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Abstract

For every fixed graph H, we determine the H-packing number of Kn, for all n > n0(H). We

prove that if h is the number of edges of H, and gcd(H) = d is the greatest common divisor of

the degrees of H, then there exists n0 = n0(H), such that for all n > n0,

P (H,Kn) = bdn
2h
bn− 1

d
cc,

unless n = 1 mod d and n(n− 1)/d = b mod (2h/d) where 1 ≤ b ≤ d, in which case

P (H,Kn) = bdn
2h
bn− 1

d
cc − 1.

Our main tool in proving this result is the deep decomposition result of Gustavsson.

1 Introduction

All graphs considered here are finite, undirected and simple. For the standard graph-theoretic

terminology the reader is referred to [5]. Let H be a graph without isolated vertices. An H-packing
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of a graph G is a set L = {G1, . . . , Gs} of edge-disjoint subgraphs of G, where each subgraph is

isomorphic to H. The H-packing number of G, denoted by P (H,G), is the maximum cardinality of

an H-packing of G. An H-covering of a graph G is a set L = {G1, . . . , Gs} of subgraphs of G, where

each subgraph is isomorphic to H, where every edge of G appears in at least one member of L. The

H-covering number of G, denoted by C(H,G), is the minimum cardinality of an H-covering of G.

G has an H-decomposition if it has an H-packing which is also an H-covering. The H-packing and

H-covering problems are, in general, NP-Complete as shown by Dor and Tarsi [8]. In case G = Kn,

the H-covering and H-packing problems have attracted much attention in the last forty years, and

numerous papers were written on these subjects (cf. [3, 11, 13, 7, 20] for various surveys). Special

cases of these problems gained particular interest.

1. P (Kk,Kn) which has been linked to the various Johnson-Schonheim bounds in Coding Theory

[1, 4, 18, 12]. It is known that P (Kk,Kn) is the maximum size of the binary codes of word-

length n, constant weight k, and distance 2k − 2 or 2k − 3. Despite of much effort only the

cases k = 3 [18] and k = 4 [2] are solved. The case k = 5 is still open [14].

2. P (Ck,Kn) which is the cycle-system packing problem, solved completely only for k = 3, k = 4

[19] and k = 5 [17].

3. The packing-covering conjecture for trees saying that P (T,Kn) = b
(n
2

)
/hc and C(T,Kn) =

d
(n
2

)
/he (h is the number of edges of T ) provided n is sufficiently large. This conjecture has

been proved for all trees on at most 7 vertices [15, 16].

A central result concerning H-decompositions of Kn is the theorem of Wilson [21] stating that for

sufficiently large n, Kn has an H-decomposition if and only if e(H) |
(n
2

)
and gcd(H) | n− 1 where

gcd(H) is the greatest common divisor of the degrees of H. Clearly, if the conditions in Wilson’s

Theorem hold, then the packing and covering numbers are known.

In this paper we solve all of the conjectures above, for large n, as special consequences of a

much more general result. In fact, for every H, we determine P (H,Kn), for all n ≥ n0(H).

Theorem 1.1 Let H be a graph with h edges, and let gcd(H)=d. Then there exists n0 = n0(H),

such that for all n > n0,

P (H,Kn) = bdn
2h
bn− 1

d
cc,

unless n = 1 mod d and n(n− 1)/d = b mod (2h/d) where 1 ≤ b ≤ d, in which case

P (H,Kn) = bdn
2h
bn− 1

d
cc − 1.
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2 Proof of the main result

As mentioned in the abstract, our main tool is the following result of Gustavsson [10]:

Lemma 2.1 (Gustavsson’s Theorem [10]) Let H be a graph with h edges. There exists N =

N(H), and ε = ε(H) > 0, such that for all n > N , If G is a graph on n vertices and m edges, with

δ(G) ≥ n(1− ε), gcd(H) | gcd(G), and h | m, then G has an H-decomposition. 2

It is worth mentioning that N(H) in Gustavsson’s Theorem is a rather huge constant; in fact, it is

a highly exponential function of h.

