
DISJOINT COLOR-AVOIDING TRIANGLES

RAPHAEL YUSTER ∗

Abstract. A set of pairwise edge-disjoint triangles of an edge-colored Kn is r-color avoiding if it
does not contain r monochromatic triangles, each having a different color. Let fr(n) be the maximum
integer so that in every edge coloring of Kn with r colors, there is a set of fr(n) pairwise edge-disjoint
triangles that is r-color avoiding. We prove that 0.1177n2(1 − o(1)) < f2(n) < 0.1424n2(1 + o(1)).
The proof of the lower bound uses probabilistic arguments, fractional relaxation and some packing
theorems. We also prove that fr(n)/n2 < 1

6
(1 − 0.145r−1) + o(1). In particular, for every r, if n

is sufficiently large, there are edge colorings of Kn with r colors so that the removal of any o(n2)
members from any Steiner triple system does not turn it r-color avoiding.
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1. Introduction. All graphs considered here are finite, undirected, and simple.
For standard graph-theoretic terminology the reader is referred to [2]. The study of
properties of edge colorings of Kn is a central topic of research in Ramsey Theory and
Extremal Graph Theory. In this paper a coloring always refers to an edge coloring.

A subgraph of a colored Kn is monochromatic if all of its edges are colored with
the same color. A set of pairwise edge-disjoint subgraphs of a colored Kn is r-color
avoiding if it does not contain r monochromatic elements, each having a different color.
For an r-coloring C of Kn, and for an integer k ≥ 3, let fr,k(C) be the maximum
size of a set of pairwise edge-disjoint copies of Kk in Kn that is r-color avoiding. Let
fr,k(n) be the minimum possible value of fr,k(C) where C ranges over all r-colorings
of Kn. When k = 3, we denote fr,k(C) = fr(C) and fr,k(n) = fr(n). Thus, the value
f2(n) guarantees that in any red-blue coloring of Kn we will always have a set of
f2(n) edge-disjoint triangles that either does not contain a blue triangle or else does
not contain a red one. The main result of this paper establishes nontrivial lower and
upper bounds for f2(n).

Theorem 1.1.

0.1177− o(1) <
f2(n)
n2

<
3
√

5− 5
12

+ o(1).

Notice that (3
√

5−5)/12 < 0.1424. The term o(1) denotes a quantity that tends to 0
as n→∞. The constant 0.1177 in the lower bound in Theorem 1.1 may be taken to
be (3β2−β4)/12, where β = 0.7648... is the smallest root of x4−3x3 +1. Multiplying
the constants by 600, we obtain that, in terms of covering percentages, we can always
cover more than 70% of the edges with a set of triangles that is 2-color avoiding, while
we cannot, in general, expect to cover more than 86% of the edges with such a set.
The main difficulty in the proof of Theorem 1.1 is in the lower bound. Our proof for
it requires the use of some probabilistic arguments, some known packing theorems,
the use of fractional relaxation and a connection between it and the integral problem.
Closing the gap between the upper and lower bounds in Theorem 1.1 is currently
beyond our reach.

The upper bound follows from a general construction. Notice that a ( 1
6 − o(1))n2

upper bound for fr(n) is trivial since every set of pairwise edge-disjoint triangles (we
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also use the expression triangle packing) has at most n(n− 1)/6 elements. In fact, it
is well-known that fr(n) = ( 1

6 − o(1))n2 if r is sufficiently large as a function of n, as
Kirkman [9] proved that there are triangle packings with n2

6 (1− o(1)) triangles. Our
construction, however, shows that no finite number of colors suffices to guarantee an
asymptotic optimal r-color avoiding triangle packing for all n.

Theorem 1.2. For all r ≥ 2, fr(n)
n2 < 1

6 (1 − ζr−1) + o(1) where ζ = 7−3
√

5
2 >

0.145.
We briefly mention three related parameters that have been investigated by several

researchers. Erdős et al. [4] considered the function N(n, k), which is the minimum
number of pairwise edge-disjoint monochromatic Kk in any 2-coloring of Kn. Erdős
conjectured that N(n, 3) = n2/12+o(n2). This conjecture is still open. A lower bound
of slightly more than n2/13 is given in [8]. Similarly, let N ′(n, k) be the minimum
number of pairwise edge-disjoint monochromatic Kk, all in the same color, in any
2-coloring of Kn. Jacobson (see, e.g., [4]) conjectured that N ′(n, 3) = n2/20 + o(n2)
(there is a simple example showing this would be best possible). Again, the result
from [8] immediately implies a lower bound of slightly more than n2/26. For a fixed
graph H and a 2-coloring C of Kn, let fH(C) be the number of edges that do not
belong to monochromatic copies of H. Now let f(n,H) = maxC fH(C). It is shown
in [7] that if H is a complete graph (or, in fact, any edge-color-critical graph) and n
is sufficiently large, then f(n,H) equals the Turán number ex(n,H).

