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Abstract

An H-decomposition of a graph G is a partition of the edge-set of G into subsets, where each

subset induces a copy of the graph H. A k-orthogonal H-decomposition of a graph G is a

set of k H-decompositions of G, such that any two copies of H in distinct H-decompositions

intersect in at most one edge. In case G = Kn and H = Kr, a k-orthogonal Kr-decomposition

of Kn is called an (n, r, k) completely-reducible super-simple design. We prove that for any two

fixed integers r and k, there exists N = N(k, r) such that for every n > N , if Kn has a Kr-

decomposition, then Kn also has an (n, r, k) completely-reducible super-simple design. If Kn

does not have a Kr-decomposition, we show how to obtain a k-orthogonal optimal Kr-packing

of Kn. Complexity issues of k-orthogonal H-decompositions are also treated.

1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple edges. For the

standard graph-theoretic and design-theoretic notations the reader is referred to [12] and [17] re-

spectively. An H-subgraph of G is a subgraph of a graph G, which is isomorphic to a graph H. An

H-decomposition of a graph G is a set L of edge-disjoint H-subgraphs of G, such that each edge

of G appears in some element of L. Thus, L contains e(G)/e(H) elements, where e(X) denotes

the number of edges of a graph X. It is straightforward to see that a necessary condition for the

existence of an H-decomposition is that e(H) divides e(G). Another obvious requirement is that

gcd(H) divides gcd(G) where the gcd of a graph is the greatest common divisor of the degrees of its

vertices. An optimal H-packing of G is a set L of edge-disjoint H-subgraphs of G, with maximum

cardinality. The corresponding H-packing number of G, denoted P (H,G), is the cardinality of an

optimal H-packing. Clearly, P (H,G) ≤ e(G)/e(H) with equality achieved if and only if G has an

H-decomposition.
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In general, it is NP-Complete to determine whether a given graph G has an H-decomposition

for every fixed graph H containing more than two edges in some connected component. This has

been proved by Dor and Tarsi [19]. Consequently, it is NP-Hard to determine P (H,G) for every

such fixed graph H. However, a seminal result of Wilson [42], is that the existence of the two

necessary conditions mentioned above is also sufficient to guarantee an H-decomposition of Kn for

every n > n0(H), and this result holds for every fixed nonempty graph H. In terms of design-

theory, Wilson’s Theorem states that the necessary conditions are sufficient for the existence of a

2− (v, k, 1)-design, provided that v is sufficiently large (in fact, it is sufficient for the existence of a

2−(v, k, λ)-design). Recently, Caro and Yuster [15, 16] have provided formulas for P (H,Kn), as well

as the related covering number C(H,Kn), provided that n > n1(H), and Alon, Caro and Yuster

have shown how to efficiently compute P (H,G) and C(H,G) in polynomial time, for arbitrary

dense and large graphs G [2].

In order to present our result in the exact context we shall switch momentarily to the language

of design-theory. Since the appearance of the seminal work of Wilson, the notion of repeated blocks

in a t− (v, k, λ) design became a central issue in design theory. We refer the reader to [41] and [17]

which are major comprehensive sources for design theory and the emergence of the repeated-block

issue. For research papers on this subject we refer the reader to [5, 6, 21, 33]. Two main branches

developed from the study of designs with non-repeated blocks. These are the intersection problem

and the theory of simple designs.

The intersection problem asks for the existence of a 2− (v, k, 2) design in which exactly m ≥ 0

blocks are used twice. Extensions of this problem to 2 − (v, k, λ) designs in which exactly m ≥ 0

blocks are used λ times while any other block is used at most once were considered as well. In

fact, this line of research has been extended to include small graphs and simple structured trees

instead of just complete graphs as the blocks of the design. We refer the reader to [6, 7, 8, 9, 14,

18, 21, 27, 30, 33, 37] for various papers on the intersection problem, and to [32] as one of the first

papers where the problem was raised explicitly. These works also have an obvious connection to

the famous works of Lu [34, 35] and Teirlinck [38, 39, 40] on the existence of large sets of Steiner

triple systems where, clearly, m = 0 in the above notation.

The theory of simple designs asks for the existence of a t − (v, k, λ) design with no repeated

blocks (namely the case m = 0 in the intersection problem). However, stronger conditions are

usually imposed on the design. In case no two blocks have more than one pair (edge) in common,

the design is called a super-simple design and is denoted SS(t, v, k, λ) design, or simply SS(v, k, λ)

design if t = 2. In case that a SS(t, v, k, λ) design splits into λ copies of a SS(t, v, k, 1)-design, the

design is called a completely-reducible super-simple design, denoted by CRSS(t, v, k, λ) or simply
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CRSS(v, k, λ) if t = 2. Recent results on super-simple and completely-reducible super-simple

designs can be found in [1, 11, 23, 28, 29]. The requirement that any two blocks have at most

one pair in common is called the orthogonality property. Many results in design theory concerning

orthogonality have appeared in recent years and we refer the reader to the surveys in [3, 17] for

details and to [3, 4, 13, 20, 22, 24, 25] for recent developments in this area.

