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Abstract

We present a new randomized algorithm for finding
a maximum matching in H-minor free graphs. For
every fixed H, our algorithm runs in O(n3ω/(ω+3)) <
O(n1.326) time, where n is the number of vertices
of the input graph and ω < 2.376 is the exponent
of matrix multiplication. This improves upon the
previous O(n1.5) time bound obtained by applying the
O(mn1/2)-time algorithm of Micali and Vazirani on this
important class of graphs.

For graphs with bounded genus, which are spe-
cial cases of H-minor free graphs, we present a ran-
domized algorithm for finding a maximum matching in
O(nω/2) < O(n1.19) time. This extends a previous ran-
domized algorithm of Mucha and Sankowski, having the
same running time, that finds a maximum matching in
a planar graphs.

We also present a deterministic algorithm with a
running time of O(n1+ω/2) < O(n2.19) for counting the
number of perfect matchings in graphs with bounded
genus. This algorithm combines the techniques used
by the algorithms above with the counting technique
of Kasteleyn. Using this algorithm we can also count,
within the same running time, the number of T -joins
in planar graphs. As special cases, we get algorithms
for counting Eulerian subgraphs (T = φ) and odd
subgraphs (T = V ) of planar graphs.

1 Introduction

A matching in a graph is a set of pairwise disjoint
edges. A perfect matching in a graph with n vertices
is a matching of size n/2, and a maximum matching
is a matching of largest possible size. The problems
of finding a maximum matching, and of counting the
number of perfect matchings are fundamental in both
practical and theoretical computer science.

The first polynomial time algorithm for finding a
maximum matching in a general graph was obtained by
Edmonds [Edm65]. The currently fastest deterministic
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algorithms for this problem run in O(mn1/2) time (see
[MV80, Blu90, Vaz94, GT91]), where m and n are
the number of edges and vertices, respectively, in the
input graph. For dense graphs, better randomized
algorithms are known. Lovász [Lov79] showed that the
cardinality of a maximum matching can be determined,
with high probability, by computing the rank of a
matrix. In particular, checking whether a graph has
a perfect matching amounts to checking whether a
determinant of a certain matrix, whose construction
involves randomization, is nonzero. This randomized
algorithm can be implemented to run in O(nω) time,
where ω is the exponent of fast matrix multiplication.
Coppersmith and Winograd [CW90] showed that ω <
2.376. Recently, Mucha and Sankowski [MS04b] solved
a long standing open problem and showed that a
maximum matching can be found, with high probability,
in O(nω) time.

For graphs with m = Θ(n), the algorithms of
[MV80, Blu90, Vaz94, GT91] run in O(n1.5) time. For
planar graphs an improved randomized algorithm with
a running time of O(nω/2) < O(n1.19) was obtained
recently by Mucha and Sankowski [MS04a]. They use
their Gaussian elimination technique from [MS04b], as
well as the nested dissection technique of Lipton, Rose
and Tarjan [LRT79], which relies, in turn, on the planar
separator theorem of Lipton and Tarjan [LT79].

The classical Kuratowski-Wagner Theorem [Kur30,
Wag37] states that a graph is planar if and only if it
has no K5 nor K3,3 minors. (For three different proofs
of the theorem, see [Tho81].) A graph G′ is a minor of
a graph G if G′ can be obtained from a subgraph of G
by contracting edges. A graph is H-minor free if H is
not a minor of G. An H-minor free graph is also said
to have excluded H-minor.

Families of graphs with an excluded H-minor, for
some fixed graph H, are the cornerstone of the seminal
theory of graph minors developed over the last 20 years,
in a series of more than 20 papers, by Robertson and
Seymour. These families are, to date, the most studied
families of graphs in modern graph theory. The graph
minor theory of Robertson and Seymour culminated,
in [RS04], with a proof of the profound graph minor
theorem, also known as the Wagner’s conjecture, that
states that in every infinite set of finite graphs, there



is a graph which is isomorphic to a minor of another.
One of the consequences of this theorem is that for
any surface S there is a finite set of graphs F (S),
such that a graph can be embedded in S (without
crossing edges) if and only if it does not contain a graph
from F (S) as a minor. (This result actually follows from
a restricted version of Wagner’s conjecture which was
already proved in [RS90].) For a very recent survey of
the theory of graph minor see Lovász [Lov06].

The genus of a surface in R3 is the largest number of
non intersecting simple closed curves that can be drawn
on the surface without separating it. The sphere is the
simplest nontrivial surface in R3. It has genus 0. The
genus of a graph is the smallest integer g such that
the graph can be embedded in an (orientable) surface
of genus g, without edge crossings. Planar graphs
are therefore of genus 0. Genus 1 graphs are graphs
that can be embedded on the torus. By the results of
Robertson and Seymour stated above, graphs of genus g
are exactly the graphs which have no minor in a finite
family F = Fg of graphs. In particular, they are a subset
of the class of H-minor free graphs, for every H ∈ F .

Classes of H-minor free graphs are much more
general, however, than the classes of genus g graphs.
For the example, the class of K5-free graphs contains all
the planar graphs, and many other graphs, but there is
no bounded genus surface on which all the graphs from
this family can be embedded.