A sequence of n positive integers d1 ≥ d2 ≥ . . . ≥ dn is called graphic if there exists an n-vertex

graph whose degree sequence is {d1, . . . , dn}. We shall need the following theorem of Erdös and

Gallai [9], which gives a necessary and sufficient condition for a sequence to be graphic.

Lemma 2.2 (Erdös and Gallai [9]) The sequence d1 ≥ d2 ≥ . . . ≥ dn of positive integers is

graphic if and only if its sum is even and for every t = 1, . . . , n

t∑
i=1

di ≤ t(t− 1) +
n∑

i=t+1

min{t, di}. (1)

2

Proof of Theorem 1.1: Given H, we choose n0 = n0(H) = max{N(H), 2h
ε(H) , 8h}, where N(H)

and ε(H) are as in Lemma 2.1. Now let n > n0. Let n − 1 = a mod d, where 0 ≤ a ≤ d − 1. Let

n(n − 1 − a)/d = b mod (2h/d), where 0 ≤ b ≤ 2h/d − 1. Note that since d = gcd(H) and 2h is

the sum of the degrees of H, 2h/d must be an integer. Also note that (n− 1− a)/d is an integer,

and so b is well-defined. We shall use the obvious fact that h ≥ d(d + 1)/2, since δ(H) ≥ d. This

means that

n > n0 ≥ 8h > 4d2 > (a+ d)2.

Another useful fact is that bd+ na is even since if d is even then a and n have different parity, and

if d is odd then 2h/d is even and so if b is odd then a and n are both odd, and if b is even then

either n is even or a is even. In the first part of the proof we shall give a lower bound for P (H,Kn),

and in the second part we shall give an upper bound for P (H,Kn), and notice that the lower and

upper bounds coincide.

Proving a lower bound for P (H,Kn): We shall first assume that a 6= 0. Our first goal is to

show the existence of an n-vertex graph which has b vertices with degree d+ a, and n− b vertices

with degree a. For this purpose we shall use Lemma 2.2, with di = a+ d for i = 1, . . . , b and di = a
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for i = b + 1, . . . , n. Notice first that the sum of the sequence is bd + na and this number is even

as mentioned above. Let 1 ≤ t ≤ a+ d. In this case, (1) holds since

t∑
i=1

di ≤ t(a+ d) = t(t− 1) + t(a+ d− t+ 1) ≤ t(t− 1) + (a+ d)(a+ d− 1) =

t(t− 1) + (a+ d)2− (a+ d) < t(t− 1) +n− (a+ d) ≤ t(t− 1) + (n− t) ≤ t(t− 1) +
n∑

i=t+1

min{t, di}.

For a + d ≤ t ≤ n we shall prove that (1) holds by induction on t, where the base case t = a + d

was proved above. If t > a+ d we use the induction hypothesis to derive that

t∑
i=1

di = dt +
t−1∑
i=1

di ≤ dt + (t− 1)(t− 2) +
n∑
i=t

min{t, di} =

dt + min{t, dt} − 2(t− 1) + t(t− 1) +
n∑

i=t+1

min{t, di}

≤ (a+ d) + (a+ d)− 2(a+ d) + t(t− 1) +
n∑

i=t+1

min{t, di} = t(t− 1) +
n∑

i=t+1

min{t, di}.

Thus, there exists a graph G∗ having b vertices with degree d+ a and n− b vertices with degree a.

Consider G = Kn \G∗. Clearly, d | gcd(G), and G has m edges where

m =

(
n

2

)
− bd+ na

2
=
d

2
(
n(n− 1− a)

d
− b)) = 0 mod h.

Also note that δ(G) ≥ n− 1− a− d = n(1− 1+a+d
n ) ≥ n(1− ε(H)), since n > n0 ≥ 2h

ε(H) . Thus, G

satisfies the conditions of Lemma 2.1, and therefore G has an H-decomposition. This means that

P (H,Kn) ≥ P (H,G) =
m

h
=

d

2h
(
n(n− 1− a)

d
− b)) = bdn

2h
bn− 1

d
cc.

