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Abstract

An edge-ordered graph is an ordered pair (G, f), where G = G(V,E) is a graph and f

is a bijective function, f : E(G) → {1, 2, ..., |E(G)|}. f is called an edge ordering of G. A

monotone path of length k in (G, f) is a simple path Pk+1 : v1, v2..., vk+1 in G such that either,

f((vi, vi+1)) < f((vi+1, vi+2)) or f((vi, vi+1)) > f((vi+1, vi+2)) for i = 1, 2, ..., k − 1. Given

an undirected graph G, denote by α(G) the minimum over all edge orderings of the maximum

length of a monotone path. In this paper we give bounds on α(G) for various families of sparse

graphs, including trees, planar graphs and graphs with bounded arboricity.

1 Introduction

All graphs considered here are finite, undirected and simple, unless noted otherwise. For the

standard graph-theoretic terminology the reader is referred to [3]. An edge-ordered graph is an

ordered pair (G, f), where G = G(V,E) is a graph and f is a bijective function, f : E(G) →
{1, 2, ..., |E(G)|}. f is called an edge ordering of G. A monotone path of length k in (G, f) is a simple

path Pk+1 : v1, v2..., vk+1 in G such that either, f((vi, vi+1)) < f((vi+1, vi+2)) or f((vi, vi+1)) >

f((vi+1, vi+2)) for i = 1, 2, ..., k − 1. Given a graph G denote by α(G) the minimum over all edge

orderings of the maximum length of a monotone path. Denote by α′(G) the minimum over all edge

orderings of the maximum length of a monotone trail (in a trail vertices may appear more than

once; a simple cycle is also considered a trail in our definition). Clearly, α(G) ≤ α′(G).

The problem of estimating α(Kn) was raised first by Chvátal and Komlós [5]. Graham and

Kleitman [6] proved that:
1
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The upper bound was improved by Calderbank, Chung and Sturtevant [4], showing,

α(Kn) ≤ (
1

2
+ o(1))n.

They also conjectured that this is the right order of magnitude of α(Kn). However, no improvement

upon the Graham-Kleitman lower bound is known.

There are very few results regarding α(G) for general graphs G. Bialostocki and Roditty [2]

have characterized all the graphs G with α(G) ≤ 2. In fact, they showed that if α(G) ≥ 3 then

either G is an odd cycle of length at least 5, or G contains as a subgraph one of six fixed graphs.

In this paper we give upper and lower bounds for α(G) and α′(G) for graphs G belonging to

various well-known graph families. In order to describe our results we need to recall a few definitions.

The arboricity of a graph G is the minimum number of subforests of G whose union covers all the

edges of G. The linear arboricity la(G) and star arboricity st(G) are defined analogously, except

that one requires that each forest contains only simple paths (in the linear arboricity case) or stars

(in the star arboricity case). We assume the reader is familiar with the concepts of planar and

bipartite planar graphs. Our main results can be summarized in the following two theorems:

Theorem 1.1 Every planar graph G has α(G) ≤ α′(G) ≤ 9. There exist planar graphs with

α(G) ≥ 5. Every bipartite planar graph G has α(G) ≤ α′(G) ≤ 6. There exist bipartite planar

graphs with α(G) ≥ 4.

Note the gap between the lower and upper bound in Theorem 1.1. It is rather difficult to find

planar graphs where every edge ordering has a long monotone path. In fact, even the proof of the

existence of such a graph with α(G) ≥ 5 is rather involved. The same difficulty holds for bipartite

planar graphs. Thus, we have the following interesting open problems:

Problem 1: Determine the constant K1 which is defined as K1 = maxα(G) where the maximum

is taken over all planar graphs.

Problem 1: Determine the constant K2 which is defined as K2 = maxα(G) where the maximum

is taken over all bipartite planar graphs.

We currently have 5 ≤ K1 ≤ 9 and 4 ≤ K2 ≤ 6.

The next theorem supplies upper bounds for α(G) in terms of arboricity and maximum degree.

Theorem 1.2

1. α(G) ≤ α′(G) ≤ 3a(G). In particular, if G is a tree then α(G) ≤ 3.

2. α′(G) ≤ 2st(G).

3. α′(G) ≤ 2la(G).

2



4. If G has maximum degree ∆(G) then α′(G) ≤ 2a(G) +O(log ∆(G)).

5. If G has maximum degree ∆(G) then α′(G) ≤ ∆(G) + 1.

2 Proof of the main results

In this section we prove Theorem 1.1 and Theorem 1.2. We first prove a lemma which bounds

α(G) in case G is a tree. A caterpillar is a tree T (a1, . . . , at) which consists of a main path on t

vertices, where a star with ai edges is attached to vertex number i in the path. The vertices on the

main path are the roots of the stars. Thus, T has t + a1 + . . . + at vertices. Note that the family

of caterpillars includes stars (the case t = 1), paths (the case where all ai = 0), double stars (the

case t = 2), etc.