The main result in this paper establishes, in particular, the existence of a CRSS(v, k, λ) design,

for every v which is sufficiently large, and which satisfies the necessary divisibility conditions. We

now switch back to the language of graph theory in order to present our results. A k-orthogonal

H-decomposition of a graph G is a set of k H-decompositions of G, such that any two copies of

H in any two distinct H-decompositions have at most one edge in common. A 2-orthogonal H-

decomposition is simply called an orthogonal H-decomposition. Similarly, one defines a k-orthogonal

optimal H-packing as a set of k optimal H-packings of G, such that any two copies of H in any

two distinct optimal H-packings have at most one edge in common. Obviously, a k-orthogonal H-

decomposition does not necessarily exist, even if an H-decomposition exists. Also, a k-orthogonal

optimal H-packing does not always exist, although, by definition, an optimal H-packing always

exists. Note that in case both G and H are complete graphs, a k-orthogonal H-decomposition of

G is also a CRSS(n, r, k) design.

All values of k and n for which a CRSS(n, 3, k)-design or a SS(n, 3, k)-design exists are known

[34, 35, 39]. Also, all values of k and n for which a k-orthogonal optimal K3-packing of Kn exists,

are known [36, 31]. For r = 4, it is known whenever a CRSS(n, 4, 2) design exists, and whenever

a SS(n, 4, 4) design exists [1]. Several other sporadic results involving the case r = 4 also appear

in [11, 18, 23, 29]. The main theorem of this paper solves the CRSS(n, r, k) existence problem

completely, for all n > N(k, r). In fact, we prove something stronger, since we prove that if

n > N(k, r) then there is always a k-orthogonal optimal Kr-packing of Kn:

Theorem 1.1 Let r ≥ 2 and k ≥ 1 be integers. There exists N = N(k, r) such that if n > N then

Kn has a k-orthogonal optimal Kr-packing.

An immediate corollary from Theorem 1.1 and Wilson’s Theorem is the following:

Corollary 1.2 Let r ≥ 2 and k ≥ 1 be integers. There exists N = N(k, r) such that if n > N then

there exists a CRSS(n, r, k) if and only if n = 1, r mod r(r − 1).

In fact, one may view Corollary 1.2 as an extension of Wilson’s theorem, for k > 1, and Theorem 1.1

as an extension of the above-mentioned result of Caro and Yuster, for k > 1. Another interesting

corollary is that whenever n = 1, r mod r(r − 1), the notions of SS(n, r, k) and CRSS(n, r, k)
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coincide. The proof of Theorem 1.1 relies on several probabilistic and combinatorial arguments.

The probabilistic part is handled in Section 2, and the combinatorial part of the proof, which relies

on the result proved in Section 2, and on several additional ideas, is proved in Section 3.

As mentioned above, it is NP-Complete to determine whether a general graph G has an H-

decomposition, unless H has no connected component with more than two edges. It is, therefore,

a plausible conjecture that the decision problem: ”Given an input graph G, does it have a k-

orthogonal H-decomposition” is also NP-Complete for every fixed k and for every graph H with at

least three edges in some connected component. One should notice that the answer to this question

does not follow directly from the Dor-Tarsi result. We will show, however, that for every fixed star

H = K1,r (r ≥ 3), and for every fixed positive integer k, this problem is, indeed, NP-Complete.

The proof is presented in Section 4. Section 4 also contains some concluding remarks and an open

problem.

2 Random permutations and semi-orthogonal packings

Consider a labeling of the vertices of Kn with the integers 1, . . . , n, and let X be a labeled subgraph

of Kn. If π is any permutation of {1, . . . , n}, we denote by Xπ the labeled subgraph of Kn which

is isomorphic to X via the isomorphism π, namely the isomorphism x→ π(x) for every vertex x of

Kn.

Let L be a set of labeled edge-disjoint subcliques of Kn (a subclique is a subgraph which is a

clique), and denote by Lπ = {Xπ | X ∈ L}. A subclique F of X ∈ L, is called invariant under π if

F has at least three vertices, and there exists Y ∈ L (it is allowed that Y = X), such that F is also

a subclique of Y π. Note that if F1 and F2 are two distinct maximal (with respect to containment)

subcliques of X that are invariant under π, then they must be edge-disjoint. We call an edge e ∈ X
π-bad if it appears in a subclique that is invariant under π. We call π an (r, L) semi-orthogonal

permutation if every X ∈ L has at most r π-bad edges. Note that L and Lπ are orthogonal if and

only if π is (0, L) semi-orthogonal (i.e. there are no subcliques that are invariant under π). The

crucial argument about semi-orthogonal permutations is given in the following lemma:

Lemma 2.1 Let 0 < q < 1 be any real number. Let L be a set of edge-disjoint labeled subcliques

of Kn. Assume that each X ∈ L has at most s vertices, and that n ≥ s18/(1− q). Then, a random

permutation π of {1, . . . , n} is (6, L) semi-orthogonal with probability at least q.

Before proving Lemma 2.1 we need the following lemma which analyzes the possible sizes of sub-

cliques that are invariant under π, in case X has more than 6 π-bad edges.

Lemma 2.2 If X ∈ L has more than 6 π-bad edges, then at least one of the following cases holds:
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1. X has a K5 that is invariant under π.

2. X has an F1 = K4 that is invariant under π, and an F2 = K3 that is invariant under π, and

one of the following two cases holds:

(a) F1 and F2 are vertex-disjoint.

(b) F1 and F2 share one common vertex.

3. X has a three triangles F1, F2 and F3 that are all invariant under π, and one of the following

cases holds:

(a) F1, F2 and F3 are pairwise vertex-disjoint.

(b) F1 and F2 share a common vertex, and F3 is vertex-disjoint from both F1 and F2.

(c) F1, F2 and F3 all share the same common vertex.

