k. By Lemma 4.2, the upper bound for ti given in (8) is replaced with:

ti = | ∪ij=0 Sj | ≤
(1 + β − 2α)

2
n3 . (11)

Similarly, using Lemma 4.1, the lower bound for Sk+1 given in (9) is replaced with:

|Sk+1| ≥
1− 3β2

24
n3(1− on(1))− tk if β ≤ 1

2
, |Sk+1| ≥

(1− β)3

12
n3(1− on(1))− tk if β >

1

2
.

As in (10) we have, after rearranging the terms:

|ψ| ≥ 1− 3β2

24αk
n2(1− on(1))− t0

n

(
1

α0
− 2

1 + β

)
−

k∑
i=1

ti
n

(
1

αi
− 1

αi−1

)
if β ≤ 1

2 ,

|ψ| ≥ (1− β)3

12αk
n2(1− on(1))− t0

n

(
1

α0
− 2

1 + β

)
−

k∑
i=1

ti
n

(
1

αi
− 1

αi−1

)
if β > 1

2 .
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Using (11) we have that:

|ψ| ≥ 1−3β2

24αk
n2(1− on(1))− n2 (1+β−2α0)

2

(
1
α0
− 2

1+β

)
−
∑k

i=1 n
2 (1+β−2αi)

2

(
1
αi
− 1

αi−1

)
if β ≤ 1

2
,

|ψ| ≥ (1−β)3
12αk

n2(1− on(1))− n2 (1+β−2α0)
2

(
1
α0
− 2

1+β

)
−
∑k

i=1 n
2 (1+β−2αi)

2

(
1
αi
− 1

αi−1

)
if β >

1

2
.

Thus, we must choose k and x so as to maximize

|ψ| ≥ 1− 3β2

24αk
− (1 + β − 2α0)

2

(
1

α0
− 2

1 + β

)
−

k∑
i=1

(1 + β − 2αi)

2

(
1

αi
− 1

αi−1

)
if β ≤ 1

2 ,

|ψ| ≥ (1− β)3

12αk
− (1 + β − 2α0)

2

(
1

α0
− 2

1 + β

)
−

k∑
i=1

n2
(1 + β − 2αi)

2

(
1

αi
− 1

αi−1

)
if β > 1

2 .

Recalling that ai/ai−1 = c the last expression is identical to

−11− 12β − 3β2

24αk
+ 2− 2α0

1 + β
+ k(1− c) if β ≤ 1/2 ,

−5− 9β + 3β2 − β3

12αk
+ 2− 2α0

1 + β
+ k(1− c) if β > 1/2 .

Recalling that c = x1/(k+1), α0 = (1 + β)c/2, αk = (1 + β)ck+1/2 we obtain that

−11− 12β − 3β2

12x(1 + β)
+ 2− x1/(k+1) + k(1− x1/(k+1)) if β ≤ 1

2 ,

−5− 9β + 3β2 − β3

6x(1 + β)
+ 2− x1/(k+1) + k(1− x1/(k+1)) if β > 1

2 .

Taking the limit of the last expression as k →∞ we obtain

−11− 12β − 3β2

12x(1 + β)
+ 1 + ln(1/x) if β ≤ 1

2 ,

−5− 9β + 3β2 − β3

6x(1 + β)
+ 1 + ln(1/x) if β > 1

2 .

The maximum of the last expression is obtained at x = 11+12β+3β2

12(1+β) when β ≤ 1/2 and at x =
5+9β−3β2+β3

6(1+β) when β > 1/2 in which case the expression amounts to

ln

(
12(1 + β)

11 + 12β + 3β2

)
if β ≤ 1

2 ,

ln

(
6(1 + β)

5 + 9β − 3β2 + β3

)
if β > 1

2 .
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This proves that

|ψ| ≥ ln

(
12(1 + β)

11 + 12β + 3β2

)
n2(1− on(1)) if β ≤ 1

2 ,

|ψ| ≥ ln

(
6(1 + β)

5 + 9β − 3β2 + β3

)
n2(1− on(1)) if β > 1

2 .

This completes the proof of the lower bound in Theorem 1.2 which, together with the upper bound

proved in Section 2, yields the entire proof of Theorem 1.2.
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[9] D. Kühn and D. Osthus. Hamilton decompositions of regular expanders: A proof of kellys

conjecture for large tournaments. Advances in Mathematics, 237:62–146, 2013.

19



[10] B.D. McKay. The asymptotic numbers of regular tournaments, eulerian digraphs and eulerian

oriented graphs. Combinatorica, 10(4):367–377, 1990.

[11] Z. Nutov and R. Yuster. Packing directed cycles efficiently. Discrete Applied Mathematics,

155(2):82–91, 2007.

[12] K.T. Phelps and C.C. Lindner. On the number of mendelsohn and transitive triple systems.

European Journal of Combinatorics, 5(3):239–242, 1984.

[13] P. Rowlinson. On 4-cycles and 5-cycles in regular tournaments. Bulletin of the London Math-

ematical Society, 18:135–139, 1986.
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