The rest of this paper is organized as follows. The proof of the lower bound
in Theorem 1.1 is given in Section 2. The proof of the general upper bound yielding
Theorem 1.2 is given in Section 3. Notice that the case r = 2 of Theorem 1.2 coincides
with the upper bound in Theorem 1.1. In Section 4 we give some non-trivial proofs
of the exact value of f2(n) for n ≤ 8. The final section contains some concluding
remarks and open problems.

2. A lower bound for f2(n). The proof of the lower bound in Theorem 1.1
is obtained by combining two different approaches; one approach (which we call the
quadratic approach) is more suitable for colorings where no color is significantly more
frequent than the other, and the second approach (the fractional approach) is more
suitable when one color is significantly more frequent than the other.

For an integer k ≥ 3, a Steiner system S(2, k, n) is a set X of n points, and a
collection of subsets of X of size k (called blocks), such that any 2 points of X are in
exactly one of the blocks. In the case k = 3, we have a Steiner triple system, which
exists if and only if n ≡ 1, 3 mod 6. The case k = 4 is known to exist if and only if
n ≡ 1, 4 mod 12; see, e.g., [1].

In the proof of the lower bound for Theorem 1.1 we assume that C is a red-blue
coloring of Kn with α

(
n
2

)
blue edges and (1− α)

(
n
2

)
red edges, and 1/2 ≤ α ≤ 1. We

will also assume that n ≡ 1 mod 12 as this does not affect the asymptotic results.
Each approach will yield a lower bound for f2(n) in terms of n and α. For each
plausible α, one of these lower bounds will be at least as large as the claimed lower
bound in Theorem 1.1.

2.1. The quadratic approach. For a red-blue coloring C of Kn, let t(C) be
the number of monochromatic triangles. Let t(n,m) be the maximum value of t(C)
ranging over colorings with m blue edges. Clearly, t(n,m) = t(n,

(
n
2

)
−m) = Θ(n3).

Goodman [5] conjectured the value of t(n,m). This conjecture has been proved by
Olpp [10], who determined t(n,m), and also determined at least one coloring with m
blue edges having t(n,m) monochromatic triangles.
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Before we state Olpp’s result we need to define two graphs. Let u and v be two
integers which satisfy m =

(
v
2

)
+ u where 0 ≤ u ≤ v − 1. Note that for every m ≥ 0,

v and u are uniquely defined. Let H1(n,m) be the n-vertex graph which is composed
of a clique on v vertices and, if u > 0, a unique vertex outside the clique, which is
connected to exactly u vertices of that clique. (The remaining vertices, if there are
any, are isolated). Note that H1(n,m) has exactly m edges. Let H2(n,m) be the
complement of H1(n,

(
n
2

)
−m). Note that H2(n,m) has exactly m edges. Olpp has

proved the following:
Lemma 2.1 (Olpp [10]). Let C1 be the coloring of Kn where the edges colored blue

are defined by H1(n,m). Let C2 be the coloring of Kn where the edges colored blue
are defined by H2(n,m). Then t(n,m) = max{t(C1) , t(C2)}. Note that Lemma 2.1
also supplies a formula for t(n,m) since t(C1) and t(C2) can be explicitly computed.

Lemma 2.2. If C is a red-blue coloring with m = α
(
n
2

)
blue edges and α ≥ 0.5,

then

f2(C) ≥ n2

12
(1 + 3α(1−

√
α))− o(n2).

Proof. Let C1 and C2 be the colorings in Lemma 2.1 where m = α
(
n
2

)
. By

examining the graphs H1(n,m) and H2(n,m) it is easy to verify that

t(C1) =
(
n

3

)
(1− 3α(1−

√
α))− o(n3),

t(C2) =
(
n

3

)
(1− 3(1− α)(1−

√
1− α))− o(n3).

