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Abstract

Let T be a fixed tournament on k vertices. Let D(n, T ) denote the maximum number of

orientations of an n-vertex graph that have no copy of T . We prove that D(n, T ) = 2tk−1(n)

for all sufficiently (very) large n, where tk−1(n) is the maximum possible number of edges of a

graph on n vertices with no Kk, (determined by Turán’s Theorem). The proof is based on a

directed version of Szemerédi’s regularity lemma together with some additional ideas and tools

from Extremal Graph Theory, and provides an example of a precise result proved by applying

this lemma. For the two possible tournaments with three vertices we obtain separate proofs that

avoid the use of the regularity lemma and therefore show that in these cases D(n, T ) = 2⌊n
2/4⌋

already holds for (relatively) small values of n.

1 Introduction

All graphs considered here are finite and simple. For standard terminology on undirected and

directed graphs the reader is referred to [5]. Let T be some fixed tournament. An orientation of an

undirected graph G = (V,E) is called T -free if it does not contain T as a subgraph. Let D(G,T )

denote the number of orientations of G that are T -free. Let D(n, T ) denote the maximum possible

value of D(G,T ) where G is an n-vertex graph. In this paper we determine D(n, T ) precisely

for every fixed tournament T and all sufficiently large n. Problems of counting orientations and

directed subgraphs of a given type have been studied by several researchers. Examples of such

results appear in [1, 7].

The problem of determining D(n, T ) even for three-vertex tournaments is already quite compli-

cated (it is trivial for the unique two-vertex tournament). If G has no k-clique and T is a k-vertex

tournament, then, clearly, D(G,T ) = 2e(G) where e(G) denotes the number of edges of G. Thus,
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for a k-vertex tournament T we obtain the following easy lower bound:

D(n, T ) ≥ 2tk−1(n) (1)

where tk−1(n) is the maximum possible number of edges of a graph on n vertices with no Kk.

Turán’s Theorem shows that tk−1(n) is the number of edges of the unique complete (k − 1)-partite

graph with n vertices whose vertex classes are as equal as possible. In some cases, the lower bound

in (1) is not the correct answer. For example, Let T = C3 denote the directed triangle. For n = 7,

the graph G = K7 has 7! orientations that have no directed triangle (all the acyclic orientations).

Hence D(7) ≥ 7! = 5040 > 2t2(7) = 212 = 4096. Similar examples are true for other tournaments

with more than three vertices. However, all examples have n relatively small as a function of the

number of vertices of the tournament. This suggests that possibly for every tournament T , and

all n sufficiently large (as a function of T ), the lower bound in (1) is the correct value. Our main

theorem shows that this, indeed, is the case.

Theorem 1.1 Let T be a fixed tournament on k vertices. There exists n0 = n0(T ) such that for

all n ≥ n0,

D(n, T ) = 2tk−1(n).

The proof of Theorem 1.1 is presented in the next two sections. It is based on the basic approach

in [2] with some additional ideas, and uses several tools from Extremal Graph Theory, including a

(somewhat uncommon) directed version of the regularity lemma of Szemerédi. It provides a rare

example in which this lemma is used to prove results on directed graphs, and an even more rare

example of a precise result obtained with the lemma.

Unfortunately, the use of the regularity lemma forces the constant n0 appearing in Theorem

1.1 to be horribly large even for the case k = 3. In section 4 we outline a different proof for

the special case T = C3 that avoids using the regularity lemma, and obtain a moderate value for

n0(C3) (that can be optimized to less than 10000). Section 4 also contains a description of a simple

reduction from the problem of counting the number of red-blue edge colorings of a graph G having

no monochromatic Kk (solved in [10] for k = 3 and in [2] for k > 3) to the problem of counting the

number of orientations of a graph G that do not contain the transitive tournament on k vertices,

denoted Tk. Using this reduction we show, in particular, that n0(T3) = 1. The final section contains

some concluding remarks and open problems.

In the rest of this paper, if x and y are vertices then xy refers to an edge between x and y in an

undirected graph and (x, y) refers to a directed edge from x to y. If X and Y are disjoint subsets of

vertices then e(XY ) denotes the number of edges between X and Y in an undirected graph, while

e(X,Y ) denotes the number of edges from X to Y in a directed graph.
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2 Graphs with many T -free orientations

Throughout the next two sections we assume that T is a fixed tournament on k + 1 vertices and

k ≥ 2. Let G be an n-vertex graph with at least 2tk(n) distinct T -free orientations. Our aim in this

section is to show that such graphs must be close to a k-partite graph. More precisely we prove

the following.

Lemma 2.1 For all δ > 0 there exists n0 = n0(k, δ), such that if G is a graph of order n ≥ n0

which has at least 2tk(n) distinct T -free orientations then there is a partition of the vertex set

V (G) = V1 ∪ · · · ∪ Vk such that
∑

i e(Vi) < δn2.

Our approach in the proof of Lemma 2.1 is similar to the one from [2] and [4], which is based

on two important tools, the Simonovits stability theorem and the Szemerédi regularity lemma.

However, we shall require a (somewhat uncommon) version of the regularity lemma for directed

graphs and a few other additional ideas. We now introduce the necessary tools and lemmas needed

for the proof of Lemma 2.1.

