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Abstract

An H-decomposition of a graph G is a set L of edge-disjoint H-
subgraphs of G, such that each edge of G appears in some element
of L. A k-orthogonal H-decomposition of a graph G is a set of k
H-decompositions of G, such that any two copies of H in any two
distinct H-decompositions have at most one edge in common.

We prove that for every fixed graph H and every fixed integer
k ≥ 1, if n is sufficiently large then Kn has a k-orthogonal H -
decomposition if and only if it has an H-decomposition. This occurs
whenever

(
n
2

)
is a multiple of e(H) and n− 1 is a multiple of the gcd

of the degrees of H.

1 Introduction

All graphs considered here are finite, undirected, and have no loops, multi-
ple edges, or isolated vertices. For the standard graph-theoretic and design-
theoretic notations the reader is referred to [5] and [8] respectively. An H-
subgraph of G is a subgraph of a graph G, which is isomorphic to a graph H.
An H-decomposition of a graph G is a set L of edge-disjoint H-subgraphs
of G, such that each edge of G appears in some element of L. Thus, L
contains e(G)/e(H) elements, where e(X) denotes the number of edges of
a graph X. It is straightforward to see that a necessary condition for the
existence of an H-decomposition is that e(H) divides e(G). Another obvi-
ous requirement is that gcd(H) divides gcd(G) where the gcd of a graph is
the greatest common divisor of the degrees of its vertices.

In general, it is NP-Complete to determine whether a given graph G
has an H-decomposition for every fixed graph H containing more than two
edges in some connected component. This has been proved by Dor and Tarsi
[10]. However, a seminal result of Wilson [21], is that the existence of the
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two necessary conditions mentioned above is also sufficient to guarantee
an H-decomposition of Kn for every n > n0(H), and this result holds
for every fixed nonempty graph H. In terms of design-theory, Wilson’s
Theorem states that the necessary conditions are sufficient for the existence
of a 2 − (v, k, 1)-design, provided that v is sufficiently large (in fact, it is
sufficient for the existence of a 2− (v, k, λ)-design).

A k-orthogonal H-decomposition of a graph G is a set of k distinct H-
decompositions of G, such that any two copies of H in any two distinct
H-decompositions have at most one edge in common. A 2-orthogonal H-
decomposition is simply called an orthogonal H-decomposition. Obviously,
a k-orthogonal H-decomposition does not necessarily exist, even if an H-
decomposition exists. The notion of k-orthogonal decompositions has a
natural design theoretic translation. The theory of simple designs asks
for the existence of a t− (v, k, λ) design with no repeated blocks. However,
stronger conditions are usually imposed on the design. In case no two blocks
have more than one pair (edge) in common, the design is called a super-
simple design and is denoted SS(t, v, k, λ) design, or simply SS(v, k, λ)
design if t = 2. In case that a SS(t, v, k, λ) design splits into λ copies
of a SS(t, v, k, 1)-design, the design is called a completely-reducible super-
simple design, denoted by CRSS(t, v, k, λ) or simply CRSS(v, k, λ) if t =
2. Recent results on super-simple and completely-reducible super-simple
designs can be found in [1, 4, 13, 16, 17]. The requirement that any two
blocks have at most one pair in common is called the orthogonality property.
Many results in design theory concerning orthogonality have appeared in
recent years and we refer the reader to the surveys in [2, 8] for details and
to [2, 3, 6, 11, 12, 14, 15] for recent developments in this area. Clearly, a
CRSS(n, r, k) is equivalent to a k-orthogonal Kr-decomposition of Kn.

In [7] the authors have shown the existence of a CRSS(n, r, k) design,
for every n which is sufficiently large (as a function of r and k), and which
satisfies the necessary divisibility conditions. In other words, this gives
necessary and sufficient conditions for the existence of k-orthogonal de-
compositions in case both H and G are complete (and G is sufficiently
large). It should be noted that for r = 3, all values of k and n for which a
CRSS(n, 3, k)-design or a SS(n, 3, k)-design exists are known [18, 19, 20].
For r = 4, it is known whenever a CRSS(n, 4, 2) design exists [1]. Several
other sporadic results involving the case r = 4 also appear in [4, 9, 13, 17].

