
On minimum witnesses for Boolean matrix multiplication

Keren Cohen ∗ Raphael Yuster †

Abstract

Minimum witnesses for Boolean matrix multiplication play an important role in several graph
algorithms. For two Boolean matrices A and B of order n, with one of the matrices having at
most m nonzero entries, the fastest known algorithms for computing the minimum witnesses of
their product run in either O(n2.575) time or in O(n2 +mn log(n2/m)/ log2 n) time. We present
a new algorithm for this problem. Our algorithm runs either in time

Õ(n
3

4−ωm1− 1
4−ω)

where ω < 2.376 is the matrix multiplication exponent, or, if fast rectangular matrix multipli-
cation is used, in time

O(n1.939m0.318) .

In particular, if ω − 1 < α < 2 where m = nα, the new algorithm is faster than both of the
aforementioned algorithms.

Keywords: Boolean matrix multiplication, minimum witness

1 Introduction

Let A and B be two Boolean n × n matrices. A witness matrix for the Boolean product C = AB
is an n × n matrix W with the following properties. If C[i, j] = 0, then W [i, j] = 0. Otherwise,
W [i, j] is equal to some index k such that A[i, k] = B[k, j] = 1. We say that W is a minimum
witness matrix if W [i, j] is the least index k such that A[i, k] = B[k, j] = 1. A maximum witness
matrix is defined analogously. Notice that minimum and maximum witness matrices are unique.

Witness matrices and minimum/maximum witness matrices arise naturally in various algorith-
mic settings. For example, witness matrices can be used to compute shortest paths and fixed sized
graphs; see, e.g., [1, 7, 10]. Minimum/maximum witness matrices are useful for computing low-
est common ancestors in directed acyclic graphs [5], for computing bottleneck paths [11], and for
computing minimum and maximum weight triangles and other fixed graphs [13].

Clearly, witness matrices, as well as minimum and maximum witness matrices, can be computed
naively in O(n3) time as a by-product of naive matrix multiplication that computes the Boolean
product of each row and column pair separately. If one of the matrices has m < n2 nonzero entries,
then naive matrix multiplication, and hence witness computation, requires O(nm) time (folklore).

∗Department of Mathematics, University of Haifa, Haifa 31905, Israel.
†Department of Mathematics, University of Haifa, Haifa 31905, Israel.

E–mail: raphy@math.haifa.ac.il

1

However, it is well-known that matrices can be multiplied faster. Coppersmith and Winograd
[4], improving earlier results beginning with the seminal result of Strassen [12], have shown how to
multiply two n×n matrices over an arbitrary ring using O(n2.376) arithmetic operations. This easily
implies that two Boolean matrices can be multiplied in O(n2.376) time. Let ω denote the infimum
over all exponents such that the Boolean product of two n×n matrices can be computed in O(nω)
time. The result of [4] implies that ω < 2.376 and clearly ω ≥ 2. We note that recently Vassilevska
Williams [14], following a result of Stothers (in his Ph.D. Thesis), showed that ω < 2.3731.

Unfortunately, algorithms such as [4, 12] that compute matrix products non-naively, do not
directly provide witnesses for the resulting product. A simple randomized algorithm for computing
a witness matrix for a Boolean product in essentially O(nω) time is given by Seidel [10]. Alon
and Naor [1] gave a deterministic O(nω) time algorithm for the problem. An alternative, slightly
slower, deterministic algorithm was given by Galil and Margalit [7]. These algorithms are faster
than the naive O(nm) algorithm whenever nω−1 = o(m). However, computing a minimum witness
matrix seems to be a more difficult problem2. Kowaluk and Lingas [9] gave an algorithm that
runs in O(n2+1/(4−ω)) ≤ O(n2.616). This was slightly improved in [5] to O(n2.575) using the same
algorithm but utilizing improved bounds for rectangular matrix multiplication. This algorithm
is faster than the naive O(nm) time algorithm whenever m > n1.575. We mention here that an
interesting combinatorial algorithm that slightly improves upon the naive O(nm) algorithm is given
by Blelloch et al. [2]. It runs in O(n2 +mn log(n2/m)/ log2 n) time.