Since α ≥ 0.5, we have t(C1) ≥ t(C2). Thus, by Lemma 2.1,

t(C) ≤ t(n,m) =
(
n

3

)
(1− 3α(1−

√
α))− o(n3).(2.1)

Fix a Steiner triple system S(2, 3, n). A random permutation π of [n] that maps the
vertices of Kn to the elements of S(2, 3, n) corresponds to a random triangle packing
Lπ of Kn of order n(n − 1)/6. Every triangle is equally likely to appear in Lπ,
each with probability 1/(n − 2). The expected number of monochromatic triangles
in Lπ is, therefore, equal to t(C)/(n − 2). Fix a π for which Lπ contains at most
t(C)/(n − 2) monochromatic triangles. Thus, there is a packing M ⊂ Lπ, of size at
least |Lπ| − t(C)/(2n− 4) which is 2-color avoiding. By (2.1),

f2(C) ≥ n(n− 1)
6

− t(C)
2n− 4

≥ n(n− 1)
6

− 1
2n− 4

((
n

3

)
(1− 3α(1−

√
α))− o(n3)

)
≥ n2

12
(1 + 3α(1−

√
α))− o(n2).

2.2. The fractional approach. We start with the definition of our fractional
relaxation. For a red-blue coloring C of Kn, Let Tr be the set of triangles that
contain a red edge and let Tb be the set of triangles that contain a blue edge. A
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fractional blue-avoiding packing is a function ν : Tr → [0, 1] satisfying, for each edge
e,
∑
e∈T∈Tr ν(T ) ≤ 1. Similarly, a fractional red-avoiding packing ν : Tb → [0, 1]

satisfies, for each edge e,
∑
e∈T∈Tb ν(T ) ≤ 1. The value of ν is |ν| =

∑
T∈Tc ν(T )

where c = r or c = b, depending on whether ν is blue-avoiding or red-avoiding. Let
r∗(C) (resp. b∗(C)) be the maximum possible value of a fractional blue-avoiding (resp.
red-avoiding) packing. Let f∗2 (C) = max{r∗(C) , b∗(C)}. Finally, let f∗2 (n) be the
minimum of f∗2 (C) ranging over all red-blue colorings of Kn.

It is easy to see that f∗2 (n) ≥ f2(n), by considering only functions ν that take
values 0 and 1. It is also not difficult to construct examples showing strict inequality.
For example, we trivially have f2(4) = 1, while f∗2 (4) = 2. It is interesting, however,
and far from trivial, that the gap between f∗2 (n) and f2(n) cannot be too large. Haxell
and Rödl showed in [6] that the gap between a fractional and an integral triangle
packing is o(n2). This, however, is not sufficient since our graphs are colored. In other
words, our packings are not allowed to assign positive values to certain triangles. In
[11] the author has extended the result from [6] to packings whose elements are taken
from any given family of graphs, using a different (probabilistic) approach. In fact, the
same proof from [11] also holds for induced packings. More formally, let F be any given
family of graphs. An induced F-packing of a graph G is a set of induced subgraphs of
G, each of them isomorphic to an element of F , and any two of them intersecting in
at most one vertex. Let νF (G) be the maximum cardinality of an induced F-packing.
Similarly, a fractional induced F-packing is a function that assigns weights from [0, 1]
to the induced subgraphs of G that are isomorphic to elements of F , so that for each
pair of vertices x, y, the sum of the weights of the subgraphs containing both x and y
is at most one. Let ν∗F (G) be the maximum value of a fractional induced F-packing.

Theorem 2.3. [Yuster [11], induced version] Let F be a family of graphs. If G
is a graph with n vertices then ν∗F (G)− νF (G) = o(n2). From Theorem 2.3 it is easy
to show that f∗2 (n) and f2(n) are close.

Corollary 2.4. f∗2 (n)− f2(n) = o(n2).
Proof. Consider a red-blue coloring C of Kn. Let r(C) be the maximum cardi-

nality of a blue-avoiding triangle packing and let b(C) be the maximum cardinality
of a red-avoiding triangle packing. It suffices to show that r∗(C) − r(C) = o(n2)
and that b∗(C) − b(C) = o(n2). Let G be the n-vertex graph obtained by taking
only the edges colored red. Consider the family F = {K3,K1,2,K1,2}. Clearly,
r(C) = νF (G) and r∗(C) = ν∗F (G). The result now follows from Theorem 2.3. Simi-
larly b∗(C)− b(C) = o(n2) by considering the complement of G.