The question we try to answer in this paper is the
following: Can the algorithm of Mucha and Sankowski
[MS04a] be extended to find maximum matchings in
graphs of genus g? Can it be made to work for H-minor
free graphs, for any fixed graph H?

Modifying the algorithm of [MS04a] to work for
graphs of genus g, without increasing the running time,
turns out to be a relatively straightforward task. The
following theorem is proved in Section 3:

Theorem 1.1. Let g ≥ 0 be a fixed integer. There
exists an O(nω/2) < O(n1.19) time algorithm that,
given a graph G on n vertices, either certifies that the
genus of G is greater than g, or else finds, with high
probability, a maximum matching in G.

Extending the algorithm of Mucha and Sankowski
[MS04a] to work on H-minor free graphs, for every fixed
graph H, is a much more demanding task. We cannot
retain the original O(nω/2) running time the algorithm,
but we can still get the following non-trivial result which
is the main result of this paper:

Theorem 1.2. For every fixed graph H, there is an
O(n3ω/(ω+3)) < O(n1.326) time algorithm that given a
graph G on n vertices, either certifies that G has an H-

minor, or else finds, with high probability, a maximum
matching in G.

The new algorithm uses, of course, the Gaussian
elimination technique of Mucha and Sankowski [MS04a,
MS04b], the nested dissection technique of Lipton, Rose
and Tarjan [LRT79], and a recent algorithm of Reed and
Wood [RW05] for finding separators in H-minor free
graphs, which in turn, uses a previous algorithm for
the problem obtained by Alon, Seymour and Thomas
[AST90]. These powerful tools on their own, however,
are not enough. The new algorithm also relies on a
new technique that enables us to obtain small separators
of certain graphs that are obtained from H-minor free
graph by vertex splitting, even though these graphs are
not necessarily H-minor free. A detailed description of
the algorithm, and a proof of Theorem 1.2, appear in
Section 2.

Perfect matching, if they exist, can be found in poly-
nomial time. Counting the number of perfect match-
ing, in contrast, is a #P-complete problem, as shown
by Valiant [Val79]. Perfect matchings in planar graphs
can, however, be counted, using the Pfaffian orienta-
tions technique of Kasteleyn [Kas67]. Galluccio and
Loebl [GL99a, GL99b] extended the result of Kasteleyn
[Kas67] and showed that perfect matchings in genus g
graphs, for every fixed g, can also be counted in poly-
nomial time, even though genus g graphs do not neces-
sarily have Pfaffian orientations.

By combining the algorithm of [MS04a] with the
Pfaffian orientations technique of Kasteleyn [Kas67]
and its extensions by Galluccio and Loebl [GL99a,
GL99b] we obtain an efficient algorithm for counting
the number of perfect matchings in genus g graphs.

Theorem 1.3. Let g ≥ 0 be a fixed integer. There
exists an Õ(n1+ω/2) < O(n2.19) time algorithm that,
given a graph G on n vertices, either certifies that the
genus of G is greater than g, or else returns the number
of perfect matchings in G.

This, in particular, improves on a Õ(n2.5)-time al-
gorithm for counting perfect matching in planar graphs
given by Wilson [Wil97]. Wilson uses his algorithm to
generate random perfect matchings of planar graphs.
The proof of Theorem 1.3 appears in Section 4.

Finally, by utilizing a reduction obtained by Gal-
luccio and Loebl [GL99b] the algorithm for counting
perfect matchings can also be used to count T -joins of
bounded genus graphs. Let G = (V,E) be a graph and
T ⊆ V . A T -join of the graph G is a subset E′ ⊆ E
of the edges such that the degree of a vertex v in the
subgraph G′ = (V,E′) is odd if and only if v ∈ T . If
T = φ, then a T -join is an Eulerian subgraph of G,



i.e., a spanning subgraph in which the degrees of all
the vertices are even. If T = V , then a T -join is an
odd subgraph of G, i.e., a subgraph in which the de-
grees of all vertices are odd. (Such a subgraph may
exist, of course, only if |V | is even.) In particular, we
get an Õ(n1+ω/2) < O(n2.19) algorithm for counting the
number of Eulerian subgraphs, and odd subgraphs of a
planar graph. We also get an Õ(n2+ω/2) < O(n3.19)
algorithm for counting T -joins of a planar graph with a
specified cardinality.

2 Maximum matching in H-minor free graphs

In this section we prove Theorem 1.2. In order to
describe the algorithm proving Theorem 1.2 we need
quite a few definitions and several tools that will also
be useful in the rest of this paper.

2.1 Graph minors A graph H is a minor of a
graph G if H can be obtained from a subgraph of G
by contracting edges. When an edge uv is contracted,
the vertices u and v are unified and the neighbors of
the unified vertex is the union of the sets of neighbors
of u and v. If H is not a minor of G we say that G is
H-minor free, or, alternatively, that G has an excluded
H-minor. For example, a graph is K3-minor free if and
only if it is a forest, and a graph is K4-minor free if and
only if it is a series-parallel graph. Planar graphs are
the intersection of the family of K5-minor free graphs
and the family of K3,3-minor free graphs.