Lemma 2.1 If T is a tree then α(T ) ≤ 3. If T is a caterpillar with at least three vertices then

α(T ) = 2.

Proof: We first prove that α(T ) ≤ 3. Consider a rooted orientation of T . Hence, every directed

edge (u, v) has a layer which is defined as the distance from v to the root. Let X denote the set of

edges in odd layers and let Y = E(T ) \X denote the set of edges in even layers. We define an edge

ordering as follows. Arbitrarily assign the numbers 1, . . . , |X| to the edges of X, and the numbers

|X| + 1, . . . , e(T ) to the edges of Y . Clearly, every monotone path contains edges from at most

two consecutive layers. Since each layer induces a set of stars, each layer may contain at most two

edges from the path, and if the path contains edges from two layers i and i + 1, then there is at

most one edge from layer i+ 1. Thus, any monotone path contains at most three edges.

Assume now that T is a caterpillar with at least three vertices. Since there are two adjacent edges,

α(T ) ≥ 2. We construct an edge ordering with no monotone path of length 3. If t is a star this

is trivial. So we assume T = T (a1, . . . , at) where t ≥ 2. Let m = t + a1 + . . . + at − 1 denote the

number of edges of T , and let v1, . . . , vt denote the main path of T . Partition the edges on the

main path into two matchings X and Y where X consists of the edges (vi, vi+1) where i is odd, and

Y consists of the edges (vi, vi+1) where i is even. Arbitrarily assign the numbers 1, . . . , |X| to the

edges of X, the numbers m−|Y |+1, . . . ,m to the edges of Y , and the numbers |X|+1, . . . ,m−|Y |
to the other edges. It is immediate to check that there is no monotone path of length 3. 2

The next lemma establishes a bound on α′(G) in terms of covering subgraphs.

Lemma 2.2 Let G be a graph, and let H1, . . . ,Hk be subgraphs of G such that each edge of G

appears in at least one of the Hi. Then α′(G) ≤
∑k

i=1 α
′(Hi).
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Proof:, Since α′ is a monotone increasing graph parameter (adding edges cannot decrease α′) we

may assume each edge of G appears in exactly one of the Hi. Let hi denote the number of edges

of Hi. Thus, h1 + . . .+ hk = e(G). Let fi be an edge ordering of Hi in which every monotone trail

is of length at most α′(Hi) for i = 1, . . . , k. We define an edge ordering f of G as follows. For

each e ∈ G, if e ∈ Hi then f(e) = fi(e) + h1 + . . . + hi−1. Clearly, f is a bijection, and thus an

edge ordering. Furthermore, if both e and e′ belong to Hi then if e′′ satisfies f(e) < f(e′′) < f(e′)

then we must have e′′ ∈ Hi. Thus, in every monotone trail in (G, f) all the edges belonging to

Hi appear consecutively in the trail. Hence, there are at most α′(Hi) edges from Hi in the trail.

Consequently, the trail contains at most
∑k

i=1 α
′(Hi) edges. 2

Proof of Theorem 1.2: The upper bounds appearing in Theorem 1.2 follow by applying Lemma

2.1 and Lemma 2.2 to several powerful results in graph theory. We consider the various items in

Theorem 1.2:

1. A graph G with arboricity k = a(G) can be decomposed into k forests H1, . . . ,Hk. By Lemma

2.1, α(Hi) = α′(Hi) ≤ 3. Hence, by Lemma 2.2, α(G) ≤ α′(G) ≤ 3k.

2. A graph G with star arboricity k = st(G) can be decomposed into k stars H1, . . . ,Hk. By

Lemma 2.1, α(Hi) = α′(Hi) ≤ 2. Hence, by Lemma 2.2, α(G) ≤ α′(G) ≤ 2k.

3. A graph G with linear arboricity k = la(G) can be decomposed into k paths H1, . . . ,Hk. By

Lemma 2.1, α(Hi) = α′(Hi) ≤ 2. Hence, by Lemma 2.2, α(G) ≤ α′(G) ≤ 2k. Note that the

last two items could be united and extended by defining the caterpillar arboricity of a graph

in the obvious manner, thus achieving a more powerful bound.

4. Alon, McDiarmid and Reed [1] proved the very powerful statement that:

st(G) ≤ a(G) +O(log ∆(G)).

