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Abstract

Let h be a given positive integer. For a graph with n vertices and m edges, what
is the maximum number of pairwise edge-disjoint induced subgraphs, each having
minimum degree at least h? There are examples for which this number is O(m2/n2).
We prove that this bound is achievable for all graphs with polynomially many edges.
For all ε > 0, if m > n1+ε, then there are always Ω(m2/n2) pairwise edge-disjoint
induced subgraphs, each having minimum degree at least h. Furthermore, any two
subgraphs intersect in an independent set of size at most 1 + O(n3/m2), which is
shown to be asymptotically optimal.
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1 Introduction

All graphs considered here are finite, undirected, and simple. For standard graph-theoretic
terminology the reader is referred to [3]. Problems concerning edge-disjoint subgraphs
that share some specified property are extensively studied in graph theory and many
fundamental problems can be formulated in this way. For example, a proper edge coloring
is just a set of pairwise edge-disjoint subgraphs, each having maximum degree at most
one. A proper vertex coloring with k colors defines a set of

(
k
2

)
pairwise edge-disjoint

induced bipartite subgraphs that cover all the edges. As another example, the problem
of H-packing, where one seeks the maximum number of edge-disjoint subgraphs that are
isomorphic to a given graph H, is a classical problem in graph theory and design theory.
For some additional examples of results of this form see, e.g., [1, 4, 8, 9, 11, 12].

Observe that when we require the set of edge-disjoint subgraphs to be induced sub-
graphs, any two subgraphs can only intersect in an independent set, and it is natural to
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add the additional requirement that any two such subgraphs have a small intersection.
The main goal of this paper is to determine asymptotically the maximum number of
edge-disjoint induced subgraphs that share the basic property of having a given minimum
degree.

More formally, for a given integer h, let fh(G) denote the maximum size of a set of
pairwise edge-disjoint induced subgraphs of a graph G, each having minimum degree at
least h. Trivially, f1(G) equals the number of edges of G. However, it is not difficult
to construct examples of graphs with n vertices and m edges for which already f2(G) =
O(m2/n2). Our main result proves that this bound can always be attained for all graphs
that have a polynomial number of edges, while, at the same time, keeping the intersection
of any two subgraphs relatively small. We prove that for all fixed α > 0, if m > n1+α,
then fh(G) = Ω(m2/n2). Furthermore, any two subgraphs in the given set intersect in
only 1 +O(n3/m2) vertices.

Theorem 1. Let h be a positive integer and let α be a positive real. There exists c = c(α)
and N = N(α, h) such that any graph with n > N vertices and m > n1+α edges has at
least cm2/(h2n2) pairwise edge-disjoint induced subgraphs, each having minimum degree
at least h. Furthermore, any two such subgraphs intersect in an independent set of size at
most 1 + h2n3/(cm2).

In the proof of Theorem 1 we make no attempt to optimize the constant c, although
the proof shows that c is polynomial in α. Also, observe that one can trivially replace “at
least h” with “precisely h” in the statement of the theorem, by deleting vertices.

Recall that a graph is balanced if the average degree of each subgraph is not larger
than the average degree of the graph. By carefully choosing constants and applying a
minimality argument, the proof of Theorem 1 can be reduced to proving it for balanced
graphs. A naive approach would then be to exploit the fact that balanced graphs have a
relatively low chromatic number. Indeed, there is a vertex coloring of a balanced graph
with O(m/n) colors. One therefore obtains O(m2/n2) pairwise edge-disjoint induced bi-
partite subgraphs. However, this approach suffers from two problems. It may be that most
of these bipartite subgraphs are sparse, and do not contain subgraphs with the required
minimum degree. Furthermore, the vertex intersection of any two of these subgraphs
could be huge. Instead, our approach in proving Theorem 1 is different. We first obtain
a coloring of a balanced graph with significantly more than m/n colors, but with more
control on the number of edges incident with each color class. Using the properties of
our coloring, it can be shown that when grouping many of the color classes together, one
obtains an induced subgraph with the required minimum degree, with high probability.
Combining this with an algebraic construction, it can be shown that many such pairwise
edge-disjoint groups of color classes can be obtained.

It is not difficult to prove that the bound in Theorem 1 is tight up to a constant factor,
and that the h2 term in the denominator is also sharp. As proved in Proposition 14, for
any n,m and h > 2, there are graphs with n vertices and m edges that do not contain
more than

(d2m/ne
2

)
/
(
h
2

)
pairwise edge-disjoint induced subgraphs each having minimum

degree at least h. It is more difficult to prove that the intersection size 1 + O(n3/m2)
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obtained in Theorem 1 is also asymptotically optimal. Observe first that if m > Ω(n1.5)
this intersection is a constant (in fact, 1). For α < 1/2, if m = n1+α, then Theorem 1
says that the intersection is O(n1−2α). It is shown in Theorem 16 that n1−2α cannot be
replaced with n1−2α−ε for any ε > 0.