An H-model in G is a set of vertex-disjoint con-
nected subgraphs {Xv : v ∈ V (H)} indexed by the
vertices of H, such that for every edge uv ∈ E(H),
there is an edge xy ∈ E(G) with x ∈ Xu and y ∈ Xv.
Clearly G has an H-minor if and only if G has an H-
model.

2.2 Separator theorems We say that a graph G =
(V,E) has a (k, α)-separation, if V can be partitioned
into three parts, A,B,C so that A ∩ B = ∅, |A ∪ C| ≤
α|V |, |B ∪C| ≤ α|V |, |C| ≤ k, and if uv ∈ E and u ∈ A
then v /∈ B. We say that A and B are separated by C,
that C is a separator and that the partition (A,B,C)
exhibits a (k, α)-separation.

By the seminal result of Lipton and Tarjan [LT79],
a planar graph with n vertices has an (O(

√
n), 2n/3)-

separation. In fact, they also show how to compute
such a separation in linear time. Subsequently, Alon,
Seymour and Thomas [AST90] extended the result of
Lipton and Tarjan to H-minor free graphs. However,
unfortunately, the running time of their algorithm is
O(n1.5) for every fixed H, which means that we cannot
use it in our setting.

When the existence of an (f(n), α)-separation can

be proved for each n-vertex graph belonging to a heredi-
tary family (closed under taking subgraphs), one can re-
cursively continue separating each of the separated parts
A and B until the separated pieces are small enough.
This yields a separator tree. Notice that planarity, as
well as being H-minor free, is a hereditary property.
More formally, we say that a graph G = (V,E) with n
vertices has an (f(n), α)-separator tree if there exists a
full rooted binary tree T so that the following holds:

(i) Each t ∈ V (T ) is associated with some Vt ⊂ V .
(ii) The root of T is associated with V .
(iii) If t1, t2 ∈ V (T ) are the two children of t ∈
V (T ) then Vt1 ⊂ Vt and Vt2 ⊂ Vt. Furthermore, if
A = Vt1 , B = Vt2 and C = Vt \ (Vt1 ∪ Vt2) then
(A,B,C) exhibits an (f(|Vt|), α)-separation of G[Vt]
(the subgraph induced by Gt).
(iv) If t is a leaf then |Vt| = O(1).

By using divide and conquer, the result of Lipton
and Tarjan mentioned above can be stated as follows
(see also Gilbert and Tarjan [GT87] for a simplified
version of their algorithm).

Theorem 2.1. A planar graph with n vertices has an
(O(

√
n), 2/3)-separator tree and such a tree can be found

in O(n log n) time.

2.3 Gaussian elimination and nested dissection

Let A be an n × n matrix. The representing graph of
A, denoted G(A) is defined by the vertex set {1, . . . , n}
where, for i 6= j we have an edge ij if and only if Ai,j 6= 0
or Aj,i 6= 0.

Generalizing the nested dissection method of
George [Geo73], Lipton, Rose and Tarjan [LRT79] and
Gilbert and Tarjan [GT87] proved the following.

Theorem 2.2. Let A be a symmetric positive definite
n× n matrix. If, for some positive constant α < 1, and
for some constant β ≥ 1/2, G(A) has bounded degree
and an (O(nβ), α)-separator tree, and such a tree is
given, then Gaussian elimination on A can be performed
with O(nωβ) arithmetic operations. The resulting LU
factorization of A is given by matrices L and D, A =
LDLT , where L is unit lower-triangular and has Õ(n2β)
non-zero entries and D is diagonal.

We note that the requirement that the graph G(A) has
bounded degree is not needed in Theorem 2.2 if we use
a strong separator tree (in a strong separator tree the
separator vertices at each node of the tree also appear
in both children of the node). See [GT87] for a detailed
description of both versions.

2.4 Skew-adjacency matrices Let G = (V,E) be
an undirected graph with V = {1, . . . , n}. With



each edge e ∈ E we associate a variable xe. Let ~G
be any orientation of G. Define the skew adjacency
matrix As(~G) by

aij =







+xe, if e = ij and (i, j) ∈ E(~G);

−xe, if e = ij and (j, i) ∈ E(~G);
0, otherwise.

Lovász [Lov79] proved that the rank of As(~G) is twice
the size of a maximum matching in G. This observation,
together with some additional ideas, leads to an O(nω)
time randomized algorithm for deciding whether a graph
has a perfect matching. Generalizing the ideas from
[Lov79], together with the nested dissection method,
Mucha and Sankowski [MS04a] obtained the following
result:

Theorem 2.3. Let G be a graph with n vertices and
with maximum degree at most some constant k. Fur-
thermore, suppose that for some constants α < 1 and
β ≥ 1/2, G is equipped with an (O(nβ), α)-separator
tree. Then, a maximum matching in G can be found,
with high probability, in O(nωβ) time.