The stability theorem ([8], see also [5], p. 340) asserts that a Kk+1-free graph with almost as

many edges as the Turán graph is essentially k-partite. The precise statement follows.

Theorem 2.2 For every α > 0 there exists β > 0 (where β ≪ α), such that any Kk+1-free graph

on m vertices with at least tk(m) − βm2 edges has a partition of the vertex set V = V1 ∪ · · · ∪ Vk

with
∑

i e(Vi) < αm2. 2

We also need the following lemma:

Lemma 2.3 Let γ > 0 and let H be a k-partite graph with m vertices and with at least tk(m)−γm2

edges. If we add to H at least (2k + 1)γm2 new edges then the new graph contains a Kk+1 with

exactly one new edge connecting two vertices in the same vertex class of H.

Proof: Let H ′ denote the new graph obtained from H by adding at least (2k + 1)γm2 new edges.

Since H is a k-partite graph, at least (2k + 1)γm2 − γm2 = 2kγm2 new edges connect vertices in

the same vertex class of H. Hence, some vertex class X contains at least 2γm2 new edges. Since

every graph contains a bipartite spanning subgraph with more than half the number of edges, we

have that the induced subgraph of H ′ on X has a bipartite spanning subgraph with more than

γm2 edges. These edges, denoted F , together with the original edges of H define a subgraph of H ′

with more than tk(m) edges, which therefore contains a Kk+1. Such a Kk+1 must contain exactly

one edge of F and all other edges are original ones, as required. 2

Next, we introduce the directed version of Szemerédi’s regularity lemma. The proof, which is

a relatively simple modification of the proof of the standard regularity lemma given in [9], can be

found in [3]. For more details on the regularity lemma we refer the reader to the excellent survey
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of Komlós and Simonovits [6], which discusses various applications of this powerful result. We now

give the definitions necessary in order to state the directed regularity lemma.

Let G = (V,E) be a directed graph, and let A and B be two disjoint subsets of V (G). If A and

B are non-empty, define the density of edges from A to B as

d(A,B) =
e(A,B)

|A||B| .

For ǫ > 0 the pair (A,B) is called ǫ-regular if for every X ⊂ A and Y ⊂ B satisfying |X| > ǫ|A|
and |Y | > ǫ|B| we have

|d(X,Y ) − d(A,B)| < ǫ |d(Y,X) − d(B,A)| < ǫ.

An equitable partition of a set V is a partition of V into pairwise disjoint classes V1, . . . , Vm

whose sizes are as equal as possible. An equitable partition of the set of vertices V of a directed

graph G into the classes V1, . . . , Vm is called ǫ-regular if |Vi| ≤ ǫ|V | for every i and all but at most

ǫ
(m

2

)

of the pairs (Vi, Vj) are ǫ-regular.

The directed regularity lemma states the following:

Lemma 2.4 For every ǫ > 0, there is an integer M(ǫ) > 0 such that for every directed graph G

of order n > M there is an ǫ-regular partition of the vertex set of G into m classes, for some

1/ǫ ≤ m ≤ M . 2

A useful notion associated with an ǫ-regular partition is that of a cluster graph. Suppose that

G is a directed graph with an ǫ-regular partition V = V1 ∪ · · · ∪ Vm, and η > 0 is some fixed

constant (to be thought of as small, but much larger than ǫ). The undirected cluster graph C(η) is

defined on the vertex set {1, . . . ,m} by declaring ij to be an edge if (Vi, Vj) is an ǫ-regular pair with

d(Vi, Vj) ≥ η and also d(Vj , Vi) ≥ η. From the definition, one might expect that if a cluster graph

contains a copy of Kk+1 then the original directed graph contains T (assuming ǫ was chosen small

enough with respect to η and k). This is indeed the case, as established in the following slightly

more general lemma whose proof is similar to an analogous lemma for the undirected case (see [6]).

Lemma 2.5 Let η > 0 and suppose that ǫ < (η/2)k/k. Let G be a directed graph with an ǫ-regular

partition V = V1 ∪ · · · ∪ Vm and let C(η) be the cluster graph of the partition.

1. If C(η) contains a copy of Kk+1 then G contains a copy of T .

2. If C(η) does not have a copy of Kk+1 and (Vs, Vt) is an ǫ-regular pair with d(Vs, Vt) ≥ η but

st /∈ C(η), and the addition of st to C(η) forms a Kk+1, then G contains a copy of T .

Proof: It clearly suffices to prove the second statement. Without loss of generality assume s = 1

and t = 2. Label the vertices of T with {1, . . . , k + 1} such that (1, 2) ∈ T (namely, there is an
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edge directed from 1 to 2). We may assume that the addition of (1, 2) to C(η) forms a Kk+1 whose

vertices are 1, . . . , k + 1. We will find a copy of T in G where vertex i of T corresponds to a vertex

of G belonging to Vi, for i = 1, . . . , k + 1.

We prove that for every p, 0 ≤ p ≤ k + 1 there are subsets Bi ⊂ Vi, 1 ≤ i ≤ k + 1, and a set of

vertices {a1, . . . , ap} where ai ∈ Bi with the following properties.