(d) F1 shares a common vertex with F2 and another common vertex with F3, and F2 is

vertex-disjoint from F3.

(e) F1 shares a common vertex with F2 and another common vertex with F3, and F2 shares

another common vertex with F3.

Since the proof of Lemma 2.2 is a simple combinatorial exercise, we omit the obvious proof. We

are now ready to prove Lemma 2.1.

Proof of Lemma 2.1: The proof relies on probabilistic arguments. Let π be a random permuta-

tion, chosen uniformly from all n! possible permutations. We must prove that with probability at

least q, every X ∈ L has at most 6 π-bad edges. We may assume s ≥ 5 (otherwise, every element

of L contains at most 6 edges, and the lemma trivially holds).

Consider an element X ∈ L with more than 6 edges. We will prove that the probability that

X has more than 6 π-bad edges is less than 20(1− q)/n2. This suffices, as the number of elements

of L containing more than 6 edges (and thus, at least 10 edges), is at most
(n
2

)
/10 < n2/20. By

Lemma 2.2, it suffices to show that each of the 8 cases described there, occurs with probability less

than 20(1−q)/(8n2). We now consider each of these cases, and show that, indeed, each case occurs

with probability smaller than 20(1 − q)/(8n2). Let x = |X| denote the number of vertices of X,

and recall that x ≤ s.

1. Let F be a K5-subclique of X, and let Y ∈ L. Put y = |Y |. The probability that F is a

subclique of Y π is exactly

Prob[F ⊂ Y π] =
y

n

y − 1

n− 1

y − 2

n− 2

y − 3

n− 3

y − 4

n− 4
<
y5

n5
≤ s5

n5
.
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Since there are less than n2 elements in L, and since there are
(x
5

)
K5-subcliques of X we get

that

Prob[Case 1 occurs] < n2
(
x

5

)
s5

n5
<
s10

n3
< 20

1− q
8n2

.

2a. Let F1 be a K4-subclique of X, and let F2 be a K3-subclique of X which is vertex-disjoint

from F1. Let Y1 and Y2 be two distinct elements of L. Y1 ∪ Y2 has at most 2s vertices. The

probability that F1 is a subclique of Y1 and that F2 is a subclique of Y2 is, at most, the

probability that the 7 vertices of F1 ∪ F2 all appear in Y π
1 ∪ Y π

2 . Therefore:

Prob[F1 ⊂ Y π
1 and F2 ⊂ Y π

2 ] ≤ 2s

n

2s− 1

n− 1
. . .

2s− 6

n− 6
< 128

s7

n7
.

Since there are less than n4 possible pairs Y1 and Y2, and since there are
(x
4

)
·
(x−4

3

)
possible

choices for F1 and F2 in X, we get that:

Prob[Case 2a occurs] < n4
(
x

4

)(
x− 4

3

)
128

s7

n7
<
s14

n3
< 20

1− q
8n2

.

2b. Let F1 be a K4-subclique of X, and let F2 be a K3-subclique of X which has a common

vertex with F1. Let Y1 and Y2 be two distinct elements of L. Note that if Y1 and Y2 are

vertex-disjoint, then the probability that Fi is a subclique of Y π
i for i = 1, 2 is 0. Thus, we

may assume that Y1 shares a vertex with Y2. Consequently, Y1∪Y2 has at most 2s−1 vertices.

The probability that F1 is a subclique of Y1 and that F2 is a subclique of Y2 is, at most, the

probability that the 6 vertices of F1 ∪ F2 all appear in Y π
1 ∪ Y π

2 . Therefore:

Prob[F1 ⊂ Y π
1 and F2 ⊂ Y π

2 ] ≤ 2s− 1

n

2s− 2

n− 1
. . .

2s− 6

n− 5
< 64

s6

n6
.

Since the elements of L are edge-disjoint, every vertex of Kn appears in at most n−1 elements

of L. Thus, the number of pairs Y1 and Y2 which share a common vertex is at most n ·
(n−1

2

)
.

There are x ·
(x−1

3

)
·
(x−4

2

)
possible choices for F1 and F2 in X, so we obtain:

Prob[Case 2b occurs] < n ·
(
n− 1

2

)
x

(
x− 1

3

)(
x− 4

2

)
64
s6

n6
< 3

s12

n3
< 20

1− q
8n2

.

3a. Let F1, F2 and F3 be three vertex-disjoint triangles of X, and let Y1, Y2 and Y3 be three

distinct elements of L. Y1 ∪ Y2 ∪ Y3 has at most 3s vertices. The probability that Fi is a

subclique of Yi for i = 1, 2, 3 is at most the probability that the 9 vertices of F1 ∪ F2 ∪ F3 all

appear in Y π
1 ∪ Y π

2 ∪ Y π
3 . Therefore:

Prob[Fi ⊂ Y π
i i = 1, 2, 3] ≤ 3s

n

3s− 1

n− 1
. . .

3s− 8

n− 8
< 39

s9

n9
.
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Obviously, we may assume that each Yi, i = 1, 2, 3 has at least 3 vertices (otherwise, the last

computed probability is 0). There are at most
(n
2

)
/3 elements of L with at least three vertices.

Thus, the number of possible triples Yi i = 1, 2, 3 to consider is less than (
(n
2

)
/3)3. There are(x

3

)
·
(x−3

3

)
·
(x−6

3

)
choices for F1, F2 and F3 in X. Therefore, we get that:

Prob[Case 3a occurs] < (

(n
2

)
3

)3
(
x

3

)(
x− 3

3

)(
x− 6

3

)
39
s9

n9
<
s18

n3
< 20

1− q
8n2

.