Although Mucha and Sankowski [MS04a] state their
result only for planar graphs (and hence only use the
case β = 1/2 of Theorem 2.2), the more general
statement of Theorem 2.3 follows without change from
their result. The idea of their proof is as follows.
Suppose G satisfies the conditions of Theorem 2.3.
Take an arbitrary orientation of G and construct (a
sparse representation of) the resulting skew-adjacency

matrix A = As(~G). Let B = AAT . Notice that B is
symmetric and if A is non-singular (namely, if G has a
perfect matching), then B is positive definite. Since G
has maximum degree at most k, it is straightforward
that the representing graph G(B) has an (O(nβ), α)-
separator tree (a separator of G(B) corresponds to a
separator of G by taking the separator vertices and
their neighbors). Thus, one can apply Theorem 2.2
to G(B). Mucha and Sankowski [MS04a] show that
instead of doing the arithmetic operations in the field of
rational functions with integer coefficients (which makes
each arithmetic operation very expensive) it suffices to
perform the operations over a finite field, sacrificing a
deterministic algorithm for a randomized one, but now
the bit complexity of each arithmetic operation is only
O(log n). It is shown in [MS04b], in a highly non-trivial
way, how to produce a maximum matching from the
resulting LU factorization of G(B).

2.5 Vertex splitting The maximum degree require-
ment in Theorem 2.3 is very limiting. There is a gen-
eral technique that transforms every graph G to an-
other graph G′ so that the latter has maximum degree

at most k, where k ≥ 3, and so that the number of per-
fect matchings of G and G′ is the same. Furthermore,
there is an easy translation of maximum matchings in G
to maximum matchings in G′ and vice versa.

Suppose G has a vertex u of degree at least k + 1.
Pick two neighbors of u, say v, w. Add two new
vertices u′ and u′′, add the edges uu′, u′u′′, u′′v, u′′w
and delete the original edges uv, uw. Clearly, this
vertex-splitting operation does not change the number
of perfect matchings, and increases the size of the
maximum matching by 1. By repeatedly performing
vertex splitting until there are no vertices with degree
greater than k, we obtain a desired vertex split graph G′.
See, e.g., Figure 1. Clearly, if G has n vertices and O(n)
edges, then G′ has O(n) vertices and O(n) edges as well.

If G is a planar graph, it is easy to obtain a vertex-
split G′ of G so that G′ is planar as well. Indeed,
consider a plane embedding of G. Always take the
neighbors v and w of u so that u, v, w are on the same
face. This observation, together with Theorem 2.3
and Theorem 2.1 yield the randomized O(nω/2) time
algorithm for maximum matching in planar graphs.

2.6 The algorithm In order to apply Theorem 2.3
to H-minor free graphs, we need to overcome two major
obstacles. The first one is that vertex splitting does
not necessarily preserve H-minor freeness, as shown in
Figure 2. Furthermore, unlike the planar case where
there is an easy embedding argument that enables
vertex splitting while maintaining planarity, there is no
such argument for H-minor free graphs, and, in fact,
it is simply not true. Consider an n × n grid and an
additional vertex that is connected to all n2 vertices of
the grid. Clearly, this graph has no K6-minor. However,
for every positive integer k, if n is sufficiently large,
performing vertex splitting on this graph in any order
introduces a Kk-minor (we thank Robin Thomas for
providing us with this example). The second obstacle
comes from the requirement in Theorem 2.3 that the
graph be equipped with a separator tree. One can
use the algorithm of Alon, Robertson and Seymour
[AST90], mentioned earlier, and create a separator tree
for a given H-minor free graph. This, however, already
takes more then O(n1.5) time which, for the maximum
matching problem, is already worse than the known
O(n1.5) time algorithms.

Our first lemma, which is interesting in its own
right, overcomes the first obstacle. For a constant δ,
we say that a graph is δ-locally sparse if every subgraph
with x vertices induces at most δx edges. Notice that if
all the graphs of a hereditary graph family are δ-sparse,
then they are also δ-locally sparse. Thus, planar graphs
are locally sparse (with δ = 3), and so are H-minor



Figure 1: Vertex splitting.

Figure 2: Vertex splitting can introduce K4-minors.

free graphs, graphs with bounded genus, graphs with
bounded degree and graphs with bounded degeneracy.

Lemma 2.1. Let ALG be an algorithm that given an
n-vertex H-minor free graph, generates a partition
(A,B,C) that exhibits an (O(nβ), 2/3)-separation in
O(nγ) time (we assume γ > 1 and β ≥ 1/2). Then,
given an H-minor free graph G with n vertices, there is
a vertex-split graph G′ of G of bounded maximum degree
so that G′ has an (O(nβ), α)-separator tree where α < 1
is a constant that only depends on H. Furthermore, a
separator tree for G′ can be constructed in O(nγ) time.

Proof. Let Qk denote a rooted tree with maximum out-
degree at most 2 obtained by vertex-splitting the star
Sk+1 with k edges. The root of Qk is associated with
the root of the star and each of the k leaves of Qk is
associated with a leaf of Sk+1. For k ≥ 2 we always
assume that the root has degree 2. Notice that Q0 = S1,
Q1 = S2, Q2 = S3 but Q3 already has 5 edges and,
generally, Qk has 3k − 4 edges for k ≥ 2.