The rest of this paper is organized as follows. In Section 2 we prove a lemma that
establishes the desired properties of the aforementioned coloring of balanced graphs. Sec-
tion 3 contains the proof of the main result, and is split into several subsections according
to the different parts of the proof. Section 4 contains the proofs of Proposition 14 and
Theorem 16. Concluding remarks are given in the final section.

2 Balanced graphs

Definition 2. A graph is balanced if its average degree is not smaller than the average
degree of any of its subgraphs.

As the average degree of a graph with n vertices and m edges is 2m/n, a balanced
graph has the property that any subgraph with n′ vertices has at most n′m/n edges.
Some examples of balanced graphs are complete graphs, complete bipartite graphs, and
trees (in fact, these examples are strictly balanced as the average degree of any proper
subgraph is smaller than the average degree of the whole graph).

It is not difficult to see that a balanced graph is also d-degenerate for d = b2m/nc.
Indeed, as long as there is a vertex with degree at most d, delete it and continue in
the same fashion. The process must end with the empty graph as otherwise there is
a subgraph with minimum degree at least d + 1 > 2m/n violating the fact that the
original graph is balanced. As a d-degenerate graph is (d + 1)-colorable, we have that
any balanced graph can be properly colored with b2m/nc + 1 colors. Nevertheless, as
mentioned in the introduction, in such a coloring we have little control over the densities
of the O(m2/n2) induced bipartite subgraphs that correspond to pairs of color classes.
Most of them may be too sparse and not contain subgraphs with the required minimum
degree. Furthermore, color classes may be huge (in fact, the average size of a color class
is Θ(n2/m)) and thus, two subgraphs may have large intersection. Instead, we require a
more “balanced” coloring of a balanced graph where we do have control over the density
of edges between a color class and the other vertices. The main purpose of this section
is to define and prove the existence of such a coloring. Before that, we need another
definition and result.

Definition 3. A proper vertex coloring is equitable if the numbers of vertices in any two
color classes differ by at most one.

In particular, in an equitable k-coloring of a graph with n vertices, every color class
has either dn/ke vertices or bn/kc vertices. For convenience, we allow the case k > n in
which case the coloring is trivial (every vertex gets a distinct color) and k − n additional
“color classes” are empty sets. We require the following classical result of Hajnal and
Szemerédi [5] on equitable colorings (see also [6]).
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Lemma 4. [Hajnal and Szemerédi [5]] Any graph with maximum degree ∆ has an equitable
coloring with ∆ + 1 colors.

We are now ready to prove the main lemma of this section.

Lemma 5. Let δ and α be positive reals. There exists N2 = N2(δ, α) such that the
following holds for all n > N2. Let G be a balanced graph with n vertices and m = n1+β

edges where β > α. Then G has a proper coloring with the following properties:
(i) The number of colors is at most 9δ

β
n2β,

(ii) the size of each color class is at most max{1 , 1
δ
n1−2β},

(iii) any color class is incident with at most n edges.

Proof. The lemma is proved with N2 = (4/δ)2/α. We construct the following nested
sequence {Xi} of subsets of vertices, starting with X0 = V (G). The subset X1 consists of
all vertices of G with degree at least 4n1.5β. More generally, the subset Xi is constructed
as follows. Let Yi be the set of vertices of Xi−1 having degree at least 4n1.5β in G[Xi−1]
(recall that G[X] denotes the subgraph of G induced by X). Let Zi be the set of vertices
of Xi−1 having degree at least 4n(i+2)β/2 in G. Set Xi = Yi ∪ Zi.

We upper bound the size of Xi. Denote the number of edges of G[Xi] by mi. We prove
by induction on i that |Xi| 6 n1−iβ/2 and mi 6 n1−(i−2)β/2. The base case i = 0 trivially
holds since |X0| = n and m0 = m = n1+β.

Assume that we have proved the claim for i − 1 and wish to prove it for i. Observe
first that |Yi| 6 0.5n1−iβ/2 as otherwise the sum of the degrees of the vertices of G[Xi−1]
is more than

0.5n1−iβ/2 · 4n1.5β = 2n1−(i−3)β/2 > 2mi−1.

Observe next that |Zi| 6 0.5n1−iβ/2 as otherwise the sum of the degrees of the vertices of
G is more than

0.5n1−iβ/2 · 4n(i+2)β/2 = 2n1+β = 2m.

It follows that
|Xi| = |Yi ∪ Zi| 6 0.5n1−iβ/2 + 0.5n1−iβ/2 = n1−iβ/2.

As G is balanced, mi must satisfy:

mi 6 |Xi|
m

n
= |Xi|nβ 6 n1−(i−2)β/2.

The sequence {Xi} ends at the last t for which Xt 6= ∅. As we have shown that
|Xi| 6 n1−iβ/2, we have that t 6 2/β. For completeness, define Xt+1 = ∅.