By Corollary 2.4, in order to prove the lower bound claimed for f2(n) in Theorem
1.1, it suffices to prove the same lower bound for f∗2 (n).

Let Fr be the set of non-isomorphic graphs on r vertices. We note that each
element of Fr corresponds to a red-blue coloring of Kr by coloring the edges blue
and the non-edges red. It is easy to verify that F4 consists of 11 graphs, each being
one of {K4,K

−
4 , Q,C4, P4,K1,3} or a complement of one of these (the complement

of P4 is P4; Q is the graph with four edges that contains a triangle). For a graph
H let b∗(H) = b∗(C) where C is the red-blue coloring corresponding to H. It is
easy to verify that b∗(K4) = 2, b∗(K−4 ) = 2, b∗(Q) = 2, b∗(C4) = 2, b∗(P4) = 2,
b∗(K1,3) = 1.5, b∗(K1,3) = 2, b∗(C4) = 2, b∗(Q) = 1.5, b∗(K−4 ) = 1, b∗(K4) = 0.

Lemma 2.5. If C is a red-blue coloring with m = α
(
n
2

)
blue edges and α ≥ 0.5,

then

f2(C) ≥ n2

12
(3α− α2)− o(n2).
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Proof. By corollary 2.4 it suffices to prove the claimed lower bound for f∗2 (C). In
fact, we shall prove a stronger statement:

b∗(C) ≥ n2

12
(3α− α2)− o(n2).(2.2)

Fix a Steiner system T = S(2, 4, n) on the set X = {1, . . . , n}. We shall also fix,
for each block B = {i, j, k, `} of T , a matching M(B) = {{i, j}, {k, `}}. Let π be a
permutation of [n] selected uniformly at random from Sn. The permutation π defines
a decomposition of the edges of Kn into a set Lπ of n(n−1)/12 pairwise edge-disjoint
red-blue colored K4. Indeed, assume that the set of vertices of Kn is V = {v1, . . . , vn}
and use π to map the blocks of T to pairwise edge-disjoint red-blue colored K4. A
block B = {i, j, k, `} is mapped to the element of Lπ which is the subgraph induced
by {π(i), π(j), π(k), π(`)}. As noted earlier, each element of Lπ corresponds to an
element of F4. Now let

fπ =
∑
H∈Lπ

b∗(H) ≤ b∗(C).

We will prove that the expectation of the random variable fπ is at least n2(3α −
α2)/12− o(n2), which implies (2.2).

For H ∈ F4, let tπ(H) denote the number of elements of Lπ corresponding to H.
Clearly, ∑

H∈F4

tπ(H) =
n(n− 1)

12
.

We may therefore rewrite fπ as

fπ =
∑
H∈F4

tπ(H)b∗(H).(2.3)

We need to estimate the expectation E[tπ(H)] for various H.
Our first observation is that E[tπ(K4)] ≤ α2

12n(n− 1)(1− o(1)). Indeed, consider
a block B of T , and consider its preassigned matching M(B) = {{i, j}, {k, `}}. The
probability that (π(i), π(j)) is blue is precisely α. The probability that (π(k), π(`))
is blue given that we are told that (π(i), π(j)) is blue (and even told its identity) is
α(1 − o(1)). Since there are n(n − 1)/12 blocks we have that E[tπ(K4)] ≤ α2

12n(n −
1)(1 − o(1)). Similarly, E[tπ(K4)] ≤ (1−α)2

12 n(n − 1)(1 − o(1)). However, we can do
much better.

Lemma 2.6.

E

[
tπ(K4) +

2
3
tπ(K−4 ) +

1
3
tπ(Q) +

2
3
tπ(C4) +

1
3
tπ(P4) +

1
3
tπ(C4)

]
=

α2

12
n(n− 1)(1− o(1)).