Improving upon the algorithms from [2, 5] is an open problem mentioned in both of these
papers. In the present paper we design an algorithm that improves upon both of them whenever
ω − 1 < α < 2 where m = nα.

Theorem 1.1 Given two Boolean matrices of order n where one of them has at most m nonzero
entries, there is an algorithm that computes the minimum witness matrix of their product in time 3

Õ(n
3

4−ωm1− 1
4−ω)

or, if fast rectangular matrix multiplication is used, in time

O(n1.939m0.318) .

The algorithm of Theorem 1.1 is faster than the algorithms of [5, 9] whenever m = o(n2), and
matches their complexity whenever m = Θ(n2). It also improves upon the naive algorithm as well
as its slight improvement in [2] whenever m > Ω̃(nω−1). In particular, if ω = 2, the new algorithm
is preferable to both of these algorithm for any density m = nα where 1 < α < 2. It is interesting
to note that algorithms using fast matrix multiplication usually have a phase transition at a certain
input density where they become the algorithms of choice, and from that point, the complexity
remains the same regardless of the growth in density. On the other hand, the growth in the running
time of our algorithm is smooth with respect to the growth in density.

The main ingredient of the proof of Theorem 1.1 is a procedure for iterative partitioning of
the Boolean matrices that are to be multiplied. The algorithms of [5, 9] correspond to the initial

1We use the 2.376 bound in this paper in order to make it easy to compare with related results; one can easily
plug in the value 2.373 whenever ω is used to obtain slightly improved exponents.

2Computing maximum witnesses is computationally equivalent to computing minimum witnesses, so we only
consider minimum witnesses.

3Throughout this paper, Õ(f(n)) stands for O(f(n) logc n) for some c > 0.

2

partitioning of our algorithm. We show that we can refine the partitions further and further, where
each level of partitions reveals more and more minimum witnesses, causing the next partitions
to become sparser, compensating for the increase in the number of parts. The final partitioning
reveals the yet remaining witnesses. We note that the algorithm of Galil and Margalit mentioned
earlier [7] has a similar flavor, although the two algorithms are completely different. It is obtained
from a sequence of algorithms, the first is the naive cubic algorithm, and each subsequent algorithm
computes a fast Boolean matrix multiplication and uses it to partition the problem into several
smaller problems that are solved by calling the previous algorithm in the sequence.

The next section presents a warm-up for our algorithm, where only two levels of partitions are
used. Already this approach yields improved running times, but this is still not optimal. In Section
3 we generalize our method and present the full algorithm, proving Theorem 1.1. Section 4 contains
some concluding remarks and examples of applications of the main result.

2 A warm-up algorithm: two levels of partitions

In this section we construct an algorithm that is based on two level partitioning of the input
matrices. This algorithm and its analysis serve as a basis for the general algorithm.

Let A and B be two n×n Boolean matrices, and assume that A has at most m nonzero entries.
The case where B has at most m nonzero entries is analogous, as can be seen from the fact that
the minimum witness matrix of AB is the transpose of the minimum witness matrix of BTAT . We
may also assume that m ≥ nω−1 since if m < nω−1 the naive algorithm achieves better running
time than our algorithm. Our goal is to compute the minimum witness matrix W of the Boolean
product C = AB. We first describe the algorithm and then analyze its complexity.

2.1 The algorithm

Let 0 < δ < γ < 1 be two parameters whose values will be chosen later after optimization.
As in [5], we partition A into r = n1−γ rectangular sub-matrices of dimensions n×nγ each4. We

denote the rectangular matrices by A1, ..., Ar, where Ak consists of the columns of A in the range
(k − 1)nγ + 1, . . . , knγ . Similarly, we partition B into r sub-matrices of dimensions nγ × n each,
denoted by B1, ..., Br, where Bk consists of all the rows of B in the range (k − 1)nγ + 1, . . . , knγ .

Using fast rectangular matrix multiplication, we compute the Boolean products Ck = AkBk for
k = 1, . . . , r. Observe that C = ∨rk=1Ck.