We now describe the required proper vertex coloring of G. We color separately each
set of vertices Xi−1 \Xi for i = 1, . . . , t + 1. Set Hi = G[Xi−1 \Xi]. By the definition of
Yi, the maximum degree of Hi is less than 4n1.5β. Now, since n > N2 = (4/δ)2/α we have
that nα/2δ > 2. As β > α we thus have

4n1.5β 6 2δn2β.
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Hence the maximum degree of Hi is less than 2δn2β. By Lemma 4, there is an equitable
coloring of Hi with b2δn2βc+ 1 colors. The overall number of colors used by our coloring
is at most

(t+ 1)(2δn2β + 1) 6

(
2

β
+ 1

)
(2δn2β + 1) 6

(
3

β

)
(3δn2β) 6

9δ

β
n2β.

Next, we prove that each color is incident with at most n edges. This is trivial for color
classes that are singletons, so consider some color class C with |C| > 2 which is defined
in the equitable coloring of some Hi. As the number of color classes of Hi is b2δn2βc+ 1,
the equitability condition implies that

|C| 6 |Xi−1 \Xi|
b2δn2βc+ 1

+ 1.

Recall, however that |Xi−1| 6 n1−(i−1)β/2 and therefore

|C| 6 n1−(i−1)β/2

b2δn2βc+ 1
+ 1 6

1

2δ
n1−(i+3)β/2 + 1. (1)

Since |C| > 2 we must have 1
2δ
n1−(i+3)β/2 > 1. By the definition of Zi, each vertex of Hi

has degree at most 4n(i+2)β/2 in G. Hence, the number of edges of G incident with C is
at most (

1

2δ
n1−(i+3)β/2 + 1

)
· 4n(i+2)β/2 6

4

δ
n1−β/2 6 n

where in the last inequality we used the fact that nβ/2 > nα/2 > N
α/2
2 = 4/δ. Finally,

observe that the right hand side of (1) is maximized when i = 1, so we always have

|C| 6 b 1

2δ
n1−2β + 1c 6 max{1 , 1

δ
n1−2β}.

3 Proof of the main result

Set the following constants:

c(α) =
α6

1018
,

δ(α, h) =

√
c

h2
=

α3

109h2
,

N2(α, h) = (4/δ)2/α,

N(α, h) = N
1/α
2 .

The following lemma implies Theorem 1.
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Lemma 6. Any balanced graph with n > N2(α, h) vertices and m > n1+α edges has
cm2/(h2n2) pairwise edge-disjoint induced subgraphs, each having minimum degree at least
h. Furthermore, any two such subgraphs intersect in at most 1 + h2n3/(cm2) vertices.

Proof of Theorem 1 given Lemma 6. We must prove that any graph G with
n > N(α, h) vertices and m > n1+α edges has cm2/(h2n2) pairwise edge-disjoint induced
subgraphs, each having minimum degree at least h. Furthermore, any two subgraphs
intersect in at most 1 + h2n3/(cm2) vertices.

Notice that G may not be balanced, so let G′ be a subgraph of G with the least number
of vertices n′ < n and with m′ edges for which m′/n′ > m/n. Observe that the minimality
of n′ implies that G′ must be balanced. We claim that n′ > N2. Indeed, as m/n > nα and
since the average degree of any graph is less than its number of vertices, we must have
n′ > 2nα > 2Nα > N2. Thus, by Lemma 6, G′ has a set L of c(m′)2/(hn′)2 > cm2/(h2n2)
pairwise edge-disjoint induced subgraphs, each having minimum degree at least h. But
induced subgraphs of G′ are also induced subgraphs of G, so L is the required set also for
G.

Now, again by Lemma 6, the intersection of any two subgraphs of L is of size at most
1 + h2(n′)3/(c(m′)2). But

1 +
h2(n′)3

c(m′)2
6 1 +

h2n

c

(
n′

m′

)2

6 1 +
h2n

c

( n
m

)2
= 1 +

h2n3

cm2

so the intersection of any two elements of L is of at most the claimed size.

Proof of Lemma 6. The proof is split into two cases, depending upon whether m =
O(n3/2) or not. The following two lemmas accurately state the two cases.

Lemma 7. Any balanced graph with n > N2(α, h) vertices and m = n1+β > n1+α edges
where δ 6 n1−2β satisfies the conclusions of Lemma 6.

Lemma 8. Any balanced graph with n > N2(α, h) vertices and m = n1+β > n1+α edges
where δ > n1−2β satisfies the conclusions of Lemma 6.

The proof of Lemma 7 appears in the following two subsections. The proof of Lemma
8 is simpler and occupies Subsection 3.3. As these two lemmas cover all of the density
range m > n1+α, they prove Lemma 6.