E

[
tπ(K4) +

2
3
tπ(K−4 ) +

1
3
tπ(Q) +

2
3
tπ(C4) +

1
3
tπ(P4) +

1
3
tπ(C4)

]
=

(1− α)2

12
n(n− 1)(1− o(1)).
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Proof. For each element H ∈ Lπ, let m(H) be the number of blue perfect match-
ings it contains, and let gπ =

∑
H∈Lπ m(H). Clearly,

gπ = 3tπ(K4) + 2tπ(K−4 ) + tπ(Q) + 2tπ(C4) + tπ(P4) + tπ(C4).

Since K4 has precisely three perfect matchings, the expected number of blocks B for
which M(B) is mapped to two blue edges is 1

3E[gπ]. On the other hand, the expected
number of blocks B for which M(B) is mapped to two blue edges is α2

12n(n− 1)(1−
o(1)) as noted in the paragraph preceding the lemma. Thus, the first equality in the
statement of the lemma follows. The second equality follows analogously.

To simplify notation, consider the following eleven variables: x1 = E[tπ(K4)],
x2 = E[tπ(K−4 )], x3 = E[tπ(Q)], x4 = E[tπ(C4)], x5 = E[tπ(P4)], x6 = E[tπ(K1,3)],
x7 = E[tπ(K1,3)], x8 = E[tπ(C4)], x9 = E[tπ(Q)], x10 = E[tπ(K−4 )], x11 = E[tπ(K4)].
With these variables, placing expectations on both sides of (2.3) we obtain

E[fπ] = 2x1 + 2x2 + 2x3 + 2x4 + 2x5 + 1.5x6 + 2x7 + 2x8 + 1.5x9 + x10.

Let yi = xi/n(n− 1) for i = 1, . . . , 11. Using Lemma 2.6, a lower bound for E[fπ] is
obtained by solving the following linear program:

min 2y1 + 2y2 + 2y3 + 2y4 + 2y5 + 1.5y6 + 2y7 + 2y8 + 1.5y9 + y10

s.t.

11∑
i=1

yi =
1
12

y1 +
2
3
y2 +

1
3
y3 +

2
3
y4 +

1
3
y5 +

1
3
y8 =

α2

12
− o(1)

y11 +
2
3
y10 +

1
3
y9 +

2
3
y8 +

1
3
y5 +

1
3
y4 =

(1− α)2

12
− o(1)

yi ≥ 0 for i = 1, . . . , 11.

In order to derive an optimal solution for this linear program, we exhibit matching
solutions both for it and for its dual. The dual program is:

max
1
12
z1 + (

α2

12
− o(1))z2 + (

(1− α)2

12
− o(1))z3

s.t.

( z1 z2 z3 )

 1 1 1 1 1 1 1 1 1 1 1
1 2

3
1
3

2
3

1
3 0 0 1

3 0 0 0
0 0 0 1

3
1
3 0 0 2

3
1
3

2
3 1


≤ ( 2 2 2 2 2 1.5 2 2 1.5 1 0 ).

(In the argument below and, in fact, throughout Lemma 2.6, we could write all
expressions explicitly, instead of writing o(1) terms. However, this would be somewhat
cumbersome and, moreover, the reader will be able to check that this is not necessary.)
A feasible solution for the dual is z1 = 3/2, z2 = 1/2 and z3 = −3/2 (notice that the
constraint set of the dual does not involve o(1) terms). The value this solution attains
is (3α−α2)/12−o(1). To prove that this is, in fact, an asymptotically optimal solution,
we exhibit a feasible solution for the primal problem whose value is also (3α−α2)/12−
o(1). Indeed, consider the solution y1 = α2/12 − o(1), y11 = (1 − α)2/12 − o(1) and
y6 = (α−α2)/6 +o(1) and all the other eight variable are zero, so that all constraints
are satisfied. Indeed this solution attains the value (3α− α2)/12− o(1), as required.
It follows that E[fπ] ≥ n2(3α− α2)/12− o(n2), as required.
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2.3. Combining the results. Given Lemma 2.2 and Lemma 2.5, we see that
if α ≥ 0.5 is close to 0.5 then the bound in Lemma 2.2 is larger than the bound
in Lemma 2.5. On the other hand, when α approaches 1, the bound in Lemma 2.5
approaches the optimal packing of size n2/6 − o(n2). By equating 1 + 3α(1 −

√
α)

with 3α − α2 we get that the point of equilibrium is the square of the smallest root
of x4 − 3x3 + 1. If β = 0.7648... denotes this root we clearly have

f2(n) ≥ 3β2 − β4

12
n2 − o(n2) ,

proving the lower bound in Theorem 1.1.