(i) |Bi| ≥ (η
2 )i−1|Vi| for all 1 ≤ i ≤ p and |Bi| ≥ (η

2 )p|Vi| for all p < i ≤ k + 1.

(ii) For all i = 1, . . . , p and for all i < j ≤ k + 1, if (i, j) ∈ T then (ai, v) ∈ G for all v ∈ Bj and if

(j, i) ∈ T then (v, ai) ∈ G for all v ∈ Bj.

The assertion of the lemma clearly follows from the above statement for p = k + 1 since the

vertices {a1, . . . , ak+1} induce T in G.

To prove (i) and (ii) we use induction on p. For p = 0 simply take Bi = Vi for all i. Given

the sets Bi and {a1, . . . , ap−1} satisfying (i), (ii) for p − 1 we show how to modify them to hold

for p. Observe that by assumption the cardinality of each Bj, for p < j ≤ k + 1, is bigger than

(η/2)k |Vj| ≥ ǫ|Vj |. For each such j if (p, j) ∈ T ((j, p) ∈ T ) let Bj
p denote the set of all vertices in

Bp that have outdegree (indegree) less than (η − ǫ)|Bj | into (from) Bj . We claim that |Bj
p| ≤ ǫ|Vp|

for each j. This is because otherwise the two sets X = Bj
p and Y = Bj would contradict the

ǫ-regularity of the pair (Vp, Vj), since d(Bj
p, Bj) < η − ǫ, whereas d(Vp, Vj) ≥ η, by assumption.

Therefore, the cardinality of the set Bp \ (Bp+1
p ∪ . . . ∪ Bk+1

p ) is at least

|Bp| − (k + 1 − p)ǫ|Vp| ≥
(η

2

)p−1
|Vp| − kǫ|Vp| > 0.

We can now choose arbitrarily a vertex ap in Bp \ (Bp+1
p ∪ · · · ∪ Bk+1

p ) and replace each Bj for

p < j ≤ k + 1 by the set of outgoing (resp. incoming) neighbors of ap in Bj . Since η − ǫ > η/2 this

will not decrease the cardinality of each Bj by more than a factor of η/2 and it is easily seen that

the new sets Bi, and the set {a1, . . . , ap} defined in this manner satisfy the conditions (i), (ii) for

p. 2

Proof of Lemma 2.1. Let δ > 0 and let α < δ/(4k + 7). Whenever necessary we shall assume n

is sufficiently large as a function of δ and k. Let β = β(α, k) be chosen as in Theorem 2.2. Recall

that β < α. Let η < β be a positive constant to be chosen later. Let ǫ < (η/2)k/k and notice that

η and ǫ satisfy the conditions of Lemma 2.5. Let M = M(ǫ) be as in Lemma 2.4.

Let G = (V,E) be an undirected graph with n vertices and at least 2tk(n) distinct T -free

orientations.

Let ~G be a T -free orientation of G. By applying Lemma 2.4 to ~G we get a partition V =

V1 ∪ · · · ∪ Vm satisfying the conditions of the lemma. In particular, 1/ǫ ≤ m ≤ M . Let C = C(η)

be the corresponding cluster graph on the vertex set {1, . . . ,m}. By Lemma 2.5, C(η) is Kk+1-free

and thus by Turán’s theorem C(η) has at most tk(m) edges.

Our first goal is to show that for some orientation of G the resulting cluster graph has more

than tk(m)−βm2 edges. Assume this is false. In order to derive a contradiction we first bound the
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number of orientations of G that could give rise to a particular partition and a particular cluster

graph C = C(η). We therefore fix the partition (that is, the vertex sets V1, . . . , Vm and the non

regular pairs) and a cluster graph agreeing with the partition.

Note that by definition, there are at most m
(⌈n/m⌉

2

)

< ǫn2 edges of G with both endpoints in

the same part of the partition. Hence, there are at most 2ǫn2
ways to orient such edges. Similarly,

there are at most ǫ
(m

2

)

· (⌈n/m⌉)2 < ǫn2 edges of G that belong to non ǫ-regular pairs. There are

at most 2ǫn2
ways to orient such edges.

Next, consider an ǫ-regular pair (Vi, Vj) such that ij /∈ C(η). Thus, either e(Vi, Vj) ≤ |Vi||Vj |η
or else e(Vj , Vi) ≤ |Vi||Vj |η. In either case, if e(ViVj) is the number of undirected edges of G between

Vi and Vj then there are at most

2





⌊|Vi||Vj |η⌋
∑

q=0

(

e(ViVj)

q

)



 < 2
n2

m2
η · 2H(η)n2/m2 ≪ 2H(2η)n2/m2

orientations of the edges of G belonging to this pair. Here we use the well known estimate
( a
xa

)

≤
2H(x)a for 0 < x < 1, where H(x) = −x log2 x − (1 − x) log2(1 − x) is the entropy function.

Finally, consider a pair corresponding to an edge of C(η). Trivially there are at most 2(⌈n/m⌉)2

possible orientations of the edges belonging to this pair.