3b. Let F1, F2 and F3 be three triangles of X, where F1 and F2 share a common vertex, and F3 is

vertex-disjoint from both F1 and F2. Let Y1, Y2 and Y3 be three distinct elements of L. If Y1

and Y2 are vertex-disjoint then the probability that Fi ⊂ Y π
i for i = 1, 2, 3 is 0. We therefore

assume that Y1 and Y2 share a common vertex (Y3 may or may not be vertex-disjoint from Y2

or Y1). Thus, Y1 ∪ Y2 ∪ Y3 has at most 3s− 1 vertices. The probability that Fi is a subclique

of Yi for i = 1, 2, 3 is at most the probability that the 8 vertices of F1 ∪ F2 ∪ F3 all appear in

Y π
1 ∪ Y π

2 ∪ Y π
3 . Therefore:

Prob[Fi ⊂ Y π
i i = 1, 2, 3] ≤ 3s− 1

n

3s− 2

n− 1
. . .

3s− 8

n− 7
< 38

s8

n8
.

As explained in case 2b, there are at most n ·
(n−1

2

)
pairs Y1 and Y2 which share a vertex, and

since the number of elements of L which contain at least three vertices is at most
(n
2

)
/3, we

obtain that there are less than (
(n
2

)
/3)n ·

((n−1)
2

)
triples Y1, Y2 and Y3 where Y1 and Y2 share

a vertex. There are x
(x−1

2

)(x−3
2

)(x−5
3

)
possible choices for F1, F2 and F3 in X. Thus,

Prob[Case 3b occurs] <

(n
2

)
3
n

(
n− 1

2

)
x

(
x− 1

2

)(
x− 3

2

)(
x− 5

3

)
38
s8

n8
< 23

s16

n3
< 20

1− q
8n2

.

3c. Let F1, F2 and F3 be three triangles of X, which all share the same common vertex. If Y1,

Y2 and Y3 are three distinct elements of L, they must also share a common vertex, if we are

to have any chance that Fi is a subclique of Y π
i for i = 1, 2, 3. Thus, Y π

1 ∪ Y π
2 ∪ Y π

3 ≤ 3s− 2,

and since F1∪F2∪F3 has 7 vertices, a similar computation to the one given in case 3b yields:

Prob[Fi ⊂ Y π
i i = 1, 2, 3] ≤ 3s− 2

n

3s− 3

n− 1
. . .

3s− 8

n− 6
< 37

s7

n7
.

Each vertex of Kn appears in at most n−1 elements of L, and therefore the number of triples

Y1, Y2 and Y3 sharing a common vertex is at most n ·
(n−1

3

)
. There are x

(x−1
2

)(x−3
2

)(x−5
2

)
possible choices for F1, F2 and F3 in X. Thus,

Prob[Case 3c occurs] < n

(
n− 1

3

)
x

(
x− 1

2

)(
x− 3

2

)(
x− 5

2

)
37
s7

n7
< 46

s14

n3
< 20

1− q
8n2

.
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3d. Let F1, F2 and F3 be three triangles of X, such that F1 shares a common vertex with F2 and

another common vertex with F3, and F2 and F3 are vertex-disjoint. If Y1, Y2 and Y3 are three

distinct elements of L, then Y1 must also share a common vertex with Y2 and another common

vertex with Y3, if we are to have any chance that Fi is a subclique of Y π
i for i = 1, 2, 3. (Note

however, that Y2 does not have to be vertex-disjoint from Y3). Thus, Y π
1 ∪ Y π

2 ∪ Y π
3 ≤ 3s− 2,

and since F1 ∪ F2 ∪ F3 has 7 vertices, a computation identical to the one given in case 3c

yields:

Prob[Fi ⊂ Y π
i i = 1, 2, 3] ≤ 3s− 2

n

3s− 3

n− 1
. . .

3s− 8

n− 6
< 37

s7

n7
.

Consider two distinct vertices of Kn, which appear in some Y1 ∈ L. Each of these vertices

may also appear in at most n− 2 other elements of L, in addition to L1. Thus, the number

of triples L1, L2 and L3 such that L1 shares a vertex with L2 and another vertex with L3 is

at most
(n
2

)
(n− 2)2. There are

(x
2

)
(x− 2)

(x−3
2

)(x−5
2

)
possible choices for F1, F2 and F3 in X.

Therefore, using the fact that s ≥ 5,

Prob[Case 3d occurs] <

(
n

2

)
(n− 2)2

(
x

2

)
(x− 2)

(
x− 3

2

)(
x− 5

2

)
37
s7

n7
< 137

s14

n3
< 20

1− q
8n2

.

3e. Let F1, F2 and F3 be three triangles of X, such that each pair share a common vertex, but

not the same common vertex. If Y1, Y2 and Y3 are three distinct elements of L, then each pair

must also share a distinct common vertex, if we are to have any chance that Fi is a subclique

of Y π
i for i = 1, 2, 3. Thus, Y π

1 ∪ Y π
2 ∪ Y π

3 ≤ 3s− 3. the probability that Fi is a subclique of

Y π
i for i = 1, 2, 3, is at most the probability that the 6 vertices of F1 ∪ F2 ∪ F3 all appear in

Y π
1 ∪ Y π

2 ∪ Y π
3 . Therefore,

Prob[Fi ⊂ Y π
i i = 1, 2, 3] ≤ 3s− 3

n

3s− 4

n− 1
. . .