3. An upper bound for fr(n). We start this section with a construction of
a red-blue coloring of Kn that cannot avoid a monochromatic red triangle and a
monochromatic blue triangle in any large triangle packing.

Let 0 < α < 1 be a parameter, let A be a set of αn vertices and B a set of n(1−α)
vertices. The vertices of A induce a monochromatic red clique, and all other edges are
colored blue. Suppose there is a K3-packing of size x with no monochromatic red K3.
Then, each element of this packing either contains two edges from the cut (A,B), or
has all its three vertices from B. Thus,

x <
α(1− α)

2
n2 +

(1− α)2

6
n2 + o(n2).(3.1)

Suppose there is a packing of size y with no monochromatic blue K3. Then we cannot
use edges with both endpoints in B at all. Thus,

y <
α2/2 + α(1− α)

3
n2 + o(n2).(3.2)

Now, let z = max{x, y}. By equating (3.1) and (3.2) we get that for α = (
√

5− 1)/2
we have

z <
3
√

5− 5
12

n2 + o(n2) ≈ 0.1424n2(1 + o(1)).

In particular, this proves the upper bound in Theorem 1.1.
The construction for r > 2 generalizes the construction above. Suppose the set

of vertices V of Kn is partitioned into vertex classes V1, . . . , Vr. The edges with
both endpoints in Vi are colored with color i, and an edge between Vi and Vj for
i < j is colored with color j. The idea is to choose the sizes of the vertex classes
so that a sufficiently large K3-packing must contain an i-monochromatic K3 for each
color i. Fix 0 < α < 1, and assume that |Vi| = α(1 − α)i−1n for i = 1, . . . , r − 1
and |Vr| = (1 − α)r−1n (we ignore floors and ceilings as these have no effect on the
asymptotic result).

Suppose there is a K3-packing Li of size xi with no i-monochromatic K3. An
upper bound for x1 is identical to the upper bound for x in (3.1):

x1 <
α(1− α)

2
n2 +

(1− α)2

6
n2 + o(n2).(3.3)

For i = 2, . . . , r − 1, we notice that no two edges inside Vi appear together in a non
i-monochromatic K3. Since the third vertex of a non i-monochromatic K3 having two
vertices in Vi must belong to some Vj with j > i we have

xi <
1
6
n2 − α2(1− α)2i−2

6
n2 +

α(1− α)i−1(1− α)i

6
n2 + o(n2).(3.4)
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For i = r, Lr cannot cover edges with both endpoints in Vr at all. Thus, similarly to
(3.2) we get

xr <
(1− (1− α)r−1)2/2 + (1− α)r−1(1− (1− α)r−1)

3
n2 + o(n2).(3.5)

Simplifying (3.3),(3.4), and (3.5) we get that

6xi
n2
− o(1) ≤ 1− α(2α− 1)(1− α)2i−2 i = 1, . . . , r − 1.(3.6)

6xr
n2
− o(1) ≤ 1− (1− α)2r−2.(3.7)

Now, let z = max{x1, . . . , xr}, and notice that, in fact, it suffices to consider z =
max{xr−1, xr}. By equating the case i = r − 1 in (3.6) with (3.7) we get that for
α = (

√
5− 1)/2 we have:

z <
1− ( 3−

√
5

2 )2r−2

6
n2 + o(n2).

It follows that fr(n)
n2 < 1

6 (1− ζr−1) + o(1) where ζ = 7−3
√

5
2 . This completes the proof

of Theorem 1.2.

4. Determining f2(n) for small n. Clearly, f2(3) = f2(4) = 1. For n = 5
we notice that there are 15 distinct pairs of edge-disjoint triangles. Each of the 10
triangles appears in three of these pairs. If each pair contains a red triangle and a blue
triangle we must have five red triangles and five blue triangles. Suppose, w.l.o.g., that
there are at most five red edges. Notice that five edges cannot induce five triangles.
Thus, f2(5) = 2.