We begin our algorithm by invoking algorithm
ALG on G = (V,E). In O(nγ) time we obtain
a partition (A,B,C) that exhibits an (O(nβ), 2/3)-
separation. Thus, in particular, |C| = O(nβ). We create
a new graph G1 which is a (partial) vertex splitting of G.
We replace each v ∈ C with a copy of Q3, denoted Yv,
and denote the three leaves with of Yv with va, vb, vc

and the root of Yv with v. Notice that Yv has five edges
and six vertices. For each u ∈ A so that (u, v) ∈ E, we
connect u with va. Similarly, for each u ∈ B so that

(u, v) ∈ E, we connect u with vb. Let C(v) be the set of
neighbors of v in C. We grow a copy of Q|C(v)| rooted
at vc, and label the leaves of this copy with vu where
u ∈ C(v). Finally, for each original edge (u, v) where
u, v ∈ C we add the edge (uv, vu). This defines the new
graph G1 which, as can bee seen, is obtained from G via
vertex splitting. In fact, we can save some new vertices
so that no unnecessary vertex splitting ever occurs, as
follows. If v has less than 3 neighbors in A we do not
need va, we can connect them directly to v. Similarly
for vb and vc.

For v ∈ C, let kv denote the number of neighbors
of v in C. Notice that G1 has at most n + 5|C| +
3
∑

v∈C kv vertices. We now define a partition of the
vertex set of G1. We set A1 = A∪{va : v ∈ C} (in fact,
if va does not exist as noted in the above vertex-saving
remark we do not take it into A1). Similarly, B1 =
B ∪ {vb : v ∈ C} and C1 consists of all the remaining
vertices. Namely, for each v ∈ C, all the vertices of Yv

except va, vb (there are at most 4 such vertices) and all
the vertices of the Q|C(v)| rooted at vc all belong to C1.
Notice that |C1| ≤ 4|C| + 3

∑

v∈C kv. But since G
is δ-locally sparse (for some constant δ = δ(H)), the
number of edges in the subgraph induced by G[C] is at
most δ|C|. Thus, |C1| ≤ 4|C| + 6δ|C| ≤ (4 + 6δ)O(nβ).
Notice also that no edge crosses from A1 to B1, and that
|A1| ≤ |A| + |C| ≤ 2n/3 and |B1| ≤ |B| + |C| ≤ 2n/3.

Let GA be the subgraph of G1 induced by A1 and
let Let GB be the subgraph of G1 induced by B1. Notice
that both GA and GB are isomorphic to subgraphs



of G and hence are H-minor free. We may therefore
recursively apply our vertex-splitting algorithm to GA

and GB respectively, resulting in a separator tree TA

for G′
A, the graph obtained from GA after all the

vertex splittings performed by the recursive calls, and a
separator tree TB for G′

B , the graph obtained from GB

after all the vertex splittings performed by the recursive
calls. Both G′

A and G′
B have bounded degree. The

overall vertex split of G, denoted G′ is obtained by
connecting the vertices of C ′, all of which have degree
at most 4 in G[C ′], to their neighbors in A1 and B1

respectively (notice that these neighbors retained their
label also in G′

A and G′
B respectively).

Since we have made no redundant vertex splitting,
the overall number of vertices in G′ is at most Cn where
C = C(H) is a constant. The size of B1 is at least
n/3 and hence the size of G′

B is at least n/3. Thus,
the size of G′

A is at most |G′| − n/3 + O(nβ) < α|G′|
for a suitable constant α < 1, and the same holds for
the size of G′

B . The separator tree for G′ is obtained
by taking the disjoint trees TA and TB , and adding to
them a common root associated with the entire vertex
set of G′. Notice that the size of the initial separating
set, C ′, is O(nβ), as required. The standard analysis
of the recursive calls to ALG yields an overall running
time of O(nγ), as required.

The vertex splitting in Lemma 2.1 is performed in-
line with the recursive applications of ALG. This is
crucial. Indeed, we could have obtained a separator
tree for G by recursively applying ALG and only in the
end perform the vertex splitting, but now a component
of the origial tree could become very large. Indeed,
if v is a vertex of some tree component C and v has
Θ(n) neighbors in descendant components then vertex
splitting would cause C to blow-up and become a
component of size Θ(n).

In a recent result, Reed and Wood [RW05] general-
ize the result of Alon, Robertson and Seymour [AST90]
in an interesting way. They show that a separator for
an H-minor free graph can be found more quickly, if we
are willing to get a somewhat larger separator. More
precisely, they obtain the following result.

Theorem 2.4. Let ǫ ∈ [0, 1/2] be fixed and let H be
a fixed graph. There is an algorithm with running time
O(n1+ǫ) that, given an n-vertex graph G, either outputs:
(a) an H-model of G, or (b) a partition (A,B,C) that
exhibits an (O(n(2−ǫ)/3), 2/3)-separation.

Notice that the case ǫ = 1/2 degenerates to the re-
sult of Alon, Seymour and Thomas [AST90] for fixed H.
We may use the algorithm of Theorem 2.4 as ALG in
Lemma 2.1. We therefore obtain the following corollary.