3s− 8

n− 5
< 36

s6

n6
.

Every triangle of Kn is either completely contained is some element of L or uniquely defines

three elements of L, Y1, Y2 and Y3 where each pair shares a distinct common vertex. Thus,

the overall number of such triples is at most
(n
3

)
. There are

(x
3

)
(x− 3)(x− 4)(x− 5) possible

choices for F1, F2 and F3 in X. Therefore,

Prob[Case 3e occurs] <

(
n

3

)(
x

3

)
(x− 3)(x− 4)(x− 5)36

s6

n6
< 21

s12

n3
< 20

1− q
8n2

.

2
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3 Optimal k-orthogonal Kr-Packings

In order to complete the proof of Theorem 1.1 we need several definitions and lemmas. A Kr-

decomposable graph S is called t-evasive if for any set T of t edges of S, there exists a Kr-

decomposition of S such that each copy of Kr in the decomposition contains at most one edge from

T . Note that the definition holds for every t ≥ 1, and that, trivially, every Kr-decomposable graph

is 1-evasive. Our first goal is to show that given t and r, every large-enough complete graph which

is Kr-decomposable, is also t-evasive. Let Zp,r denote the graph which is composed by taking a

Kp, which is called the center of Zp,r, and for each edge (x, y) of the center, constructing a copy of

Kr whose vertices are x and y and r − 2 new vertices. Note that Zp,r has p + (r − 2)
(p
2

)
vertices,

and
(p
2

)(r
2

)
edges, and Zp,r can be decomposed into

(p
2

)
copies of Kr, each containing exactly one

edge from the center.

Lemma 3.1 Let p ≥ 2 and r ≥ 3 be integers. If n > r3p4 and Kn has a Kr-decomposition, then

there exists a set of
(p
2

)
elements of the decomposition whose union is Zp,r.

Proof: The proof is by induction on p. For p = 2 there is nothing to prove since Z2,r = Kr. Assume

the lemma holds for p−1. Let L be a Kr-decomposition of Kn. By the induction hypothesis, there

is a set of
(p−1

2

)
elements of L whose union forms Zp−1,r. Let X be the set of vertices of this Zp−1,r,

and let X0 be the center. Recall that |X| = p− 1 + (r− 2)
(p−1

2

)
and that |X0| = p− 1. Thus, there

are at most
(|X|

2

)
elements of L containing an edge with both endpoints in X. Since n >

(|X|
2

)
r,

there is a vertex v of Kn having the property that every element of L containing v, has no edge

with both endpoints in X. Let us add to Zp−1,r the p − 1 elements of L which contain an edge

joining v to some vertex of X0. Note that the choice of v guarantees that this addition forms a

Zp,r, whose center is X0 ∪ {v}. 2

By Lemma 3.1 we have that if n > r3p4 then Kn has a Kr-decomposition if and only if the

graph Kn \ Zp,r has a Kr-decomposition (Kn \ Zp,r is the graph obtained by deleting the edge set

of a copy of Zp,r in Kn). Also note that given any set T of t edges, they span at most 2t vertices.

Thus, we may create a Z2t,r whose center contains all the edges of T , and, by definition, Z2t,r has

a Kr-decomposition in which every element of Kr contains at most one edge from T . We therefore

obtain the following corollary:

Corollary 3.2 Let t ≥ 1 and r ≥ 2 be positive integers. If n ≥ r3(2t)4 then if Kn is Kr-

decomposable, then Kn is also t-evasive. In particular, by Wilson’s Theorem, there exists M =

M(t, r) such that for every n > M , if r − 1 divides n − 1 and
(r
2

)
divides

(n
2

)
then Kn is Kr-

decomposable and t-evasive.
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Let s = s(k, r) be the smallest integer satisfying s−r+1 > M(6(k−1), r) and s = r mod r(r−1),

where M is the constant defined in Corollary 3.2. By Corollary 3.2 both Ks and Ks−r+1 are

Kr-decomposable and 6(k − 1)-evasive. Put H(k, r) = Ks ∪ Ks−r+1. Obviously, H(k, r) has a

Kr-decomposition, and gcd(H(k, r)) = r − 1.

A graph G is called d-consistent if the degrees of all its vertices are the same, modulo d.

Obviously, every regular graph (and thus, also, the complete graph) is d-consistent. Our next

lemma is taken from [2]. In fact, we only cite here a very special case of the lemma which we need

for the proof of Theorem 1.1.

Lemma 3.3 Let H be a nonempty graph, gcd(H) = d, and let s be a positive integer. There

exists N0 = N0(H, s) such that if G = (V,E) is a d-consistent graph with n > N0 vertices and

δ(G) ≥ n− s, then:

P (H,G) = b
∑
v∈V αv

2e(H)
c,

where αv is the degree of vertex v, rounded down to the closest multiple of d. The right hand side

of this formula should be reduced by 1 if d divides gcd(G) and 0 < |E| mod e(H) ≤ d2/2.

Using Lemma 2.1, the properties of H(k, r) and Lemma 3.3, we are now ready to prove Theorem

1.1.