The goal of this note is to give necessary and sufficient conditions for the
existence of a k-orthogonal H-decomposition of Kn where H is an arbitrary
fixed graph, and n sufficiently large. We state this formally as follows:

Theorem 1.1 Let H be a fixed nonempty graph and let k ≥ 1 be an in-
teger. There exists N = N(k,H) such that if n > N and Kn has an
H-decomposition, then Kn also has a k-orthogonal H-decomposition.
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The proof of Theorem 1.1 is based partly on the result in [7] mentioned
above, together with additional ideas and a theorem of Wilson on block
designs, and is given in the next section.

2 Proof of the main result

As mentioned in the introduction, the following is proved in Theorem 1.1
of [7]:

Lemma 2.1 Let r ≥ 2 and k ≥ 1 be integers. There exists N = N(k, r)
such that if n > N and Kn has a Kr-decomposition then Kn also has a
k-orthogonal Kr-decomposition.

Let F be a family of positive integers. We say thatKn is F -decomposable
if we can color the edges of Kn such that each color class induces a complete
graph whose order belongs to F . Note that if F = {r} this simply means
that Kn has a Kr-decomposition.

Let H be a fixed graph, and let t be a positive integer. We say that a
finite family of positive integers F is an (H, t) complete decomposition set
((H, t)-CDS for short) if the following holds:

1. If k ∈ F then k ≥ t and Kk is H-decomposable.

2. There exists N such that for all n > N , Kn is H-decomposable if and
only if Kn is F -decomposable.

Our next goal is to show that an (H, t)-CDS always exists. For this
purpose we need to state a theorem of Wilson concerning F -decompositions.
For a (possibly infinite) family of positive integers F , let:

α(F ) = gcd({r − 1 | r ∈ F})

β(F ) = gcd({
(
r

2

)
| r ∈ F})

(the gcd of a set is the greatest common divisor of all the elements of the
set.) In [22] Wilson has proved the following:

Lemma 2.2 (Wilson [22]) Let F be a finite family of positive integers.
Then, there exists n0 = n0(F ) such that if n > n0, α(F ) divides n− 1 and
β(F ) divides

(
n
2

)
then Kn is F -decomposable. �

We can now show the following:
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Lemma 2.3 Let H be a graph, and let t be a positive integer. Then, an
(H, t)-CDS exists. Furthermore, if H = Kr there is an (H, t)-CDS consist-
ing of two elements r1 and r2 satisfying r2−r1 = r−1, r1 ≡ 1 mod r(r−1),
gcd(r1 − 1, r2 − 1) = r − 1 and gcd(

(
r1
2

)
,
(
r2
2

)
) =

(
r
2

)
.

Proof: Let

S = {s | s ≥ t and Ks is H − decomposable}.

S is infinite but since α(S) and β(S) are finite we have finite subsets Sα ⊂ S
and Sβ ⊂ S such that α(Sα) = α(S) and α(Sβ) = β(S). Let F = Sα ∪ Sβ .
Note that since Sα ⊂ F then α(F ) divides α(S). Similarly, since Sβ ⊂ F we
have that β(F ) divides β(S). We claim that F is an (H, t)-CDS. First note
that, by definition, every s ∈ F satisfies s ≥ t and Ks is H-decomposable.
Now let N = max{n0, t} where n0 = n0(F ) is the constant defined in the
statement of Lemma 2.2. It suffices to show that for every n > N , if Kn

is H-decomposable then it is also F -decomposable. Indeed, if Kn is H-
decomposable, then n ∈ S, so α(F ) | α(S) | n − 1, and β(F ) | β(S) |

(
n
2

)
.