3.1 Proof of Lemma 7

Recall that for any prime power p, there exists a projective plane of order p, denoted by
PG(p) (see, e.g. [10]). In graph-theoretic terms, this means that for any prime power
p, the complete graph Kp2+p+1 can be decomposed into p2 + p + 1 pairwise edge-disjoint
cliques of order p + 1 each. The vertices of Kp2+p+1 correspond to the points of PG(p)
and the cliques in the partition correspond to the lines of PG(p). For example, the Fano
plane (the case p = 2) corresponds to a decomposition of K7 into 7 pairwise edge-disjoint
triangles.
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A graph is r-partite if the set of vertices can be partitioned into r independent sets
(the parts). For simplicity, we allow parts to be empty sets, so, in particular, a graph
which is c-colorable is r-partite for all r > c. For an r-partite graph R and 1 6 t 6 r,
an induced subgraph of R consisting of precisely t parts of the partition is called a full
t-partite subgraph of R. Observe that an r-partite graph has precisely

(
r
t

)
full t-partite

subgraphs (recall that we allow some parts to be empty sets, so under this assumption,
any two empty parts are considered distinct).

Let R be an r-partite graph with r = p2 +p+ 1, where p is a prime power. A bijection
π from the points of PG(p) to the parts of the partition induces a mapping between the
lines of PG(p) and their corresponding full (p + 1)-partite subgraphs, one for each line.
Equivalently, π defines a set Lπ consisting of p2 +p+1 full (p+1)-partite subgraphs of R,
where any two subgraphs in Lπ are edge-disjoint (recall also that full partite subgraphs are,
in particular, induced subgraphs). We call Lπ a projective decomposition of R. There are
precisely r! possible bijections π and hence there are precisely r! projective decompositions.
The following lemma is immediate from the definition of a projective decomposition.

Lemma 9. Let St be the set of all
(
r
t

)
full t-partite subgraphs of an r-partite graph R.

Suppose that r = p2+p+1 where p is a prime power. Let Lπ be a projective decomposition
of R chosen uniformly at random among the r! projective decompositions. Then, each
element of Sp+1 has the same probability of being an element of Lπ. In particular, a
randomly chosen element of Lπ corresponds to a random element of Sp+1.

Recall that our graph G is a balanced graph with m = n1+β > n1+α edges and thus
β > α. As n > N2 and since N2 = (4/δ)2/α is precisely the constant N2 of Lemma 5,
we may apply Lemma 5 to G and obtain a proper vertex coloring with the properties
guaranteed by that lemma. By Lemma 5, this coloring has at most 9δ

β
n2β color classes.

Let p be the smallest prime power that is not smaller than 3
√
δ/βnβ. By Chebyshev’s

proof of Bertrand’s postulate, there is a prime in [x, 2x] for any x > 1. In particular,

3

√
δ

β
nβ 6 p 6 6

√
δ

β
nβ. (2)

Let r = p2 + p+ 1. We have

9δ

β
n2β 6 p2 < r < 2p2 <

72δ

β
n2β. (3)

Thus, by artificially adding empty color classes to the coloring of G we may assume that
the coloring has precisely r color classes. Denote the color classes by C1, . . . , Cr (and
recall that some of them may be empty sets). By properties (ii) and (iii) of Lemma 5,
and since δ 6 n1−2β, we have:

|Ci| 6
1

δ
n1−2β, (4)

e(Ci, V (G)− Ci) 6 n. (5)
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In the last inequality, e(Ci, V (G)− Ci) denotes the number of edges connecting a vertex
of Ci to a vertex outside Ci.

Recall that Sp+1 denotes the set of all full (p+1)-partite subgraphs of G. The following
two lemmas establish important properties of a randomly selected element of Sp+1.

Lemma 10. The probability that a randomly selected element of Sp+1 has at most 4
√
β√
δ
n1−β

vertices is at least 11/12.

Proof. Consider a randomly selected element of Sp+1. In other words, we select precisely
p+ 1 color classes from the full set of p2 + p+ 1 color classes. Each vertex has, therefore,
a probability of p+1

p2+p+1
to belong to the randomly selected element. If X is the random

variable corresponding to the number of vertices, then its expectation satisfies

E[X] = n
p+ 1

p2 + p+ 1
6
n

p
.

By (2) we have

E[X] 6
n

p
6

n

3
√

δ
β
nβ

=

√
β

3
√
δ
n1−β.

By Markov’s inequality we have:

Pr

[
X >

4
√
β√
δ
n1−β

]
6

1

12
.

Lemma 11. Either Lemma 3.2 holds, or else the probability that a randomly selected
element of Sp+1 has at least n1−β β

300δ
edges is at least 3

10
.