Proof of Theorem 1.1 We first define the constant N appearing in the theorem:

N = max{N0(H(k, r), s) , N0(Kr, 1) , 2s− 1 +
2s

1− (1− k−2)1/(2s)
, 2k2s18},

where N0 is the constant defined in Lemma 3.3. Clearly, N = N(k, r) is only a function of k and

r. Let n > N , we need to show that Kn has a k-orthogonal optimal Kr-packing. We begin by

defining the following integers:

• a = n− 1 mod r − 1 where 0 ≤ a < r − 1.

• b = n(n− 1− a) mod r(r − 1) where 0 ≤ b < r(r − 1).

• h =
(s
2

)
+
(s−r+1

2

)
. Note that h is the number of edges of H(k, r), and that h is a rather large

multiple of
(r
2

)
, since H(k, r) is Kr-decomposable, and each of the two cliques comprising

H(k, r) is 6(k − 1)-evasive.

• c = n(n− 1− a) mod 2h where 0 ≤ c < 2h.

• x = c−b
r(r−1) Note that x is a nonnegative integer since 2h divides r(r − 1).
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• y = −1 if a = 0 and x > 0 and 0 <
(n
2

)
mod

(r
2

)
≤ (r − 1)2/2. y = h/

(r
2

)
− 1 if a = 0 and

x = 0 and 0 <
(n
2

)
mod

(r
2

)
≤ (r − 1)2/2. Otherwise, y = 0.

Claim 1: (x+ y) ·
(r
2

)
< h.

Proof of Claim 1: If x > 0 then y is not positive, so

(x+ y)

(
r

2

)
≤ x

(
r

2

)
=
c− b

2
≤ c

2
< h.

If x = 0 then either y = h/
(r
2

)
− 1 or y = 0. In any case,

(x+ y)

(
r

2

)
= y

(
r

2

)
≤ h−

(
r

2

)
< h.

2

Our first task is to delete from Kn a set L0 of x+ y edge-disjoint copies of Kr. This can be easily

achieved since a single copy of H(k, r) in Kn already contains h/
(r
2

)
copies of Kr and by Claim

1, we may pick x + y < h/
(r
2

)
of them. Denote the spanning subgraph of Kn after the deletion

of the elements of L0 by G. Note that G is still r − 1-consistent, since the degree of every vertex

of G, modulo r − 1, is still a. G has
(n
2

)
− (x + y)

(r
2

)
edges and δ(G) ≥ n − 1 − ∆(H(k, r)) =

n − 1 − (s − 1) = n − s. Let L1 be an optimal H(k, r)-packing of G. Lemma 3.3 enables us to

compute the number of elements of L1. We can apply Lemma 3.3 to H(k, r) and G, since G is

d-consistent, n > N ≥ N0(H(k, r), s) and δ(G) ≥ n− s. The formula stated in Lemma 3.3 gives:

P (H(k, r), G) = b
n(n− 1− a)− 2(x+ y)

(r
2

)
2h

c =
n(n− 1− a)− c

2h
+ b

b− 2y
(r
2

)
2h

c

unless a = 0 and 0 < (
(n
2

)
− (x + y)

(r
2

)
) mod h ≤ (r − 1)2/2 in which case the last formula should

be reduced by 1.

Claim 2: The condition a = 0 and 0 < (
(n
2

)
− (x+ y)

(r
2

)
) mod h ≤ (r − 1)2/2 does not happen.

Proof of Claim 2: If a 6= 0 we are done. Assume, therefore, that a = 0. Thus, y = −1 or

y = h/
(r
2

)
−1. Consider first the case y = −1. In this case we have that 0 <

(n
2

)
mod

(r
2

)
≤ (r−1)2/2.

We must show that (
(n
2

)
− (x− 1)

(r
2

)
) mod h > (r − 1)2/2. Indeed, b = n(n− 1) mod r(r − 1) and

c = n(n − 1) mod 2h. Thus, both b and c are even integers and therefore b/2 =
(n
2

)
mod

(r
2

)
≤

(r − 1)2/2 and c/2 =
(n
2

)
mod h. Now

(

(
n

2

)
− (x− 1)

(
r

2

)
) mod h = (

(
n

2

)
− c/2 + b/2 +

(
r

2

)
) mod h = (b/2 +

(
r

2

)
) mod h.

It remains to show that (b/2 +
(r
2

)
) mod h > (r − 1)2/2. It suffices to show that b/2 +

(r
2

)
< h,

(since, trivially b/2 +
(r
2

)
> (r− 1)2/2). Indeed, this holds since b/2 ≤ (r− 1)2/2 <

(r
2

)
≤ h/2. The
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case where y = h/
(r
2

)
− 1 which happens only when x = 0 is proved similarly, and is, in fact, easier.

This completes the proof of the claim. 2

We now have that in any case,

P (H(k, r), G) =
n(n− 1− a)− c

2h
+ b

b− 2y
(r
2

)
2h

c. (1)

Consider L0 and L1. We claim that one can obtain an optimal Kr-packing of Kn using them.

This is done as follows: All the elements of L1 are edge-disjoint copies of H(k, r), and all the

x+ y elements of L0 are edge-disjoint copies of Kr. Furthermore, the elements of L0 are pairwise

edge-disjoint from the elements of L1. Every element of L1 is Kr-decomposable, so one can obtain

a Kr-packing of Kn by performing a Kr-decomposition of each element of L1, and, finally, adding

the elements of L0 to the packing. We now show that any Kr-packing obtained in this way is an

optimal Kr-packing. By (1) the number of elements of any Kr-packing obtained in this way is

Q(L0, L1) =
h(r
2

) |L1|+ |L0| =
h(r
2

)(
n(n− 1− a)− c

2h
+ b

b− 2y
(r
2

)
2h

c) + (x+ y) =

n(n− 1− a)− b
r(r − 1)

+
h(r
2

)bb− 2y
(r
2

)
2h

c+ y.