We now deal with the case a = 0. If b = 0 then Kn has an H-decomposition according to Wilson’s

Theorem [21], (or according to Lemma 2.1), so, trivially,

P (H,Kn) =

(n
2

)
h

=
dn

2h

n− 1

d
= bdn

2h
bn− 1

d
cc.

If b > d we may delete from Kn a subgraph G∗ on b vertices which is d regular (this is doable since

bd+ na = bd is even). As in the case where a 6= 0, the remaining graph G = Kn \G∗ satisfies the

conditions of Lemma 2.1 and therefore

P (H,Kn) ≥ P (H,G) =

(n
2

)
− bd

2

h
= b

(n
2

)
h
c = bdn

2h

n− 1

d
c = bdn

2h
bn− 1

d
cc.
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Finally, if 1 ≤ b ≤ d then we can delete from Kn a subgraph G∗ on b + 2h
d vertices which is d

regular. Note that this can be done since h ≥ d(d+1)/2 which implies d ≤ 2h
d < 2h

d +b. Also, if d is

odd then b and 2h
d are both even, so b+ 2h

d is even. Once again, the remaining graph G = Kn \G∗

satisfies the conditions of Lemma 2.1 and we get

P (H,Kn) ≥ P (H,G) =

(n
2

)
− (b+(2h/d))d

2

h
=

(n
2

)
− bd

2

h
− 1 = b

(n
2

)
h
c − 1 = bdn

2h
bn− 1

d
cc − 1.

Proving an upper bound for P (H,Kn): Let L be an arbitrary H-packing of Kn. Let s denote

the cardinality of L. Let G denote the edge-union of all the members of L. G contains sh edges.

Thus G∗ = Kn \G contains
(n
2

)
− sh edges. The degree of every vertex in G is 0 mod d and so the

degree of every vertex in G∗ is a mod d. Therefore, the number of edges in G∗ satisfies(
n

2

)
− sh =

an+ cd

2

for some non-negative integer c. In particular,
(n
2

)
= an+cd

2 mod h. This, in turn, implies that

n(n− 1− a)/d = c mod (2h/d). Thus, we must have c ≥ b. Therefore,

s =

(n
2

)
− an+cd

2

h
≤
(n
2

)
− an+bd

2

h
= bdn

2h
bn− 1

d
cc.

Since L was an arbitrary H-packing, we have

P (H,Kn) ≤ bdn
2h
bn− 1

d
cc.

The only remaining case is a = 0 and 1 ≤ b ≤ d. In this case, we cannot have c = b. This is because

every non-isolated vertex of G∗ has degree at least d, and therefore there are at least d(d + 1)/2

edges in G∗, i.e cd/2 ≥ d(d + 1)/2, which implies c ≥ d + 1, but b ≤ d. We must, therefore have

c ≥ b+ 2h/d. Therefore,

s =

(n
2

)
− an+cd

2

h
≤
(n
2

)
− an+(b+2h/d)d

2

h
= bdn

2h
bn− 1

d
cc − 1.

2

3 Concluding remarks

1. Theorem 1.1, applied to H = Kk yields, for n ≥ n0(k), that

P (Kk,Kn) = bn
k
bn− 1

k − 1
cc,

unless k−1 | n−1 and n(n−1)/(k−1) mod k is less than k and greater than 0, in which case

the above formula should be reduced by 1. This solves, in particular, the related problem in

Coding Theory mentioned in the introduction.
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2. Theorem 1.1, applied to H = Ck yields, for n ≥ n0(k), that

P (Ck,Kn) = bn
k
bn− 1

2
cc

unless n is odd and
(n
2

)
= 1, 2 mod k.

3. If n ≥ n0(H) and gcd(H) = 1, then P (H,Kn) = b (n2)
e(H)c. Note that by first deleting from

Kn any set of b < e(H) edges where b =
(n
2

)
mod e(H), the remaining graph satisfies the

conditions in Gustavsson’s Theorem, and since the set of deleted edges may be chosen as

a subgraph of H we have C(H,Kn) = d (n2)
e(H)e, solving, in particular, the packing-covering

conjecture for trees.

Our approach allows us to solve the covering problem as well. This is done in a forthcoming

paper [6].
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