The proof of Lemma 11 is more involved and is deferred to the next subsection.
It follows from the last two lemmas that with probability at least 3/10− 1/12 > 1/5,

a randomly selected element of Sp+1 has at most 4
√
β√
δ
n1−β vertices and at least n1−β β

300δ

edges. In particular the average degree of a randomly selected element of Sp+1 is at least

(2β)/(300δ)

4
√
β/
√
δ

=

√
β

600
√
δ
> 2h

with probability at least 1
5
. In the last inequality we used that fact that δ < α/(1200h)2 6

β/(1200h)2. Observe that a graph with average degree at least 2h has an induced subgraph
with minimum degree at least h. Thus, a randomly selected element of Sp+1 has an induced
subgraph with minimum degree at least h with probability at least 1/5. By Lemma 9, the
expected number of elements of a randomly chosen projective decomposition that have
subgraphs with minimum degree at least h is at least

r

5
>

9δ

5β
n2β > δn2β =

√
cm2

h2n2
>
cm2

h2n2
.

the electronic journal of combinatorics 20(1) (2013), #P53 8



In particular, there is a choice of cm2

h2n2 pairwise edge-disjoint induced subgraphs, each
having minimum degree at least h. Finally, the intersection of any two such subgraphs is
a subset of at most one of the color classes Ci. By (4), the size of any such intersection is
at most

1

δ
n1−2β =

h2n3

√
cm2

<
h2n3

cm2
.

3.2 Proof of Lemma 11

As a randomly selected element of Sp+1 contains precisely p+1 vertex classes (correspond-
ing to a hypergeometric distribution on the color classes), the event of any edge being
in such an element is not independent of the corresponding event for any other edge. It
will thus be more convenient to construct a random element of Sp+1 as follows. Each
color class is independently chosen with probability, say, 1/(2p). If more than p+ 1 color
classes are chosen (and this happens with small probability) we repeat the experiment.
Otherwise, suppose only p′ 6 p+ 1 color classes are chosen. We randomly select p+ 1−p′
additional color classes, uniformly at random. In this way we generate a truly random
element of Sp+1. The following is a precise analysis of this process.

Assume that H is a full partite subgraph obtained by choosing each color class in-
dependently with probability 1/(2p). Let Y denote the random variable corresponding
to the number of color classes chosen for H. Observe that Y has binomial distribution
B(p2 + p+ 1, 1

2p
). Thus, E[Y ] = p2+p+1

2p
and hence, by Markov’s inequality,

Pr[Y > p+ 1] = Pr[Y > p+ 2] 6
p2 + p+ 1

2p
· 1

p+ 2
<

1

2
. (6)

Next, let X denote the random variable corresponding to the number of edges of H,
and let Xe denote the indicator random variable which equals 1 if the edge e is chosen for
H (namely, if the two color classes of the endpoints of e are both chosen). We observe
that X =

∑
e∈E(G)Xe and E[Xe] = 1/(4p2). We have,

E[X] =
∑

e∈E(G)

E[Xe] =
m

4p2
. (7)

We would like to prove that X does not fall below its expected value by too much. To this
end, we must estimate V[X], and hence the covariances Cov[Xe, Xf ] for any pair of edges
e, f . Observe that if the color classes of the endpoints of e are disjoint from the color
classes of the endpoints of f , then Xe and Xf are independent. Following the notations
in [2], write e ∼ f if some endpoint of e is in the same color class as some endpoint of f .
Let ∆ =

∑
e∼f Pr[Xe = 1∧Xf = 1] (the sum is over ordered pairs of edges). We have, as

in [2], that Cov[Xe, Xf ] 6 Pr[Xe = 1 ∧Xf = 1] and thus

V[X] 6 E[X] + ∆.
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To estimate ∆, we distinguish between two types of dependencies. If the two color classes
of the endpoints of e are also the two color classes of the endpoints of f then, clearly
Pr[Xe = 1 ∧ Xf = 1] = Pr[Xe = 1] = 1/(4p2). Assume that there are t1 ordered pairs
with this strong type of dependence. If only one of the color classes of the endpoints of e
is a color class of an endpoint of f , then clearly Pr[Xe = 1∧Xf = 1] = 1/(8p3), since the
three endpoints of e and f must be chosen. Assume that there are t2 ordered pairs with
this weak type of dependence. We therefore have

∆ =
t1

4p2
+

t2
8p3

. (8)

We first estimate t1. Let Bi,j denote the bipartite subgraph induced by the color classes
Ci and Cj and let mi,j denote the number of edges of Bi,j. Observe that

t1 6
∑

16i<j6r

m2
i,j. (9)

We say that Bi,j is dense if mi,j > 2h
δ
n1−2β. By (4), Bi,j has at most 2

δ
n1−2β vertices.

Thus, if it is dense, it has average degree at least 2h, and hence also a subgraph with
minimum degree at least h. We may therefore assume that there are at most cm2/(h2n2)
dense Bi,j, as otherwise we have proved Lemma 7. Another point to notice is that even
the dense Bi,j cannot be very dense. Indeed, as G is balanced, mi,j cannot be more than
m/n = nβ times the number of vertices of Bi,j. As the latter is at most 2

δ
n1−2β, we have

that mi,j 6 2
δ
n1−β. We therefore have that the contribution of the dense Bi,j to (9) is at

most ∑
dense Bi,j

m2
i,j 6

cm2

h2n2
· 4

δ2
n2−2β =

4c

h2δ2
n2.