The packing number P (Kr,Kn) can be computed by using Lemma 3.3. We can use Lemma 3.3

since Kn is r − 1-consistent and since n > N ≥ N0(Kr, 1). We therefore have

P (Kr,Kn) = bn(n− 1− a)

r(r − 1)
c =

n(n− 1− a)− b
r(r − 1)

,

unless a = 0 and 0 <
(n
2

)
mod

(r
2

)
≤ (r − 1)2/2, in which case the last formula should be reduced

by 1. Note that the last condition happens if and only if y 6= 0. We need to show that in

any case, Q(L0, L1) = P (H,Kn). Consider first the case y = 0. In this case b b−2y(
r
2)

2h c = 0 so

Q(L0, L1) = P (H,Kn). If y = −1 then, since b ≤ r(r − 1)− 1 and since h is at least twice
(r
2

)
, we

have that b b−2y(
r
2)

2h c = 0. Thus, once again, we have Q = P (H,Kn). If y = h/
(r
2

)
− 1 then, by a

similar argument, b b−2y(
r
2)

2h c = −1. Thus,

Q(L0, L1) =
n(n− 1− a)− b

r(r − 1)
− h(r

2

) +
h(r
2

) − 1 =
n(n− 1− a)− b

r(r − 1)
− 1 = P (H,Kn).

Put L = L0 ∪ L1. We have shown how to obtain an optimal Kr-packing using L. We may view L

as a set of edge-disjoint cliques whose sizes are either r, s or s− r + 1. We now show how to get a

family of k-orthogonal optimal Kr-packings. This will be shown by using Lemma 2.1, together with

the fact that Ks and Ks−r+1 are Kr-decomposable and 6(k − 1)-evasive. Label the vertices of Kn

with the numbers 1, . . . , n, and let πi for i = 1, . . . , k be a set of k permutations of {1, . . . , n}, each
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chosen randomly with uniform distribution, and each chosen independently. Let Lπi be defined as

in Section 2. Note that Lπj = (Lπi)πj◦π
−1
i . The reasoning behind the last notation is to emphasize

that πj is a completely random permutation with respect to πi (they were chosen independently).

Claim 3: With probability greater than 0.5, for all 1 ≤ i < j ≤ k, every element of Lπi0 is vertex-

disjoint with every element of L
πj
0 .

Proof of Claim 3: It suffices to show that for every fixed pair of indices i and j, every element

of Lπi0 is vertex-disjoint with every element of L
πj
0 with probability greater than 1− 1/k2. Indeed,

recall that all the x+ y elements of L0 are taken from a single copy of H(k, r) in Kn. Thus, there

are at most s + (s − r + 1) ≤ 2s vertices in all the elements of L0 together. The probability that

all the numbers from a set S of 2s numbers of {1, . . . n} are mapped by a random permutation to

numbers outside S is exactly:

(n− 2s)

n

n− 2s− 1

n− 1
. . .

n− 4s+ 1

n− 2s+ 1
≥ (1− 2s

n− 2s+ 1
)2s > 1− 1

k2
,

where the last inequality follows from the fact that n > N ≥ 2s− 1 + 2s
1−(1−k−2)1/(2s)

. 2

Fixing i and j, we have by Lemma 2.1, that with probability at least q = 1 − 1/(2k2), every

element of Lπi has at most 6 bad edges with respect to Lπj (or, using the notations of Section

2, πj ◦ π−1i is (6, Lπi) semi-orthogonal). Note that the conditions of Lemma 2.1 are met, since

n > N ≥ 2k2s18 = s18/(1 − q), and every element of Lπi has at most s vertices. Thus, with

probability at least 1 − (k − 1)/(2k2), for every j 6= i, every element of Lπi has at most 6 bad

edges with respect to Lπj . Therefore, with probability at least 1− k(k − 1)/(2k2) > 0.5, for every

ordered pair i and j, every element of Lπi has at most 6 bad edges with respect to Lπj . Using this

observation, together with Claim 3 we can immediately prove the following claim:

Claim 4: There exist k permutations πi, i = 1, . . . , k of {1, . . . , n} such that for every ordered

pair i and j every element of Lπi0 is vertex-disjoint from every element of L
πj
0 , and every element

of Lπi has at most 6 bad edges with respect to Lπj .

Proof of Claim 4: Immediate from the obvious fact that two events with probability greater

than 0.5 simultaneously hold with positive probability. 2

Let πi for i = 1, . . . , k be permutations satisfying Claim 4. We may now use Lπi for i = 1, . . . , k,

to create a set of k-orthogonal optimal Kr-packings. This is done as follows: Let X be a Ks or a

Ks−r+1 element of Lπi , and recall that X is 6(k − 1)-evasive. Let T (X) be the set of edges of X

which are bad with respect to some Lπj , for j 6= i. By Claim 4, |T (X)| ≤ 6(k − 1). Since X is

6(k − 1)-evasive, we may decompose X to copies of Kr such that each edge of T (X) appears in a

distinct copy of Kr. We do these Kr-decompositions for each X ∈ Lπi which is a Ks or a Ks−r+1

and by taking the union of all these decompositions, together with the elements of Lπi0 , we obtain
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an optimal Kr-packing of Kn, denoted by Lπi2 .