Corollary 2.1. Let ǫ ∈ (0, 1/2] be fixed and let H be
a fixed graph. There is an algorithm with running time
O(n1+ǫ) that, given an n-vertex graph G, either outputs:
(a) an H-model of G, or (b) a bounded degree vertex-
split graph G′ of G and an (O(n(2−ǫ)/3), α)-separator
tree for G where α = α(H) < 1.

Completing the description of the algorithm:

We choose ǫ = (2ω − 3)/(3 + ω). Given a graph G
with n vertices, we apply Corollary 2.1. In O(n3ω/(3+ω))
time we either find an H-model of G, certifying
that G has an H-minor, or else we construct an
(O(n3/(3+ω)), α)-separator tree for a bounded degree
vertex-split graph G′ of G. Equipped with this sepa-
rator tree we run the algorithm of Theorem 2.3 and ob-
tain, with high probability, and in O(n3ω/(3+ω)) time, a
maximum matching of G′, which we can directly trans-
late to a maximum matching of G. 2

3 Maximum matchings in bounded genus

graphs

In order to apply Theorem 2.3 and vertex splitting to
graphs with bounded genus, we need two results. The
first is a generalization of Theorem 2.1 which was proved
by Gilbert, Hutchinson and Tarjan [GHT84].

Theorem 3.1. Let g be a fixed nonnegative integer.
Given an embedding of a graph G with n vertices on
a surface with genus g, an (O(

√
n), 2/3)-separator tree

for G can be constructed in O(n log n) time.

Notice, however, that the algorithm in Theorem 3.1
requires that the embedding be given. Only much later,
Mohar [Moh99] showed that such an embedding can be
found in linear time.

Theorem 3.2. Let g be a fixed nonnegative integer.
There exists a linear time algorithm that, for a given
graph G, either finds an embedding of G in a fixed
surface of genus g or determines that the genus of G
is greater than g.

We note that the embedding is purely combinatorial and
is given by a rotation system (a cyclic permutation πv

of edges incident with v, representing their circular
order around v on the surface; see, e.g., Mohar [Moh99]
and the next subsection). Notice that once such an
embedding is obtained, it is straightforward to perform
vertex splitting while not increasing the genus, just as
in the case of planar graphs.

Proof of Theorem 1.1: Give a graph G with n
vertices, we first apply the algorithm of Theorem 3.2 and
either obtain an embedding of G on a surface of genus g
or a certificate showing that G has genus greater than g.



Once equipped with the embedding, we perform vertex
splitting and obtain a graph G′, with genus at most g,
and with maximum degree at most 3. Next, we apply
Theorem 3.1 to obtain an (O(

√
n), 2/3)-separator tree

for G′. We then apply the algorithm of Theorem 2.3
and obtain a maximum matching of G′ with probability
at least 2/3, which is directly translated to a maximum
matching of G. The overall running time is, therefore,
O(nω/2). 2

4 Counting perfect matchings in bounded

genus graphs

The theory of Pfaffian orientations was introduced by
Kasteleyn [Kas67] to solve some enumeration problems
arising from statistical physics. These orientations can
be used to count perfect matchings in Pfaffian orientable
graphs. Such graphs include all planar graphs, all K3,3-
free graphs (see [Lit74, Vaz89]), and many others.

In the rest of this section we follow the definitions
from [Jer03]. Let G = (V,E) be an undirected graph, C

an even cycle in G, and ~G an orientation of G. We say
that C is oddly oriented by ~G if, when traversing C in
either direction, the number of co-oriented edges (i.e.,

edges whose orientation in ~G and in the traversal is the
same) is odd.

Definition 4.1. An orientation ~G of G is Pfaffian if
the the following condition holds: for any two perfect
matchings M,M ′ in G, every cycle in M ∪M ′ is oddly
oriented by ~G.

Note that all cycles in the union of two perfect
matchings are even.

Let G = (V,E) be an undirected graph with
V = {1, . . . , n}. With each edge e ∈ E we associate
a variable xe. For M ⊂ E let x(M) =

∏

e∈M xe.
The matching polynomial of G is M(G) =

∑

M x(M)
where the sum is taken over all perfect matchings
of G. Recall the definition of the skew adjacency
matrix As(~G) of an orientation ~G of G given in the
previous section. Kasteleyn proved the following result
(see, e.g., [Kas67, LP86, Jer03]).

Theorem 4.1. For any Pfaffian orientation ~G of G,

M(G) =

√

det As(~G) .

In particular, if we assign +1 to all the variables we
obtain that

# perfect matchings in G =

√

det A(~G)

where A(~G) is the matrix obtained from As(~G) by
assigning +1 to all the variables. Thus, once we are

given a Pfaffian orientation, computing the number of
perfect matchings reduces to computing a determinant.
Not all graphs have a Pfaffian orientation. For example,
K3,3 does not have one. The computational complexity
of deciding, for an arbitrary graph G, whether G has
a Pfaffian orientation, is open. It is neither known
to be in P nor to be NP-complete. In a seminal
paper of Robertson, Seymour and Thomas [RST99],
the restriction of this decision problem to bipartite
graphs was shown to be in P. This was also proved
independently by McCuaig [McC04].