By definition, there are
(
r
2

)
graphs Bi,j altogether, as there are r color classes. We therefore

have that the contribution of the non-dense Bi,j to (9) is at most∑
non−dense Bi,j

m2
i,j 6

(
r

2

)
4h2

δ2
n2−4β 6

20736h2

β2
n2

where in the last inequality we have used (3). It follows that

t1 6 n2

(
4c

h2δ2
+

20736h2

β2

)
6

20740h2

β2
n2 (10)

where in the last inequality we have used the fact that δ =
√
c/h2 implying that 4c

h2δ2
6

4h2 6 4h2/β2.
We next estimate t2. If e is any edge, then e ∼ f is a weakly dependent pair only

if f is incident to one of the color classes of the endpoints of e. By (5) we therefore
have that e belongs to at most 2n weakly dependent pairs e ∼ f . We therefore have
t2 6 2mn = 2n2+β. Together with (8), (10) we have

∆ =
t1

4p2
+

t2
8p3

6
n2(20740h

2

β2 )

4p2
+

2n2+β

8p3
. (11)
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By Chebyshev’s inequality:

Pr

[
X 6

E[X]

2

]
6

4V[X]

E[X]2
6

4

E[X]
+

4∆

E[X]2
.

Trivially, 4
E[X]

6 1
10

. By (7) and (11) we obtain:

4∆

E[X]2
6

16p2n2(20740h
2

β2 )

m2
+

16pn2+β

m2
=

16p2(20740h
2

β2 )

n2β
+

16p

nβ
.

Using (2) and the fact that δ = α3/(109h2) we get:

4∆

E[X]2
6

11946240δh2

β3
+ 96

√
δ

β
6

1

10
.

We therefore obtain that

Pr

[
X 6

E[X]

2

]
6

1

10
+

1

10
=

1

5
.

By (7) and (2):

E[X] =
m

4p2
>

β

144δ
n1−β.

Therefore,

Pr

[
X 6

β

300δ
n1−β

]
6 Pr

[
X 6

E[X]

2

]
6

1

5
.

Finally, recall that by (6), the probability that H has more than p + 1 vertex classes is
less than 1/2. Hence, with probability at least 1− 1/2 − 1/5 = 3/10, a random element
of Sp+1 has at least β

300δ
n1−β edges. .

3.3 Proof of Lemma 8

For any prime power p, there exist p−1 mutually orthogonal Latin squares of order p (see,
e.g. [10]). In graph-theoretic terms, this means that for any prime power p, and for any
2 6 q 6 p+ 1, the complete q-partite graph with p vertices in each vertex class, denoted
by T (q, p), can be decomposed into p2 pairwise edge-disjoint cliques of order q (thus, each
such clique is a transversal, as it intersects each vertex class precisely once). Let Q(q, p)
denote such a decomposition of T (q, p) into cliques. Note that Q(q, p) can be explicitly
constructed since q− 2 mutually orthogonal Latin squares are explicitly constructed from
the addition and multiplication tables of a field with p elements.

Consider a graph R with r = pq vertices. A bijective mapping π from V (R) to the
vertices of T (q, p) naturally defines a set Lπ of p2 pairwise edge-disjoint induced subgraphs
of R, each one with q vertices, where each subgraph in Lπ corresponds to an element of
Q(q, p). Indeed, S ∈ Q(q, p) corresponds to the subgraph of R induced by the inverse
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image of the vertex set of S in R. We call Lπ a (p, q)-orthogonal decomposition of R.
There are precisely r! possible bijections π (we think of the vertices of T (q, p) as labeled
vertices) and hence there are precisely r! possible (p, q)-orthogonal decompositions of R.
The following lemma is immediate from the definition of a (p, q)-orthogonal decomposition.

Lemma 12. Let Sq be the set of all induced subgraphs with q vertices of a graph R with
r vertices. Suppose that r = pq where p is a prime power and 2 6 q 6 p+ 1. Let Lπ be a
(p, q)-orthogonal decomposition of R chosen uniformly at random among the r! orthogonal
decompositions. Then, each element of Sq has the same probability of being an element
of Lπ. In particular, a randomly chosen element of Lπ corresponds to a random element
of Sq.

Consider now our graph G which is a balanced graph with m = n1+β edges where
β > α. Let p be the smallest prime power that is not smaller than

√
δnβ. Thus,

√
δnβ 6 p 6 2

√
δnβ. (12)

Let q be the smallest integer such that pq > n. Since we assume in Lemma 8 that
δ > n1−2β, we have:

q 6
n

p
+ 1 6

n1−β
√
δ

+ 1 6
√
δnβ + 1 6 p+ 1.

Let r = pq and add r−n isolated vertices to G to obtain a graph R with r vertices. Recall
that Sq denotes the set of all induced subgraphs of R with q vertices. The following lemma
shows that a random element of Sq has relatively many edges, with some fixed probability.

Lemma 13. The probability that a randomly selected element of Sq has at least 2qh edges
is at least 1/4.