For each ordered pair of indices (i, j), we locate the least index k = k(i, j) such that Ck[i, j] = 1.
If no such index exists then we set W [i, j] = 0, as C[i, j] = 0. Otherwise, the minimum witness
can be located by examining the product AkBk = Ck. Specifically, if ` is the least index such that
Ak[i, `] = 1 and Bk[`, j] = 1, then W [i, j] = `+ (k − 1)nγ . The easiest way to locate `, as in [5], is
to just scan for ` sequentially. This requires ` operations, but it may be that ` = nγ , so this is not
very efficient.

Instead, we distinguish between two cases. Let d(k, i) be the number of nonzero entries in the
i’th row of Ak. We consider a representation of Ak as a sparse matrix, with the nonzero elements
of each row occupying a linked list. Hence, the i’th list of Ak has length d(k, i). If d(k, i) ≤ nδ then
` will be located sequentially. This requires only O(d(k, i)) ≤ O(nδ) operations.

4Rounding issues are ignored in this paper as they have no effect on the asymptotic running times.

3

It remains to show how to locate ` for pairs (i, j) for which d(k, i) > nδ where k = k(i, j). Let A′k
denote the matrix obtained from Ak by removing all the rows with at most nδ nonzero entries and
let nk denote the number of rows of A′k. We partition A′k into s = nγ−δ rectangular sub-matrices of
dimensions nk×nδ each, denoted by A′k,1, . . . , A

′
k,s. We partition Bk into s rectangular sub-matrices

of dimensions nδ × n each, denoted by Bk,1, . . . , Bk,s. Using rectangular matrix multiplication, we
compute the Boolean products Ck,t = A′k,tBk,t for k = 1, . . . , r and t = 1, . . . , s. Observe that
Ck = ∨st=1Ck,t.

For each ordered pair indices (i, j) such that k = k(i, j) and d(k, i) > nδ, we locate the smallest
index t = t(i, j) such that Ck,t[i, j] = 1. Locating t can be done sequentially using O(s) operations
but there is a faster way using binary search which we now describe. Assume for simplicity that
s = 2p is a power of 2 (again, this assumption does not affect the asymptotic running time).
Consider the matrices Ck,1 . . . , Ck,s. Each is an nk × n Boolean matrix. For every q = 0, . . . , p− 1
and for every d = 0, . . . , 2p−q − 1 let

C∗k,q,d = ∨2
q(d+1)
`=2qd+1Ck,` .

Binary searching, starting from q = p−1 downwards we can locate t = t(i, j) in O(log s) time. The
overhead (both in time and space) in computing the Boolean matrices C∗k,q,d for a given k is just a
factor of O(log s) over the cumulative size of all the Ck,t. Once we have computed t, we know that
the minimum witness can be located by examining the product A′k,tBk,t = Ck,t. Hence, it can now

be located sequentially using O(nδ) operations, as this is the column dimension of A′k,t.

2.2 Running time

We start by recalling a few facts on fast (possibly rectangular) matrix multiplication. These facts
will also be useful for the analysis of the main result in the next section.

Let T (`,m, n) be the time needed to compute the Boolean product of an `×m matrix by an m×n
matrix. Let ω(r, s, t) be the infimum of all the exponents ω′ for which T (nr, ns, nt) = O(nω

′
). We let

ω = ω(1, 1, 1) be the exponent of square matrix multiplication. Recall that by [4] we have ω < 2.376.
Another useful fact is that ω(r, s, t) = ω(r, t, s) = ω(s, r, t) = ω(s, t, r) = ω(t, r, s) = ω(t, s, r) (see
[8]). By performing rectangular matrix multiplication using square block matrices one obtains the
following straightforward bounds:

Lemma 2.1

ω(1, r, 1) = ω(r, 1, 1) ≤ 2 + (ω − 2)r for 0 ≤ r ≤ 1 ,

ω(s, r, 1) = ω(r, s, 1) ≤ s+ 1 + (ω − 2)r for 0 ≤ r ≤ s ≤ 1 .

Coppersmith [3] proved that if α is the supremum over all constants r for which ω(1, r, 1) = 2 then
α > 0.294. The following lemma is obtained by decomposing a given matrix product into smaller
products. (See, e.g., Huang and Pan [8].)