Altogether, the total number of orientations of G giving rise to a fixed partition and a fixed

cluster graph with r ≤ tk(m) − βm2 edges is at most

2ǫn2 · 2ǫn2 · 2H(2η)(n2/m2)(m

2 ) · 2(⌈n/m⌉)2r < 22ǫn2
2H(2η)n2

2(n2/m2)(tk(m)−βm2)2nm <

22ǫn2
2H(2η)n2

2(tk(n)−βn2)2nM2k

where the last inequality follows from the well known fact that for every x,

k − 1

k

x2

2
− k < tk(x) ≤ k − 1

k

x2

2
.

Note that M is a constant and there are at most Mn partitions of the vertex set of G into at most

M parts. Also, for every such partition there are at most 2M2/2 choices for the cluster graph C(η)

and (significantly) less than 2M2/2 choices for the non-regular pairs.

Thus, the total number of T -free orientations of G is at most

Mn2M2
22ǫn2

2H(2η)n2
2nM2k2−βn2

2tk(n).

Since ǫ < η and since H(2η) tends to zero with η we have that for η sufficiently small as a function

of β, the number of T -free orientations of G is less than 2tk(n), a contradiction.

Fix an orientation ~G of G for which C = C(η) has at least tk(m) − βm2 edges. Let V1, . . . , Vm

denote the parts in the ǫ-regular partition. According to Theorem 2.2, C has a vertex partition
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W = W1 ∪ · · · ∪ Wk with
∑

i e(Wi) < αm2. Thus, let C∗ be the spanning subgraph of C from

which the edges with both endpoints in Wi have been removed, for i = 1, . . . , k. Notice that C∗

is a k-partite graph with at least tk(m) − (β + α)m2 = tk(m) − γm2 edges where γ = α + β. We

call a pair (Vi, Vj) a one-sided dense pair if it is an ǫ-regular pair and ij is not an edge of C but

either d(Vi, Vj) > η or d(Vj , Vi) > η. We claim that there are at most (2k + 1)γm2 one-sided dense

pairs. Assume this is false, adding to C∗ the edges corresponding to one-sided dense pairs we get,

by Lemma 2.3, that there are k + 1 vertices of C (w.l.o.g. assume they are {1, . . . , k + 1}) such

that ij ∈ C for all 1 ≤ i < j ≤ k + 1 except for the edge 1 2 which is not in C but corresponds

to the one-sided dense pair (V1, V2) where d(V1, V2) > η. By Lemma 2.5, ~G has T , yielding the

contradiction.

We now delete from G the following edges:

1. The edges with both endpoints in Vi for i = 1, . . . ,m. We have shown that there are at most

ǫn2 such edges.

2. The edges belonging to non ǫ-regular pairs. We have shown that there are at most ǫn2 such

edges.

3. The edges belonging to non-dense pairs or one-sided dense pairs. There are at most (2η +

(2k + 1)γ)n2 such edges.

4. The edges belonging to pairs (Vi, Vj) such that ij ∈ Ws for s = 1, . . . , k. Since there are at

most αm2 such pairs, there are at most αn2 such edges.

In other words, we keep only edges belonging to pairs (Vi, Vj) such that ij ∈ C∗. Denote this

subgraph of G by G′. Then, G′ is k-partite and, recalling that ǫ < η < β < α and γ = α + β, the

number of edges deleted from G is at most

(α + 2η + (2k + 1)γ + 2ǫ)n2 < (4η + (4k + 3)α)n2 ≤ (4k + 7)αn2 < δn2.

This concludes the proof of Lemma 2.1. 2

3 Proof of Theorem 1.1

In this section we complete the proof of our main theorem. The proof follows along the lines of

[2] with several essential modifications required to deal with directed graphs. We start by recalling

some notation and facts. Tk(n) denotes the Turán graph, which is a complete k-partite graph on n

vertices with class sizes as equal as possible, and, as denoted earlier, tk(n) is the number of edges

in Tk(n). Let δk(n) denote the minimum degree of Tk(n). The following equalities are well known

simple observations.

tk(n) = tk(n − 1) + δk(n), δk(n) = n − ⌈n/k⌉, k − 1

k
n2/2 − k < tk(n) ≤ k − 1

k
n2/2. (2)

7



We also need one additional easy lemma, before we present the proof of Theorem 1.1.

Lemma 3.1 Let S be a tournament with the vertices {1, . . . , k}. Let G be a directed graph and

let W1, . . . ,Wk be subsets of vertices of G such that for every i 6= j and every pair of subsets

Xi ⊆ Wi, |Xi| ≥ 10−k|Wi| and Xj ⊆ Wj , |Xj | ≥ 10−k|Wj| there are at least 1
10 |Xi||Xj | edges of G

from Xi to Xj if (i, j) ∈ S or at least 1
10 |Xi||Xj | edges of G from Xj to Xi if (j, i) ∈ S. Then G

contains a copy of S where the vertex playing the role of i ∈ S belongs to Wi.

Proof. We use induction on k. For k = 1 and k = 2 the statement is obviously true. Suppose it

is true for k − 1 and let W1, . . . ,Wk be the subsets of vertices of G which satisfy the conditions of

the lemma for the fixed tournament S.