Thus, by Lemma 2.2, Kn is F -decomposable.
For the second part of the lemma, let H = Kr. By Wilson’s decomposition
theorem, there exists N = N(H) such that for all n > N , if r − 1|n − 1
and

(
r
2

)
|
(
n
2

)
, then Kn is Kr-decomposable. Now, let r1 be the smallest

prime satisfying r1 > N , r1 > t, and r1 ≡ 1 mod r(r − 1). By Dirichlet’s
Theorem on primes in arithmetic progressions, r1 exists. Note that Kr1 is
Kr-decomposable, and also Kr2 is Kr-decomposable for r2 = r1 + r − 1.
Let F = {r1, r2} and let n0 = n0(F ) be as in Lemma 2.2. In order to
prove that F is an (H, t)-CDS it suffices to show that for all n > n0, if
r − 1|n− 1 and

(
r
2

)
|
(
n
2

)
then Kn is F -decomposable. Indeed, α(F ) = r − 1

since r2− r1 = r−1 and both are divisible by r−1. Also, β(F ) =
(
r
2

)
since

r1 is a prime. Hence, α(F )|n − 1 and β(F )|
(
n
2

)
, so by Lemma 2.2, Kn is

F -decomposable. �
Proof of Theorem 1.1: Let H be a graph and let k be a positive

integer. Let F be an (H, 1)-CDS. Thus, there exists N such that for n >
N , if Kn is H decomposable it is also F -decomposable. For each r ∈ F
let Fr = {r1, r2} be a (Kr, N(k, r))-CDS where N(k, r) is defined in the
statement of Lemma 2.1. Let F ′ = ∪r∈FFr. We claim that F ′ is an
(H, 1)-CDS. Indeed, let n0 = n0(F ′) be as defined in Lemma 2.2. Let
n > max{n0, N} such that Kn is H-decomposable. We need to show that
it is F ′-decomposable. First note that, since n > N , Kn is F -decomposable.
Thus, α(F )|n− 1 and β(F )|

(
n
2

)
. In order to apply Lemma 2.2 for n and F ′

it suffices to show that α(F ′)|α(F ) and β(F ′)|β(F ). In fact, we can show
that α(F ′) = α(F ) and β(F ′) = β(F ). Put F = {r(1), . . . , r(t)}. Then

F ′ = {r(1)1 , r
(1)
2 , . . . , r

(t)
1 , r

(t)
2 } and by Lemma 2.3 and the properties of the
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gcd we have:

α(F ′) = gcd
(
r
(1)
1 − 1, r

(1)
2 − 1, . . . , r

(t)
1 − 1, r

(t)
2 − 1

)
=

gcd
(

gcd
(
r
(1)
1 − 1, r

(1)
2 − 1

)
, . . . , gcd

(
r
(t)
1 − 1, r

(t)
2 − 1

))
=

gcd
(
r(1) − 1, . . . , r(t) − 1

)
= α(F )

and similarly,

β(F ′) = gcd

((
r
(1)
1

2

)
,

(
r
(1)
2

2

)
, . . . ,

(
r
(t)
1

2

)
,

(
r
(t)
2

2

))
=

gcd

(
gcd

((
r
(1)
1

2

)
,

(
r
(1)
2

2

))
, . . . , gcd

((
r
(t)
1

2

)
,

(
r
(t)
2

2

)))
=

gcd

((
r(1)

2

)
, . . . ,

(
r(t)

2

))
= β(F ).

It is now not difficult to see that whenever n > max{n0, N} and Kn is
H-decomposable, then Kn also has a k-orthogonal H-decomposition. In-
deed, for such an n, we know that Kn is F ′-decomposable. Let Q1, . . . , Qm
be the elements of an F ′-decomposition. Each Qj is a clique whose order is
either r1 or r2 where r ∈ F . Since r2 > r1 > N(k, r) we know, by Lemma
2.1, that Qj has a k-orthogonal decomposition of Kr. Thus, Qj has k dis-
tinct Kr-decompositions L1

j , . . . , L
k
j , where any two elements of any two of

these decompositions share at most one edge. Since r ∈ F , each element
of Lij is H-decomposable. The union of the H-decompositions of all the

elements of Lij is an H-decomposition of Qj which we denote by M i
j . Triv-

ially, M1
j , . . . ,M

k
j form a k-orthogonal H-decomposition of Qj . The union

of the H-decompositions M i
j for j = 1, . . . ,m forms an H-decomposition

Ri of Kn. Thus, R1, . . . , Rk form a k-orthogonal H-decomposition of Kn

�
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