Proof. The proof follows along the same lines as the proof of Lemma 11. As a randomly
selected element of Sq contains precisely q vertices, the event of any edge being in such
an element is not independent of the corresponding event for any other edge. It will thus
be more convenient to construct a random element of Sq by choosing each vertex of R
independently with probability 1/(2p), so that the expected number of chosen vertices is
r/(2p) = q/2. Thus, the probability that more than q vertices are chosen is less than 1/2.
Hence, in order to prove the lemma, it suffices to prove that the probability of a random
induced subgraph H obtained by choosing each vertex independently with probability
1/(2p) to have less than 2qh edges is at most 1/4, as this will show that a randomly
selected element of Sq has at least 2qh edges with probability at least 1−1/2−1/4 = 1/4.

Let X denote the random variable corresponding to the number of edges of H, and
let Xe denote the indicator random variable which equals 1 if the edge e is chosen for H.
As in Lemma 11 we have

E[X] =
∑

e∈E(G)

E[Xe] =
m

4p2
. (13)

the electronic journal of combinatorics 20(1) (2013), #P53 12



We define ∆ as in Subsection 3.2, where an ordered pair of edges e and f are dependent
(denoted by e ∼ f) if e and f share a common endpoint. Thus, Pr[Xe = 1 ∧Xf = 1] =
1/(8p3) since for this event to happen, we need the three endpoints of e and f to be
chosen. As, trivially, there are less than 2mn ordered pairs of dependent edges, we have

∆ 6
2mn

8p3
=

2n2+β

8p3
. (14)

By Chebyshev’s inequality:

Pr[X 6
E[X]

2
] 6

4V[X]

E[X]2
6

4

E[X]
+

4∆

E[X]2
.

Trivially, 4
E[X]

6 1
10

. By (13) and (14) we obtain:

4∆

E[X]2
6

16pn2+β

m2
=

16p

nβ
.

Using (12) and the fact that δ < 1/3202 we get:

4∆

E[X]2
6 32

√
δ 6

1

10
.

We therefore obtain that

Pr

[
X 6

E[X]

2

]
6

1

10
+

1

10
=

1

5
.

By (13) and (12):

E[X] =
m

4p2
>
n1−β

16δ
.

Therefore,

Pr

[
X 6

n1−β

32δ

]
6 Pr

[
X 6

E[X]

2

]
6

1

5
.

But now, observe that since δ > 1/(128h)2 we have that

2qh 6

(
n

p
+ 1

)
2h 6

(
n1−β
√
δ

+ 1

)
2h 6

4hn1−β
√
δ

6
n1−β

32δ
.

Thus,

Pr[X 6 2qh] 6 Pr

[
X 6

n1−β

32δ

]
6

1

5
.

It follows from the last lemma that with probability at least 1/4, a randomly selected
element of Sq has average degree at least 2h and hence a subgraph with minimum degree at
least h. Therefore, by Lemma 12, the expected number of elements of a randomly chosen
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(p, q)-orthogonal decomposition that have subgraphs with minimum degree at least h is
at least

p2

4
>
δn2β

4
=

√
cm2

4h2n2
>
cm2

h2n2
.

In particular, there is a choice of cm2

h2n2 pairwise edge-disjoint induced subgraphs, each
having minimum degree at least h. Finally, as any two elements of a (p, q)-orthogonal
decomposition intersect in one vertex, Lemma 8 follows.

4 Upper bound

We prove that Theorem 1 is asymptotically tight.

Proposition 14. For positive integers n, m 6
(
n
2

)
and h > 2, there are graphs with

n vertices and m edges that do not contain
(d2m/ne

2

)
/
(
h
2

)
pairwise edge-disjoint induced

subgraphs each having minimum degree at least h.

Proof. Let x be the smallest integer satisfying x(x − 1)/2 + x(n − x) > m. By the
minimality of x we have that

(
x−1
2

)
+(x−1)(n−x+1) 6 m and thus

(
x
2

)
+x(n−x)−m 6

n − x. Let X be a clique with x vertices and let Y be an independent with n − x
vertices. Start by adding all x(n − x) possible edges between X and Y . This graph has(
x
2

)
+ x(n − x) > m edges, so remove

(
x
2

)
+ x(n − x) − m 6 n − x edges between X

and Y to obtain a graph G with n vertices and m edges. Suppose there is a set T of t
pairwise edge-disjoint induced subgraphs, each having minimum degree at least h. As Y
is an independent set, each element of T must contain at least h vertices of X, and hence
also all the

(
h
2

)
edges between these h vertices of X. It follows that t 6

(
x
2

)
/
(
h
2

)
. Finally,

notice that x 6 d2m/ne since

(2m/n)(2m/n− 1)

2
+

2m

n

(
n− 2m

n

)
> m.

It follows that

t 6

(d2m/ne
2

)(
h
2

) .