It is not difficult to prove that a planar graph
has a Pfaffian orientation. In fact, let G be a planar
graph embedded in the plane. If G contains bridges,
they may be oriented arbitrarily. Now consider the
graph without its bridges. Each connected component
is 2-edge connected. Suppose that we orient each
connected component so that every face, except the
(outer) infinite face, has an odd number of edges that
are oriented clockwise. Then, the resulting orientation
is Pfaffian (see, e.g., [Jer03] for a short proof). Hopcroft
and Tarjan gave the first linear time algorithm that
determines whether a graph can be embedded in the
plane [HT74]. An extension of this algorithm given
in [CNAO85], that also runs in linear time, returns an
embedding in the form of a rotation system. Namely,
for each vertex we are given the list of its neighbors in
a clockwise ordering. Once equipped with a rotation
system of a 2-edge connected planar graph, given any
edge uv it is straightforward to traverse the two faces
to which uv belongs. Start with u = v0 and v = v1,
and for i = 2, 3, . . ., let vi be the vertex following vi−2

in the cyclic list of neighbors of vi−1. Once returning
to v0 a face has been discovered. To discover the other
face, start with v = v0 and u = v1.

Proposition 4.1. Given a planar graph G with n ver-
tices, a Pfaffian orientation of G can be constructed in
O(n) time.

Proof. As noted earlier, it suffices to prove the propo-
sition for 2-edge connected planar graphs, that are
equipped with a rotation system. In particular, as
shown above, we can list all the faces in linear time.
Lovász and plummer [LP86] showed how to order the
faces in linear time so that each face (except the last
face, which is the outer face) contains at least one edge
not appearing in earlier faces. This is done by construct-
ing a spanning tree of the dual, rooted by the outer face,
and listing the faces in reverse order of their distance
from the root. Now, start with the first face, and orient
all but one of its edges arbitrarily. Orient the last edge
so that an odd number of edges are oriented clockwise.
Now, continue to the next face. It has at least one edge



that is still not oriented. Thus, we can orient all the re-
maining non-oriented edges on this face so that an odd
number of edges are oriented clockwise. We continue in
this manner until all faces, except the outer face, have
an odd number of edges that are oriented clockwise.
The resulting orientation is Pfaffian.

Proof of Theorem 1.3 for planar graphs:

Given a graph G with n vertices, we can obtain,
in O(n) time, an embedding of G in the plane (see, e.g.,
[CNAO85, BM04]). If G is not planar, the algorithm
detects this fact. Otherwise, we use the rotation system
to obtain, in O(n) time, a vertex split graph G′ of G
with maximum degree at most 3, so that G′ is planar as
well. Notice that the number of perfect matchings of G′

and G is the same. Next, we apply Proposition 4.1 and
obtain a Pfaffian orientation ~G′ of G′, in O(n) time.

Let A = A( ~G′) be the matrix obtained from As( ~G′)
by assigning +1 to all the variables, and let B = AAT .
Using Theorem 2.1 we obtain an (O(

√
n), 2/3)-separator

tree for G′ in O(n log n) time. Since G′ has maximum
degree at most 3, we can use the separator tree for G′

to obtain an (O(
√

n), 2/3)-separator tree for G(B).
We now apply Theorem 2.2 and compute the LU
factorization B = LDLT . The number of arithmetic
operations is O(nω/2). However, notice that the entries
of B are integers whose absolute values are bounded
by 3. Thus, the numerators and denominators of
the rationals that are obtained during the Gaussian
elimination have only Õ(n) bits, and the bit complexity
of each arithmetic operation is Õ(n). Thus, the overall
running time is Õ(n1+ω/2). By multiplying the rational
numbers in the diagonal of D (in Õ(n2) time) we obtain
det B. Finally, notice that

# perfect matchings in G = (det B)1/4.

2

For general graphs we may not have a Pfaffian ori-
entation. However, Galluccio and Loebl [GL99a] found
a way to overcome this obstacle in the case of graphs
with bounded genus. They proved that if G has genus g,
then it is possible to find 4g orientations of G, so that
the matching polynomial is a linear combination of the
square roots of the determinants of the corresponding
skew-adjacency matrices. The coefficients of this lin-
ear combination are explicitly given. The orientations
can be found quickly as well since each of them corre-
sponds to a Pfaffian orientation of a planar subgraph
of G (see [GL99a]). The number of perfect matchings
can now be computed by assigning 1 to the variables in
each of the 4g matrices, and applying the algorithm for
planar graphs, given above, to compute the determinant

of each matrix. Thus, the overall running time is still
Õ(n1+ω/2).

5 Counting T -joins in planar graphs

Let G = (V,E) be a graph. As in Section 3, we
associate a variable xe with each e ∈ E. For F ⊂ E
let x(F ) =

∏

e∈F xe. For T ⊂ V , the T -join polynomial
of G is the polynomial T (G,T ) =

∑

F x(F ) where F is
taken over all the edge sets of the T -joins of G.