For every 1 ≤ i ≤ k − 1 denote by W i
k the subset of vertices in Wk defined as follows. If

(i, k) ∈ S then v ∈ W i
k if v has less than |Wi|/10 incoming edges from Wi. If (k, i) ∈ S then

v ∈ W i
k if v has less than |Wi|/10 outgoing edges to Wi. By definition, if (i, k) ∈ S, we have

e(Wi,W
i
k) < |W i

k||Wi|/10 and if (k, i) ∈ S, we have e(W i
k,Wi) < |W i

k||Wi|/10 and therefore, in

any case, |W i
k| < 10−k|Wk|. Thus we deduce that

∣

∣

⋃k−1
i=1 W i

k

∣

∣ < (k − 1)10−k|Wk| < |Wk|/2. So in

particular there exists a vertex v in Wk which does not belong to
⋃k−1

i=1 W i
k. For every 1 ≤ i ≤ k−1

if (i, k) ∈ S let W ′
i be the set of incoming neighbors of v in Wi, and if (k, i) ∈ S let W ′

i be the

set of outgoing neighbors of v in Wi. By definition, W ′
i has size at least |Wi|/10. Note that for

every pair of subsets Xi ⊆ W ′
i and Xj ⊆ W ′

j with sizes |Xi| ≥ 10−(k−1)|W ′
i | ≥ 10−k|Wi| and

|Xj | ≥ 10−(k−1)|W ′
j | ≥ 10−k|Wj|, G contains at least 1

10 |Xi||Xj | edges between Xi and Xj in the

appropriate direction. By the induction hypothesis there exists a copy of S − k with one vertex in

each W ′
i , playing the role of i ∈ S in this copy, for 1 ≤ i ≤ k − 1. This copy, induced together with

the vertex v, forms a copy of S where v plays the role of k. 2

Proof of Theorem 1.1. Let n0 be large enough to guarantee that the assertion of Lemma 2.1

holds for δ = 10−8k. Suppose that G is a graph on n > n2
0 vertices with at least 2tk(n)+m distinct

T -free orientations, for some m ≥ 0. Our argument is by induction with an improvement at every

step. More precisely, we will show that if G is not the corresponding Turán graph then it contains a

vertex x such that G−x has at least 2tk(n−1)+m+1 distinct T -free orientations. Iterating, we obtain

a graph on n0 vertices with at least 2tk(n0)+m+n−n0 > 2n2
0 distinct T -free orientations. But a graph

on n0 vertices has at most n2
0/2 edges and hence at most 2n2

0/2 orientations. This contradiction will

prove the theorem for n > n2
0.

Recall from (2) that δk(n) denotes the minimum degree of Tk(n), and tk(n) = tk(n−1)+δk(n). If

G contains a vertex x of degree less than δk(n), then the edges incident with x can have, together, at

most 2δk(n)−1 orientations. Thus G−x should have at least 2tk(n−1)+m+1 distinct T -free orientations

and we are done. Hence we may and will assume that all the vertices of G have degree at least

δk(n).
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Consider a partition V1 ∪ · · · ∪ Vk of the vertex set of G which minimizes
∑

i e(Vi). By our

choice of n0 in Lemma 2.1, we have that
∑

i e(Vi) < 10−8kn2. Note that if |Vi| >
(

1/k + 10−6k
)

n,

for some i, then every vertex in Vi has at least δk(n) −
(

k−1
k n − 10−6kn

)

≥ 10−6kn − 1 neighbors

in Vi. Thus
∑

i e(Vi) > (10−6kn − 1)(1/k + 10−6k)n/2 > 10−8kn2, a contradiction. Therefore,

|Vi| − n/k ≤ 10−6kn for every i and also |Vi| = n − ∑

j 6=i |Vj | ≥ n/k − (k − 1)10−6kn. So for every

i we have
∣

∣|Vi| − n/k
∣

∣ < 10−5kn. Let D denote the set of all possible T -free orientations of G.

First consider the case when there is some vertex with many neighbors in its own class of the

partition, say x ∈ V1 with |N(x) ∩ V1| > n/(400k). Our choice of partition guarantees that in this

case |N(x)∩ Vi| > n/(400k) also for all 2 ≤ i ≤ k, or by moving x to another part we could reduce
∑

i e(Vi). Consider a permutation σ of {1, . . . , k + 1}. Let Dσ ⊂ D be a subset of orientations

defined as follows: An orientation belongs to Dσ if for all i = 1, . . . , k there exist Wi ⊂ Vi with

|Wi| ≥ n/(900k) such that if (σ(i), σ(k+1)) ∈ T then x has an incoming edge from each v ∈ Wi and

if (σ(k + 1), σ(i)) ∈ T then x has an outgoing edge to each v ∈ Wi. Let D∗ = D \
(

∪σ∈S(k+1)Dσ

)

.

Consider an orientation of G belonging to Dσ. Since the orientation is T -free we have by Lemma

3.1 that there is some ordered pair (i, j) (corresponding to (σ(i), σ(j)) ∈ T ) and subsets Xi ⊂ Wi,

Xj ⊂ Wj with |Xi| ≥ 10−k|Wi| and |Xj | ≥ 10−k|Wj| with at most 1
10 |Xi||Xj | edges from Xi to Xj .