Lemma 2.2

ω(1, r, 1) = ω(r, 1, 1) ≤
{

2 if 0 ≤ r ≤ α,
2 + ω−2

1−α(r − α) if α ≤ r ≤ 1.

ω(s, r, 1) = ω(r, s, 1) ≤
{

1 + s if 0 ≤ r ≤ αs ≤ α,
1 + s+ ω−2

1−α(r − αs) if αs ≤ r ≤ s ≤ 1.

4

Observe that if we use either the upper bound from Lemma 2.1 or the upper bound from Lemma
2.2 as our estimate, we can assume that for given 0 ≤ δ ≤ 1, the function f(β) = ω(β, δ, 1) is convex
for 0 ≤ β ≤ 1.

We now turn to the analysis of the algorithm. The first stage of our algorithm computes
C1, . . . , Cr in time

O(rnω(1,γ,1)) = O(n1−γ+ω(1,γ,1)) . (1)

Constructing sparse representations of A1, . . . , Ar using row lists can be done sequentially in O(n2)
time. At the same time, we can also compute d(k, i) for all k = 1, . . . , r and for all i = 1, . . . , n.
Computing k(i, j) for each pair of indices i, j can be done naively in time

O(rn2) = O(n3−γ) . (2)

For a pair (i, j) such that k = k(i, j) and d(k, i) < nδ, computing the minimum witness takes O(nδ)
time. Hence, for all such pairs the time required is

O(n2+δ) . (3)

Constructing the truncated matrices A′1, . . . , A
′
r takes at most O(n2) time. Recall that nk denotes

the number of rows of A′k. Let βk be such that nβk = nk. Computing the products Ck,t = A′k,tBk,t
for k = 1, . . . , r and t = 1, . . . , s can therefore be performed in time

O(
r∑

k=1

snω(βk,δ,1)) = O(nγ−δ
r∑

k=1

nω(βk,δ,1)) .

In order to estimate this quantity we use the fact that each row of each A′r contains at least nδ

nonzero entries. Since the overall number of nonzero entries in all of the A′r together is at most m,
we have

r∑
k=1

nk =
r∑

k=1

nβk ≤ m

nδ
.

By convexity of the estimates for ω(βk, δ, 1), we have that
∑r
k=1 n

ω(βk,δ,1) subject to
∑r
k=1 n

βk ≤ m
nδ

is maximized when m/nδ+1 of the βk are 1 and all the remaining βk equal zero. Hence,

O(nγ−δ
r∑

k=1

nω(βk,δ,1)) ≤ O(nγ−δ
m

nδ+1
nω(1,δ,1)) = O(mnγ−2δ−1+ω(1,δ,1)) . (4)

For each ordered pair indices (i, j) such that k = k(i, j) and d(k, i) > nδ, computing t = t(i, j)
takes O(log s) time, so for all such pairs, the required time is only O(n2 log n). However, we must
first compute all the Boolean matrices C∗k,q,d. For a given k, the time and space for constructing
them is O(nkns log n) because the size of each Ck,t is nk × n and there are s of them. Summing
this up for all k the required time is

O(ns log n
r∑

k=1

nk) = O(mn1+γ−2δ log n) . (5)

Once t(i, j) is computed, the minimum witness of the pair can be found in O(nδ) time, so for all
such pairs, in O(n2+δ) time, as in (3).

5

It now remains to optimize the choices of γ and δ so that the maximum of (1),(2),(3),(4),(5) is
minimized.

Let us first observe that (2) is redundant as it never exceeds (1). Indeed, comparing both
exponents we see that

1− γ + ω(1, γ, 1) ≥ 3− γ

which follows from the the fact that ω(1, γ, 1) ≥ 2. Likewise, (5) is redundant (up to the logarithmic
factor) as it never exceeds (4). Comparing exponents we see that

γ − 2δ − 1 + ω(1, δ, 1) ≥ 1 + γ − 2δ

which follows from the the fact that ω(1, δ, 1) ≥ 2. It remains to optimize with respect to (1),(3),(4).
It will be convenient to denote m = nx where ω − 1 ≤ x ≤ 2 and work only with exponents.