Galluccio and Loebl [GL99b] found a construction
that relates the T -join polynomial of a graph with the
matching polynomial of another graph, while preserving
the genus. We describe their reduction.

Definition 5.1. Let G = (V,E) be a graph and let
v ∈ V . Let e1, . . . , ek be an ordering of the edges
of G incident with v. The even splitting of v is
the graph G′ = (V ′, E′) such that V ′ = V − {v} ∪
{v1, . . . , v6k}, and E′ = E−{e1, . . . , ek}∪{e′1, . . . , e′k}∪
{v1v2, v2v3, . . . , v6k−1v6k} ∪ {v1v3, v4v6, . . . , v6k−2v6k}
where e′i is obtained from ei by replacing v by v6i−4 for
i = 1, . . . , k. We say that e′i is the image of ei in G′.
The odd splitting of v is obtained from the even splitting
of v by deleting vertices v6k, v6k−1, v6k−2.

Notice that if G is embedded in an orientable surface
and e1, . . . , ek is a clockwise ordering of the edges
incident with v, then the graph obtained by an even
(odd) splitting is also embeddable on the same surface.

Let G = (V,E) be a graph and T ⊂ V . Denote
by GT = (VT , ET ) the graph obtained from G by odd
splitting of all vertices of T and even splitting of all
vertices of V − T . Notice that, in particular, if G is
planar we can guarantee that GT is also planar and also
notice that GT can be constructed from G in linear time.
Now, let M(GT ) be the matching polynomial of GT

and let T (G,T ) be the T -join polynomial of G. The
following is observed in [GL99b].

Theorem 5.1. T (G,T ) is obtained from M(GT ) by
performing the following replacement of the variables
of M(GT ). If e′ ∈ ET is an image of some e ∈ E then
replace xe′ with xe. Replace all other variables by 1.

If G = (V,E) is a planar graph, so is GT =

(VT , ET ). Hence, let ~GT be a Pfaffian orientation

of GT , and let As( ~GT ) be the associated skew adjacency

matrix. Replace each variable of As( ~GT ) as follows. If
e′ ∈ ET is an image of some e ∈ E then replace xe′

with x. Replace all other variables with 1. Each
element of the obtained matrix, denoted As( ~GT , x), is
one of {+1,−1, 0, x,−x}. Let nG(r, T ) be the number
of T -joins of G consisting of precisely r edges. Notice
that nG(T ) =

∑m
r=0 nG(r, T ) where m = |E|. Put



f(x) =
∑m

r=0 nG(r, T )xr and notice that f(1) = nG(T ).
By Theorem 4.1 and by Theorem 5.1 we have

Corollary 5.1.

f(x) =

m
∑

r=0

nG(r, T )xr =

√

det As( ~GT , x).

Since f(1) = nG(T ) is the number of perfect matchings
of GT , the algorithm of Section 4 can be used to
compute nG(T ) in Õ(n1+ω/2) time.

Finally, we note that if G has bounded genus, then
the algorithm of Theorem 1.1 can also be used to find
a T -join of G, if one exists, with high probability, in
Õ(nω/2) time.

6 Counting T -joins of a given cardinality in

planar graphs

In this section we show that nG(r, T ), the number of
T -joins of size r, can be computed in Õ(n2+ω/2). For
that, we need to show how to compute the (square root

of the) symbolic determinant det As( ~GT , x).

Let A be the matrix obtained from As( ~GT , x) by
replacing x with (the huge integer) K = |VT ||VT |. Recall
that |VT | = O(n) where n = |V |.
Lemma 6.1. det A, and hence

√
det A, can be com-

puted in Õ(n2+ω/2) time.

Proof. We use the same proof used in Section 4. The
only difference is that the huge number K appearing
in some entries of B (possibly multiplied by 3) has
O(n log n) bits. Thus, each arithmetic operation during
the Gaussian elimination now costs Õ(n2) time.

Lemma 6.2. Given D =
√

det A, the coefficients of
f(x) can be determined in Õ(n2) time.

Proof. By Corollary 5.1, D = f(K). Also notice that
nG(r, T ) ≤

(

m
r

)

< K. Thus, we can determine the
coefficients nG(r, T ) by considering the number D as
a number in base K. Since D < (m + 1)Km+1 and
since log D = Õ(n2), the lemma follows.

The method presented in Lemma 6.1 can be gen-
eralized to find the coefficients of the determinant of
a skew adjacency matrix that has more than one free
variable. This is useful for solving the following gener-
alized matching problem. Suppose that the edges of an
n-vertex planar graph G are colored using k colors, and
suppose that α1, . . . , ak are nonnegative integers satis-
fying α1 + · · ·+αk = n/2. How many perfect matchings
does G have, in which precisely αi edges of the matching
are colored with color i, for i = 1, . . . , k? This problem
can be solved using the same approach as in Section 5 in
Õ(nk+ω/2) time. The idea is to assign different variables
to edges of different color. We omit the details.

7 Concluding remarks

Our main result is an O(n3ω/(ω+3)) < O(n1.326) time
algorithm for finding maximum matchings in H-minor
free graphs, for every fixed graph H.
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