There are at most
(k
2

)

2|Vi|2|Vj | < 22n ways to choose such an ordered pair (i, j) and to choose Xi

and Xj and at most

1

10
|Xi||Xj |

( |Xi||Xj |
⌊|Xi||Xj |/10⌋

)

<
1

10
|Xi||Xj |2H(0.1)|Xi||Xj| < 2H(0.11)|Xi||Xj |

ways to orient at most 1
10 |Xi||Xj | edges from Xi to Xj. In addition, from the structure of G we

know that there are at most tk(n) + 10−8kn2 − |Xi||Xj | other edges in this graph, so the number

of orientations in Dσ can be bounded as follows

|Dσ| ≤ 2tk(n)+10−8kn2−|Xi||Xj | 22n2H(0.11)|Xi||Xj |

≤ 2tk(n)+10−8kn2
22n (

√
2/2)|Xi||Xj | ≤ 2tk(n)+10−8kn2

22n (
√

2/2)10
−2k−6k−2n2

< 2tk(n)+10−8kn2
22n

(

2−0.01
)10−2k−6k−2n2

= 2tk(n) 22n 2−(10−2k−8k−2−10−8k)n2

≪ 2tk(n)

2(k + 1)!
.

In this estimate we used the facts that H(0.11) < 1/2, |Xi|, |Xj | ≥ n/(k10k+3),
√

2/2 < 2−0.01 and

that 10−2k−8k−2 − 10−8k > 0 for all k ≥ 2.

By the above discussion, |D∗| contains at least 2tk(n)+m − 2tk(n)/2 ≥ 2tk(n)+m−1 distinct T -free

orientations of G. Let ~G be one of them. Since ~G /∈ Dσ for no σ ∈ S(k + 1) we must have some

i such that there are at most n/(900k) edges from x to Vi or at most n/(900k) edges from Vi to

x. Assume w.l.o.g. that there are at most n/(900k) edges from x to Vi. Thus, there are at least

9



n/(400k) − n/(900k) > n/(900k) edges from Vi to x. Let σ ∈ S(k + 1) be a permutation for which

(σ(i), σ(k + 1)) ∈ T . Since ~G /∈ Dσ we must have some j 6= i for which there are at most n/(900k)

edges from x to Vj or at most n/(900k) edges from Vj to x.

We have shown that for every element of D∗ there are (at least) two distinct indices i, j such that

there are at most n/(900k) edges connecting x to Vi in at least one of the two possible directions

and the same hold for Vj (although not necessarily in the same direction). We call the direction

with less than n/(900k) edges the sparse direction.

Since the size of Vi is at most (1/k + 10−5k)n, we obtain that the number of orientations of

edges between x and Vi, given the sparse direction, is bounded by

n

900k

(⌊(1/k + 10−5k)n⌋
⌊n/(900k)⌋

)

≤ 2H(0.002)(1/k+10−5k )n ≤ 20.03(1/k+10−5k)n, (3)

since H(0.002) < 0.03. Clearly, this estimate is also valid for the number of orientations of edges

between x and Vj, given the sparse direction between them. Note that in addition x is incident to

at most n − |Vi| − |Vj | ≤ (k−2
k + 2 · 10−5k)n other edges, which can have two possible directions.

Using the above inequalities together with the facts that there are
(k
2

)

possible pairs i, j and four

possible choices for the sparse directions between x and Vi and between x and Vj we obtain that

the number of orientations of the edges incident with x is at most

4

(

k

2

)

(

20.03(1/k+10−5k)n
)2

2

(

k−2
k

+2·10−5k
)

n < 2

(

k−1
k

− 1
100k

)

n.

But we had that |D∗| ≥ 2tk(n)+m−1. Hence the number of T -free orientations of G − x is at least

2tk(n)+m−1−(k−1
k

− 1
100k

)n ≫ 2tk(n−1)+m+1.

This completes the induction step in the first case.

Now we may assume that every vertex has degree at most n/(400k) in its own class. We may

suppose that G is not k-partite, or else by Turán’s theorem e(G) ≤ tk(n) and therefore |D| ≤ 2tk(n)

with equality only for G = Tk(n). So, without loss of generality, we suppose that G contains an

edge xy with x, y ∈ Vk. For σ ∈ S(k + 1), let Dσ denote the set of all T -free orientations ~G of G

in which (x, y) ∈ ~G if and only if (σ(k), σ(k + 1)) ∈ T and there are sets Wi ⊂ Vi, |Wi| ≥ n/(900k)

for every 1 ≤ i ≤ k − 1 such that all the edges from x to Wi exist and are oriented from x to

Wi if (σ(k), σ(i)) ∈ T or oriented from Wi to x if (σ(i), σ(k)) ∈ T , and also all the edges from

y to Wi exist and are oriented from y to Wi if (σ(k + 1), σ(i)) ∈ T or oriented from Wi to y if

(σ(i), σ(k + 1)) ∈ T . Let D∗ = D \
(

∪σ∈S(k+1)Dσ

)

denote the remaining orientations.