Since α′(G) ≤ 2stG) it follows that α′(G) ≤ 2a(G) + O(log ∆(G)). Note that this bound

is superior to the bound α′(G) ≤ 3a(G) in case the logarithm of the maximum degree is

significantly smaller than the arboricity.

5. By Vizing’s Theorem (cf. [3]), every graph G with maximum degree ∆(G) can be decomposed

into k ≤ ∆(G) + 1 matchings H1, . . . ,Hk. Since, trivially, α′(Hi) = 1 we have by Lemma 2.2

that α′(G) ≤ ∆(G) + 1.

2
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Proof of Theorem 1.1: Nash-Williams has shown in [7] that

a(G) = max
H⊆G
d e(H)

|V (H)| − 1
e.

(we assume in the last equality that H contains at least one edge). Since every n-vertex planar

graph contains at most 3n − 6 edges, and since subgraphs of planar graphs are planar, it follows

that a(G) ≤ 3 for a planar graph G. Thus, we have that for every planar graph, α(G) ≤ α′(G) ≤ 9.

Similarly, since every n-vertex bipartite planar graph contains at most 2n − 4 edges, and since

subgraphs of bipartite planar graphs are bipartite and planar, it follows that a(G) ≤ 2 for a

bipartite planar graph G. Thus, we have that for every bipartite planar graph, α(G) ≤ α′(G) ≤ 6.

We now turn to the construction of lower bounds for planar and bipartite planar graphs. We begin

with the planar case. For n ≥ 3, define the planar graph Gn as follows: Draw a cycle with n vertices

on the plane, and denote the vertices by the numbers 1, . . . , n. Now add a new vertex, denoted by

a, inside the cycle, and connect a to each vertex on the cycle. Then, add a new vertex b outside

the cycle, and connect b to each vertex on the cycle. Note that Gn is, indeed, planar, has n + 2

vertices and 3n = 3(n + 2) − 6 edges. We claim that for n sufficiently large, α(Gn) ≥ 5. This is

proved in the following lemma:

Lemma 2.3 For each n > 98, α(Gn) ≥ 5.

Proof: Let f be an arbitrary edge ordering of Gn. For simplicity we shall use the notation e′ > e

whenever f(e′) > f(e) for two edges e, e′ of Gn. There are exactly 2n stars with three edges in

Gn which contain as the center a vertex i of the cycle, and the edges (i, a), (i, b) and (i, j) where

j = i− 1 or j = i+ 1 (if i = n then we use the convention n+ 1 = 1). Let L be the set of these 2n

stars. We distinguish three cases:

1. L contains at least 17 elements in which the edge (i, j) is smaller than both (i, a) and (i, b).

By majority, we may assume w.l.o.g. that in at least 9 of these elements (i, j) < (i, a) <

(i, b). Once again, by majority we may assume w.l.o.g. that in at least 5 of these elements

j = i + 1. Since each i is a root of exactly one element of L which contains the edge

(i, i + 1), we have that there exist three such elements of L, whose roots are i1, i2, i3 such

that i1 + 1 < i2 and i2 + 1 < i3. Consider the largest edge of all the 9 edges of these three

stars. Such an edge must be one of the edges (ij , b) for j = 1, 2, 3. Assume w.l.o.g. that

this is the edge (i3, b). Now, if (i1, a) < (i2, a) then we have the following monotone simple

path of length 5: (i1 + 1, i1, a, i2, b, i3) since (i1, i1 + 1) < (i1, a) < (i2, a) < (i2, b) < (i3, b).

Otherwise, (i2, a) < (ii, a) and then we have the monotone simple path (i2 + 1, i2, a, i1, b, i3)

since (i2, i2 + 1) < (i2, a) < (i1, a) < (i1, b) < (i3, b).
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2. L contains at least 17 elements in which the edge (i, j) is larger than both (i, a) and (i, b).

This case is analogous to the previous one.

3. The remaining case is where there is a subset L′ of at least 2n−33 elements of L in which the

edge (i, j) is in the between (i, a) and (i, b). Let (a, s1) be the smallest edge adjacent to a, and

let (a, t1) be the largest edge adjacent to a. Similarly, let (b, s2) be the smallest edge adjacent

to b and let (b, t2) be the largest edge adjacent to b (note that s1 6= t1 and s2 6= t2 but it may

be that s1 = s2 or s1 = t2 or s2 = t1 or t1 = t2). Since each vertex from the cycle (1, . . . , n)

appears in exactly 4 elements of L, there is a subset L′′ of L′ of at least 2n−49 elements which

do not contain any vertex of {s1, t1, s2, t2}. Since each edge of the cycle (1, . . . , n) appears in

exactly two elements of L there are at least n − 49 edges of the cycle (1, . . . , n) which have

the property that both copies of L containing the edge appear in L′′. Since n − 49 > n/2,

there are at least two consecutive edges in the cycle (1, . . . , n), denote them by (i, i+ 1) and