Equating (1) and (3) we obtain that

δ = ω(1, γ, 1)− γ − 1 . (6)

As (1) is a decreasing function of γ and (4) is an increasing function of γ, their minimum is attained
when equal. Equating (1) and (4) using the bound from Lemma 2.1, we obtain

1− γ + 2− 2γ + ωγ = x+ γ − 2δ − 1 + 2− 2δ + ωδ .

Plugging in (6) this translates to

3− (3− ω)γ = x+ γ + 1− (4− ω)(1− (3− ω)γ) .

This implies that the values of γ and δ that equate (1),(3),(4) are

γ =
6− ω − x
(4− ω)2

, δ =
ω − 2

(4− ω)2
+

(3− ω)x

(4− ω)2
.

The overall running time of the algorithm is therefore

Õ(n2+δ) = Õ(n
2+ ω−2

(4−ω)2m
(3−ω)
(4−ω)2) = O(n2.143m0.237) (7)

where the r.h.s. uses ω < 2.376.
Finally, we repeat our optimization for (1),(3),(4) using fast rectangular matrix multiplication

and the bound from Lemma 2.2 with α = 0.294. In this case we obtain a slightly improved running
time of O(n2.112m0.232).

3 Proof of the main result

The algorithm in the previous is based on refining the original partition of the matrices Ak and Bk
into a sub-partition of matrices A′k,t, Bk,t. In other words, the algorithm is a two-stage refinement
of the original matrices A,B. In this section we extend the algorithm to a multi-stage refinement,
resulting in an algorithm with improved running time.

6

3.1 The algorithm

The parameters 0 < δ < γ < 1 have the same function they had in the previous section; in other
words, γ controls the initial refinement and δ is the threshold for which pairs become “uninteresting”
for the next refinement, as they are determined using the current refinement.

Let h ≥ 1 be an integer whose purpose is to control the number of stages of refinements. Set

ε =
γ − δ
h

, γz = γ − εz for z = 0, . . . , h .

Thus, γ0 = γ and γh = δ.
We now describe a generic stage z of the algorithm starting with z = 0, and show how to

proceed from the current stage to the next one. At each stage we will have a set of relevant matrix

pairs denoted by Mz = {(A(z)
1 , B

(z)
1), . . . , (A

(z)
rz , B

(z)
rz)} where rz = n1−γz . The dimensions of each

B
(z)
t will be nγz × n, and the dimension of each A

(z)
t will be nz,t × nγz , where nz,t ≤ n. In fact, it

will always be the case that the union of all the rows of all the B
(z)
t is B, and each B

(z)
t represents

nγz consecutive rows of B. On the other hand, each A
(z)
t represents nγz consecutive columns of A,

with some n − nz,t rows removed. In fact, it might be the case that some nz,t = 0, namely some

A
(z)
t might be empty matrices.

As a special case, notice M0 is just the set of pairs of matrices (Ak, Bk) for k = 1, . . . , n1−γ

as in the initial refinement of the algorithm of the previous section. Also notice that for the case
h = 1 (this corresponds to the algorithm of the previous section),M1 is the set of pairs of matrices
(A′k,t, Bk,t) of the previous section.

Another object that we hold in each stage is the set of relevant index pairs Wz for which the
minimum witness has not yet been determined. For each (i, j) ∈ Wz we also have an associated
interval I(i, j, z) of indices so that the (yet undetermined) minimum witness is guaranteed to be

determined by considering only the products of the pairs (A
(z)
t , B

(z)
t) for t ∈ I(i, j, z). It will always

be the case that |I(i, j, z)| ≤ nγz−1−γz where for completeness we define γ−1 = 1.
We initially set W0 = {(i, j) |1 ≤ i ≤ n , 1 ≤ j ≤ n} and I(i, j, z) = {1, . . . , r0}. This

corresponds to that fact that we have still not computed any witness and all the products of all
the pairs in M0 must be considered in order to deduce the minimum witness of (i, j).

We begin stage z by computing all the Boolean products of all pairs in Mz. This results in a

set of matrices Cz = {C(z)
1 , . . . , C

(z)
rz } where C

(z)
t = A

(z)
t B

(z)
t .