Consider an orientation ~G ∈ Dσ. Let Tσ denote the sub-tournament of T obtained by deleting

the vertices σ(k) and σ(k + 1). Since there is no T in ~G, there is also no copy of Tσ in which the

role of vertex σ(i) is played by a vertex from Wi for i = 1, . . . , k − 1. Thus, by Lemma 3.1, there is

a pair (i, j) and subsets Xi ⊂ Wi, Xj ⊂ Wj with |Xi| ≥ 10−(k−1)|Wi| and |Xj | ≥ 10−(k−1)|Wj | with

10



at most 1
10 |Xi||Xj | edges from Xi to Xj if (σ(i), σ(j)) ∈ T or at most 1

10 |Xi||Xj | edges from Xj to

Xi if (σ(j), σ(i)) ∈ T . Arguing exactly as before in the first case we can prove that |Dσ| < 2tk(n)

2(k+1)!

and thus |D∗| ≥ 2tk(n)+m−1.

Next consider an orientation ~G of G from D∗ and suppose, without loss of generality, that

(x, y) ∈ ~G. Let σ ∈ S(k+1) be such that (σ(k), σ(k+1)) ∈ T . Since ~G /∈ Dσ there is some class Vi,

i ≤ 1 ≤ k−1, in which x and y have at most n/(900k) “common neighbors” in the sense that x has

an outgoing edge to all these common neighbors in case (σ(k), σ(i)) ∈ T or else x has an incoming

edge from all these common neighbors in case (σ(i), σ(k)) ∈ T and also y has an outgoing edge to

all these common neighbors in case (σ(k + 1), σ(i)) ∈ T or else y has an incoming edge from all

these common neighbors in case (σ(i), σ(k + 1)) ∈ T . Note that for any other vertex z in Vi which

is not such a common neighbor, we can only have at most three possible simultaneous orientations

of the two edges xz and yz of G (assuming they exist). Since there are at most (1/k + 10−5k)n

vertices in Vi we have at most 3(1/k+10−5k)n ways to orient such edges and, as in (3), at most

n

900k

(⌊(1/k + 10−5k)n⌋
⌊n/(900k)⌋

)

≤ 2H(0.002)(1/k+10−5k)n ≤ 20.03(1/k+10−5k)n

possibilities to choose a set of common neighbors of x and y in Vi. Thus, there are at most

20.03
(

1/k+10−5k
)

n 3

(

1/k+10−5k
)

n < 21.7
(

1/k+10−5k
)

n

ways to orient edges from x,y to Vi. Note that, since the degree of x and y in Vk is at most n/(400k)

we have that the number of edges from x, y to
⋃

j 6=i Vj is bounded by n(2(k−2
k +2·10−5k)+2/(400k)).

Even if all these edges can be oriented arbitrarily, since we have k − 1 choices for the index i, and

four possible combinations for the direction between x and y to their common neighbors in Vi, we

can bound the number of orientations of the edges incident at x and y by

4(k − 1) 21.7
(

1/k+10−5k
)

n 22
(

k−2
k

+ 1
400k

+2·10−5k
)

n < 22
(

k−1
k

− 1
100k

)

n.

But we know that |D∗| ≥ 2tk(n)+m−1. Thus the number of T -free orientations of G − {x, y} is at

least

2tk(n)+m−1−2(k−1
k

− 1
100k

)n ≫ 2tk(n−2)+m+2.

This completes two induction steps for the second case and proves the theorem. 2

4 Directed triangles and transitive tournaments

In this section we consider two special cases of Theorem 1.1. We first show an easy proof of

Theorem 1.1 in case T = Tk is the transitive tournament with k vertices. Next, we consider the

smallest non-transitive tournament, namely T = C3 and outline a proof for C3 that avoids using

the regularity lemma. Indeed, the proof for C3 is more complicated than the proof for T3. The
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proof for T3 follows rather easily from a result of the second author in [10] concerning the number

of red-blue edge colorings of a graph that avoid monochromatic triangles and the result for Tk

(k > 3) follows from a recent result of [2] that generalizes the result of [10] to larger cliques. The

proof for C3 does not follow from these coloring results and requires an ad-hoc proof (although

some arguments are similar to those appearing in the proof of [10]). To see the difficulty consider

the following argument. Let F (G) denote the number of red-blue edge colorings of G with no

monochromatic triangle and let D(G) denote the number of orientations of G with no C3. Since

the Ramsey number R(3) = 6, we have F (G) = 0 whenever G has a K6. In particular, F (Kn) = 0

for n ≥ 6. On the other hand, D(Kn) = n!, and D(G) > 0 always. Thus, it is more difficult to

show that dense graphs have a relatively small D(G) than it is to show that dense graphs have a

relatively small F (G). In fact, our proof for T = C3 uses some powerful decomposition results that

are not needed in the coloring case.

4.1 Orientations with no transitive tournaments

Let F (G, k) denote the number of red-blue edge colorings of a graph G that have no monochromatic

Kk. Let F (n, k) denote the maximum possible value of F (G, k) where G has n vertices. The

following result is proved in [10] for k = 3 and in [2] for all k > 3 (the result in [2] also considers

colorings with more than two colors).

Lemma 4.1 Let k ≥ 3. There exists n0 = n0(k) such that for all n ≥ n0, F (n, k) = 2tk−1(n). 2

In fact, in [10] it is shown that n0(3) = 6 (and this is tight) while the n0(k) obtained in [2] is a

huge number already for k = 4, as their proof uses the regularity lemma.