For n = 6, notice that K6 has 15 distinct perfect matchings. Each perfect match-
ing uniquely defines two sets of four pairwise edge-disjoint triangles (by considering
the K2,2,2 obtained by deleting the matching). All together, there are 30 distinct
triangle packings of size 4. Totally, they contain 120 triangles, but since K6 has 20
triangles, each triangle appears in precisely 6 such packings. Suppose each packing has
a red and a blue monochromatic triangle. Then there are at least 5 monochromatic
red triangles and at least 5 monochromatic blue triangles. Assume, w.l.o.g., that there
are at most seven red edges. Notice that seven edges cannot induce five triangles. It
follows that f2(6) = 4 (K6 does not have five pairwise edge-disjoint triangles).

For n = 7, we first notice that f2(7) ≤ 6 (although K7 does have a Steiner triple
system with 7 edge-disjoint triangles). Indeed, take a red K5 and color the remaining
11 edges blue. In a packing that has no red triangle there are at least two blue
edges in each triangle, and hence its size is at most 5. In a packing that has no blue
triangle the unique blue edge that is not incident with any red edge does not appear.
Hence, the packing contains at most 6 triangles. In fact, it is easy to verify that this
coloring indeed contains 6 edge-disjoint triangles, non of which is entirely blue. For
the other direction, K7 contains precisely 30 distinct Steiner triple systems. Totally,
they contain 210 triangles, but since K7 has 35 triangles, each triangle appears in
precisely 6 such systems. If each system contains two blue triangles and two red
triangles, then there are 10 red triangles and 10 blue triangles. Assume, w.l.o.g., that
there are at most 10 red edges. The only way 10 edges can induce 10 triangles is if
they form a K5, and this is precisely the construction we examined earlier. Thus,
f2(7) = 6.
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For n = 8, notice that K8 has 105 distinct perfect matchings. Each perfect
matching uniquely defines 8 sets of 8 pairwise edge-disjoint triangles (by considering
the K2,2,2,2 obtained by deleting the matching). All together, there are 840 distinct
triangle packings of size 8. Totally, they contain 6720 triangles, but since K8 has
56 triangles, each triangle appears in precisely 120 such packings. Suppose each
packing has two red and two blue monochromatic triangles. Then there are at least 14
monochromatic red triangles and at least 14 monochromatic blue triangles. Assume,
w.l.o.g., that there are at most 14 red edges. If there are 14 red edges then, by Lemma
2.1 t(8, 14) = 24 so we cannot have 28 monochromatic triangles. If there are only 13
red edges or less, they cannot induce 14 triangles. It follows that f2(8) ≥ 7. To
see that f2(8) = 7 consider a red K5 and color the remaining 18 edges blue. In any
packing of 8 pairwise edge-disjoint triangles, this coloring has both a red and a blue
triangle.

5. Concluding remarks. The most obvious open problem is to determine the
true asymptotic behavior of f2(n). We conjecture that the upper bound construction
is the right (asymptotic) answer. Namely, f2(n) = 3

√
5−5
12 n2 − o(n2). The fractional

approach yielding Lemma 2.5 uses the Steiner system S(2, 4, n). At the price of
significantly complicating the proof we can use higher order system such as S(2, k, n)
(Wilson’s Theorem guarantees the existence of an S(2, k, n) when n is any sufficiently
large integer satisfying n ≡ 1 mod k(k−1)). This, however, requires the analysis of all
possible colorings of Kk and their expected frequencies, which is already a daunting
task for k = 6, and which will not lead to a significant improvement in the lower
bound.

A Steiner packing of Kn is a triangle packing of maximum cardinality. As already
mentioned, if n ≡ 1, 3 mod 6, there is a Steiner triple system, which, by definition, is
a Steiner packing that covers every edge and hence consists of n(n − 1)/6 elements.
For other moduli, the cardinality of a Steiner packing is also well-known [3]. It is
bn(n − 2)/6c if n is even and bn(n − 1)/6 − 1c if n ≡ −1 mod 6. Let g(r) be the
maximum integer n so that in every r-edge coloring of Kn there is a Steiner packing
that is r-color avoiding. The arguments in Section 4 show that g(2) = 6, since already
for n = 7 the Steiner packing has 7 elements while f2(7) = 6. It would be interesting
to determine the behavior of g(r) as a function of r. The proof of Theorem 1.2 shows
that g(r) is at most exponential in r (the base being at most roughly 2.7).

Acknowledgment. I thank Eli Berger for useful discussions.
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