Claim 5: Lπi2 for i = 1, . . . , k is a k-orthogonal optimal Kr-packing of Kn.

Proof of Claim 5: Let U1 ∈ Lπi2 and U2 ∈ L
πj
2 . We need to show that they share at most one

edge. If U1 ∈ Lπi0 and U2 ∈ L
πj
0 then they are vertex-disjoint, and we are done. Thus, we may

assume that U1 belongs to some Kr-decomposition of some X ∈ Lπi , where X is either a Ks or a

Ks−r+1. We cannot have two edges e1 and e2 of U1 both in U2, since if this were the case, then

both e1 and e2 are in T (X), but in the Kr-decomposition of X, in which U1 is one of the elements,

every edge of T (X) appears in a different copy of Kr. 2

The final claim completes the proof of Theorem 1.1 2

4 The hardness of orthogonal star decompositions

In this section we prove the following theorem:

Theorem 4.1 For every fixed integer r ≥ 3 and for every fixed integer k ≥ 1, It is NP-Complete

to decide whether an input graph G has a k-orthogonal K1,r-decomposition.

Proof: The problem is in NP since given k families of subgraphs of G we can verify in polynomial

time if each family is a K1,r-decomposition and if they are pairwise orthogonal. We will prove the

NP-Completeness by reducing from the corresponding non-orthogonal K1,r-decomposition problem

(i.e. the case k = 1), which is known to be NP-Complete for every fixed r ≥ 3 [19]. Suppose we

are given an instance G = (V,E) for the non-orthogonal K1,r-decomposition problem. We create a

graph G′ from G by adding to each vertex v a set S(v) of r(kr−k+1) new neighbors, each connected

only to v. G′ can clearly be constructed in polynomial time, and has (r(kr−k+1)+1)|V | vertices.

We claim that G′ has a k-orthogonal K1,r-decomposition if and only if G has a K1,r-decomposition.

Assume that G′ has a k-orthogonal K1,r-decomposition. In particular, G′ has a K1,r-decomposition

denoted by L. For each vertex v and for each i = 1, . . . , r let s(i, v) be the number of elements of

L rooted at v (the root of K1,r is the vertex with degree r), and having exactly i leaves in S(v).

Clearly,
∑r
i=1 i · s(i, v) = r(kr − k + 1). Thus, the number of elements rooted at v and having a

leaf in V (G) is exactly q(v) =
∑r
i=1(r− i)s(i, v) = 0 mod r. Thus, this set of q(v) edges connecting

v to vertices of V (G) can be regrouped into q(v)/r copies of K1,r, all entirely within G. By doing

this for each v ∈ V we get a K1,r-decomposition of G.

Assume now that G has a K1,r-decomposition L. We need to create k distinct K1,r-decompositions

of G′ which are pairwise orthogonal. let Q(v) be the set of vertices of G, adjacent to v, which

belong to elements of L rooted at v. Putting q(v) = |Q(v)| we obviously have q(v) = 0 mod r.

It thus suffices to show that the star whose root is v, and whose leaves are Q(v) ∪ S(v) has a
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k-orthogonal K1,r-decomposition. Consider a star with x = q(v) + r(kr − k + 1) vertices. The line

graph of this star is Kx. It suffices to show that Kx has k distinct Kr-factors, where each two

factors are edge-disjoint (a Kr-factor is a set of x/r vertex-disjoint subgraphs isomorphic to Kr).

This can be deduced from the Theorem of Hajnal and Szemerédi [26], stating that if r divides x,

and X is a graph with x vertices, δ(X) ≥ (1 − 1/r)x, then X has a Kr-factor. Thus, one may

take Kx and delete from it t edge-disjoint Kr-factors, obtaining a regular spanning subgraph with

degree x− 1− t(r − 1) as long as x− 1− t(r − 1) ≥ (1− 1/r)x. Thus, we need only to show that

x− 1− k(r − 1) ≥ (1− 1/r)x. This, in turn, is true since x ≥ r(kr − k + 1). 2

It is interesting to note that the same NP-Completeness proof applies not only when k is fixed,

but even when k = bnαc for any fixed α < 1, where n denotes the number of vertices of the

graph G. One cannot expect to have α > 1, since, by a simple counting argument, the number of

pairwise-orthogonal K1,r-decompositions is always O(n).

In closing this paper we would like to add a few comments:

• Corollary 1.2 shows that for every fixed positive integer k, there exists a k-orthogonal Kr-

decomposition of Kn (a CRSS(n, r, k) design) provided that n is large enough, and that

n satisfies the trivial necessary divisibility conditions. An easy counting argument shows

that one cannot have more than n − 2 pairwise-orthogonal Kr-decompositions. It would be

interesting to determine tight upper and lower bounds for the maximum possible value of k

(as a function of r and n), for which a k-orthogonal Kr-decomposition (or, equivalently, a

CRSS(n, r, k) design) still exists.

• It is possible to extend Theorem 1.1 to the case of arbitrary fixed graphs instead of complete

graphs. Namely, a k-orthogonal optimal H-packing of Kn.

• Although we are able to prove NP-Completeness for orthogonal star decompositions, it would

be interesting to prove a full orthogonal analog to the Dor-Tarsi result:

Conjecture 4.2 For every fixed graph H having at least three edges in some connected com-

ponent, and for every fixed positive integer k, it is NP-Complete to decide if a given input

graph G has a k-orthogonal H-decomposition.
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