Lemma 4.1 and (1) enable us to prove the following:

Proposition 4.2 Let k ≥ 3. Then, F (n, k) ≥ D(n, Tk). Consequently, D(n, Tk) = 2tk−1(n) for all

n ≥ n0(k) where n0(k) is the constant appearing in Lemma 4.1.

Proof: Consider a graph G on n vertices. Label its vertices with the numbers 1, . . . , n. There is a

bijection between red-blue edge colorings of G and orientations of G as follows: An edge is colored

blue if and only if in the associated orientation the edge is oriented from the smaller vertex to the

larger. Now assume that G has an orientation with no Tk. We show that the associated coloring

has no monochromatic Kk. Consider a Kk of G. It must contain a directed cycle in the orientation.

In the associated coloring, we cannot have all the edges of such a cycle colored with the same color.

We have shown that F (G, k) ≥ D(G,Tk). Hence, F (n, k) ≥ D(n, Tk). 2.

Notice that although n0(3) = 6 (in fact, F (5, 3) = 82 > 26) it is easy to check that D(n, T3) =

2⌊n
2/4⌋ for all n ≥ 1 (one needs to check only n = 1, . . . , 5). For k = 4, however, we have

D(4, T4) = 26 − 4! = 40 > 2t3(4) = 32.
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4.2 Orientations with no directed triangles

Theorem 4.3 For all n ≥ 600000, D(n,C3) = 2⌊n
2/4⌋.

Outline of proof: Let H be a graph, and let H +x denote the graph obtained from H by adding

a new vertex x and connecting it to all vertices of H. For a C3-free orientation ~H of H, let ext( ~H)

denote the number of C3-free orientations of H + x that are extensions of ~H. Let ext(H) denote

the maximum possible value of ext( ~H) taken over all C3-free orientations of H. It is not difficult

to see that ext(Kk) = k + 1 and ext(Sk) = 2k−1 + 1, where Sk is the star with k vertices. Slightly

more complicated arguments show that for all k ≥ 3, ext(Pk) = ext(Pk−1) + ext(Pk−2) where Pk

is the path with k vertices. In particular, for all k ≥ 1, ext(Pk) = zk where zk is the k + 2 element

of the Fibonacci sequence. If H1, . . . ,Hk are the components of a spanning subgraph of H then

ext(H) ≤ ∏k
i=1 ext(Hi).

Theorem 4.3 follows from the following lemma by a simple inductive argument.

Lemma 4.4 If n ≥ 320, and G is a graph with n vertices, then at least one of the following must

hold:

1. D(G) ≤ 2⌊n
2/4⌋.

2. There exists a vertex x of minimum degree such that if H is the subgraph of G induced by the

neighbors of x then ext(H) ≤ 0.94 · 2⌊n/2⌋. Thus, D(G) ≤ 0.94 · 2⌊n/2⌋D(G − x).

3. δ(G) = ⌊n/2⌋, there exist two vertices x and y such that D(G) ≤ 2⌊n/2⌋D(G− x) and D(G−
x) ≤ 0.94 · 2⌊(n−1)/2⌋D(G − {x, y}).

The proof of Lemma 4.4 is quite involved and consists of a detailed case analysis which corresponds

to the structure of G. We use several lemmas that provide upper bounds for ext(H) for various

types of graphs H. The details are available upon request from the authors.

5 Concluding remarks and open problems

• Another interesting problem is to determine D(n,m, T ), that is, the maximum possible num-

ber of T -free orientations of a graph with n vertices and m edges. By (1) we trivially have

D(n,m, T ) = 2m whenever m ≤ tk−1(n), where k is the number of vertices of T . The problem

becomes considerably more difficult for m > tk−1(n). Even for T = C3 the exact values for

all (n,m) pairs are unknown. Using the fact that every non-transitive tournament contains

a triangle we trivially have D(n,
(n
2

)

, C3) = n!. It is also not difficult to prove the following

proposition

Proposition 5.1
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1. D(n,
(

n
2

)

− 1, C3) = (n − 1)!(n − 1) for n ≥ 2.

2. D(n,
(n
2

)

− 2, C3) = n! − 2(n − 1)! + (n − 2)! + 2(n − 3)! for n ≥ 4. 2

• It is of some interest to determine D(n,C3) for all n. Using a computer program we have

D(n,C3) = n! for n = 1, . . . , 7. The same program yields D(8, C3) = 216. The case n = 9 is

too large for a straightforward computer verification. We conjecture that the following holds

for all n ≥ 1

D(n,C3) = max{2⌊n2/4⌋, n!}.

In particular, it is conjectured that n0(C3) = 8 in the statement of Theorem 1.1.

• It would be interesting to generalize Theorem 1.1 to the situation of finding the number of

H-free orientations, where H is any directed graph, not necessarily a tournament. In fact, it

is not difficult to generalize Lemma 2.1 to apply also for H = T (t), where t is any positive

integer and T (t) is the directed graph obtained from the k-vertex tournament T by replacing

each vertex with an independent set of size t. In particular, this shows that an asymptotic

version of Theorem 1.1 holds for T (t).
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