Our next goal is to prove that the intersection size in Theorem 1 is essentially tight.
First, observe that if m = Ω(n1.5), then the intersection of any two subgraphs, being at
most 1 + h2n3/(cm2), is a constant. In fact, it is 1 already when m > hn3/2/

√
c. For

α < 1/2, if m = n1+α, then Theorem 1 says that the intersection of any two subgraphs is
O(n1−2α). Theorem 16 stated below proves that the term n1−2α cannot be replaced with
n1−2α−ε for any ε > 0. Before proving it, we need the following simple lemma.

Lemma 15. Let F be a family of subsets of {1, . . . , n}. Assume that |F| = t and that
|X| > s for each X ∈ F . Then there are two elements of F that intersect in at least
s
t−1( ts

n
− 1) elements.
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Proof. Let di denote the number of subsets to which i belongs. We have d1+· · ·+dn > ts.
For a pair X, Y ∈ F let mX,Y denote the size of their intersection. By Jensen’s inequality
we have: ∑

X,Y ∈F

mX,Y =
n∑
i=1

(
di
2

)
> n ·

ts
n

( ts
n
− 1)

2
.

As the left hand side is a sum of
(
t
2

)
terms, we have that for some pair X, Y ∈ F ,

mX,Y > n ·
ts
n

( ts
n
− 1)

t(t− 1)
=

s

t− 1

(
ts

n
− 1

)
.

Theorem 16. Let 1/2 > α > 0. For every ε > 0 there exists h = h(ε) such that for all
n sufficiently large there exist graphs with n vertices and at least n1+α edges such that in
every set of n2α−ε pairwise edge-disjoint induced subgraphs with minimum degree at least
h there are at least two subgraphs that intersect in at least n1−2α−5ε vertices.

Proof. We use h = 8/ε. Throughout the proof we assume, whenever necessary, that n is
sufficiently large. Consider the random graph G(n, p) with p = 3nα−1. Let m denote the
number of edges of the obtained sample G and observe that the expectation of m (which
is binomially distributed) is

(
n
2

)
p. Thus, with probability at least 1/2, m > n1+α edges.

We next prove that with very high probability, for all positive integers k satisfying
k 6 n1−α−ε, every subgraph of G with k vertices has less than kh/2 edges. Indeed, consider
any such k, and Let Ak be the event that there exists a vertex subset of k vertices with
at least kh/2 edges. Then,

Pr[Ak] 6

(
n

k

)(
k2

kh/2

)
pkh/2 <

(en
k

)k (2ek

h

)kh/2
pkh/2 =

(
en

k

(
2ekp

h

)h/2)k

.

Since kp 6 3n−ε for k 6 n1−α−ε, one can add the inequality above for all k = 1, . . . , n1−α−ε

and still have that with small probability (say, smaller then 1/4), no event Ak occurs for
k in that range.

Thus, with positive probability there exists a graph G with at least n1+α edges and
with all subgraphs with at most n1−α−ε vertices having less than kh/2 edges. We therefore
fix such a graph G.

Consider any set L with at least n2α−ε pairwise edge-disjoint induced subgraphs with
minimum degree at least h. By the properties of G, each element of L has at least n1−α−ε

vertices. By Lemma 15 used with s = n1−α−ε and t = n2α−ε we have that there are two
elements of L that intersect in at least n1−2α−5ε vertices.

5 Concluding remarks

The proof of Theorem 1 is algorithmic and can be implemented in polynomial time. Given
a graph with n vertices and m > n1+α edges, there is a polynomial time randomized al-
gorithm that finds a set of edge-disjoint subgraphs with the cardinality and properties
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stated in the theorem. Indeed, a projective plane of order p for a prime power p is elemen-
tary constructed from the addition and multiplication tables of a field with p elements.
Similarly, a set of p − 1 pairwise orthogonal Latin squares of order p are constructed
from such tables. It is also straightforward to find a subgraph with minimum degree at
least h in a graph with edge density at least 2h in polynomial (in fact, linear) time. The
major algorithmic component is therefore the implementation of Lemma 5. The coloring
constructed in the lemma calls a procedure for finding an equitable coloring constantly
many times. A recent result from [7] provides a polynomial time algorithm for this task.

Theorem 1 and Proposition 14 together prove that the term m2/(h2n2) in Theorem 1
is tight up to an absolute constant, for all graphs with polynomially many edges (that is,
m > n1+ε for any fixed ε). If m is very close to linear, the proof of Lemma 5 (specifically,
the fact that there are (log n)/(log(m/n)) iterations) introduces a logarithmic factor. It
may be interesting to determine if this is essential. Similarly, the proof of Theorem
16 shows that the term n3/m2 for the size of the intersection cannot be reduced by any
polynomial factor. It may be of some interest to see if the term n3/m2 cannot be improved
even by logarithmic factors. We suspect that it cannot.
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on equitable colouring. Combinatorics, Probability and Computing, 17(2):265, 2008.

[7] H.A. Kierstead, A.V. Kostochka, M. Mydlarz, and E. Szemerédi. A fast algorithm
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