(i+ 1, i+ 2), such that both copies of L containing (i, i+ 1) appear in L′′ and both copies of

L containing (i+ 1, i+ 2) appear in L′′. In other words, (i, i+ 1) is between (i, a) and (i, b),

and also between (i+ 1, a) and (i+ 1, b) and, similarly, (i+ 1, i+ 2) is between (i+ 1, a) and

(i+ 1, b) and also between (i+ 2, a) and (i+ 2, b). Assume, w.l.o.g. that (i+ 1, a) < (i+ 1, b)

and that (i, i+ 1) < (i+ 1, i+ 2). Now, if (i, b) > (i, i+ 1) we are done since we can take the

simple monotone path (s1, a, i+ 1, i, b, t2). Otherwise, if (i+ 2, a) < (i+ 1, i+ 2) we are done

since we can take the simple monotone path (s1, a, i+ 2, i+ 1, b, t2). Otherwise we have that

both (i, b) < (i, i + 1) and (i + 2, a) > (i + 1, i + 2) and in this case we can take the simple

monotone path (s2, b, i, i+ 1, i+ 2, a, t1) (note that this path is of length 6).

2

We now turn to the bipartite planar case which is simpler. Recall the graph K2,5 which is bipartite

planar. This graph does the job:

Lemma 2.4 α(K2,5) = α′(K2,5) = 4.

Proof: The fact that α′(K2,5) ≤ 4 follows from the fact that st(K2,5) = 2 and Theorem 1.2. It

remains to show that α(K2,5) ≥ 4. Let f be an arbitrary edge-ordering of K2,5. Let the vertices

of degree 5 be denoted by the letters x, y, and let the vertices of degree 2 be denoted by the

numbers 1, 2, 3, 4, 5. Hence, for each i = 1, 2, ..., 5 the sequence (x, i, y) is a simple path having two

edges. For each i there are two options, eitherf((x, i)) < f((i, y)) orf((x, i)) > f((i, y)). Since

i = 1, 2, ..., 5 we can assume without loss of generality that at least for three distinct values of i it

happens that f((x, i)) < f((i, y)), and once again we may assume that it happens for i = 1, 2, 3.

Thus, we may assumef((x, 1)) < f((1, y)) and f((x, 2)) < f((2, y)) and f((x, 3)) < f((3, y)). Look
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at the maximum of all these six edges, and assume w.l.o.g. that it is f((3, y)) (of course it has

to be some edge adjacent to y). Now, if f((x, 1)) < f((x, 2)) then the path (1, x, 2, y, 3) is a

monotone simple path of length 4 since f((x, 1)) < f((x, 2)) < f((2, y)) < f((3, y)). Otherwise

f((x, 2)) < f((x, 1)) and then the path (2, x, 1, y, 3) is a monotone simple path of length 4 since

f((x, 2)) < f((x, 1)) < f((1, y)) < f((3, y)). 2

This completes the proof of Theorem 1.1. 2

We end this section with a conjecture. Let ca(G) denote the caterpillar arboricity of a graph

G.

Conjecture 2.5 Every planar graph G has ca(G) ≤ 4.

The motivation of this conjecture is the following: As mentioned above, every planar graph has

arboricity a(G) ≤ 3, where every planar graph with more than 2n− 2 edges has a(G) = 3. It has

recently been proved that the star arboricity of every planar graph is st(G) ≤ 5, and equality is

known for some planar graphs. A forest of caterpillars is more general than a forest of stars, and

less general then an arbitrary forest. Thus, ca(G) ≤ 5 and ca(G) ≥ 3. Furthermore It is easy

to construct triangulated planar graphs (i.e. graphs with 3n − 6 edges) which do not contain a

caterpillar as a spanning subgraph. These graphs obviously cannot be covered by three caterpillar

forests. Thus, there exist planar graphs with ca(G) ≥ 4. Note that the assertion of Conjecture 2.5

would imply, using Lemma 2.1 and Lemma 2.2, that α′(G) ≤ 8 for every planar graph G.
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[5] V. Chvátal and J. Komlós, Some combinatorial theorems on monotonicity, Canad. Math. Bull.

14 (1971), 151-157.

[6] R.L. Graham and D.J. Kleitman, Increasing paths in edge-ordered graphs, Per. Math. Hungar.

3 (1973), 141-148.

7



[7] C. St.J. A. Nash-Williams, Decomposition of finite graphs into forests, J. London Math. Soc.

39 (1964), 12.

8