For each pair (i, j) ∈ Wz, we locate the smallest index t = t(i, j, z) ∈ I(i, j, z) such that

C
(z)
t [i, j] = 1. This can be performed sequentially using at most |I(i, j, z)| operations. Observe

that in the case z = 0 it may be that no such index exists, indicating that (i, j) has no witness. As
pairs with no witnesses are determined already in stage 0, we have that for all z ≥ 1, a witness for
(i, j) ∈ Wz must exist.

Once we have located t = t(i, j, z), we know that the minimum witness can be located by

examining the product of row i of A
(z)
t with column j of B

(z)
t . We cannot afford to search for it

sequentially as the column dimension of A
(z)
t is nγz which may be too large. Instead, we use the

same argument as in the previous section. We construct a representation of A
(z)
t as a sparse matrix.

If row i has less than nδ nonzero entries then the minimum witness of (i, j) can be located using
O(nδ) operations. Otherwise, we pass (i, j) to the next stage of the algorithm, namely we place
(i, j) in Wz+1.

7

In order to handle pairs (i, j) with t = t(i, j, z) for which row i of A
(z)
t has at least nδ nonzero

entries, we further partition the matrices A
(z)
t and B

(z)
t as follows. The matrix B

(z)
t is partitioned

by splitting its rows consecutively into nγz−γz+1 equal parts. This results in nγz−γz+1 matrices with
dimensions nγz+1 × n. These matrices are carried over to the next level. Likewise, after removing

the rows of A
(z)
t that have at most nδ nonzero entries, we partition the remaining A

(z)
t by splitting

its columns consecutively into nγz−γz+1 equal parts. Observe that each of the partitioned parts of

A
(z)
t has a corresponding partitioned part of B

(z)
t . These nγz−γz+1 pairs of partitions are added to

Mz+1. Since for each pair (i, j) ∈ Mz+1 we have computed t(i, j, z), we know that in the next
level, this witness can be determined by examining the products of the pairs corresponding to the

partitions of A
(z)
t and B

(z)
t . As there are nγz−γz+1 such pairs, we have that |I(i, j, z+1)| ≤ nγz−γz+1 ,

as required.
This completes the description of a general stage of the algorithm. Observe that in the final

stage z = h, the column dimensions of the matrices A
(h)
t is nδ and hence in this stage all the

witnesses remaining in Wh are determined, and no additional stage is required.

3.2 Running time

We compute the running time required by each stage of the algorithm.
Computing the Boolean products of all pairs in Mz in order to obtain the set of matrices Cz

is just the sum of the times to compute each of these rz products. Each product is a rectangular
multiplication where the three dimensions involved are nz,t, n

γz , n. Defining βz,t as nβz,t = nz,t, the
required time is therefore

rz∑
t=1

nω(βz,t,γz ,1) . (8)

Observe that for z = 0, the sum in (8) becomes the same as (1), since r0 = n1−γ , β0,t = 1, and
γ0 = γ. Hence, in the case z = 0 the required time is

O(n1−γ+ω(1,γ,1)) . (9)

In order to estimate (8) for z ≥ 1 we shall first estimate
∑rz
t=1 nz,t. Recall that each A

(z)
t is the

result of some column partitioning of some A
(z−1)
s from which the rows with at most nδ nonzero

entries have been removed. The total number of rows in all the A
(z−1)
s that have more than nδ

nonzero entries is, obviously, at most m/nδ. Since each A
(z−1)
s is split into nγz−1−γz parts, we have

rz∑
t=1

nz,t =
rz∑
t=1

nβz,t ≤ m

nδ
nγz−1−γz .

By convexity of the estimates for ω(βz,t, γz, 1), we have that
∑rz
t=1 n

ω(βz,t,γz ,1) subject to the
bound

∑rz
t=1 n

βz,t ≤ m
nδ
nγz−1−γz is maximized when mn−1−δ+γz−1−γz of the βz,t are 1 and all the

remaining βz,t equal zero. Hence (8) is at most

rz∑
t=1

nω(βz,t,γz ,1) ≤ O(mn−1−δ+γz−1−γz+ω(1,γz ,1)) = O(mn−1−δ+ε+ω(1,γz ,1)) . (10)

8

For each pair (i, j) ∈ Wz, locating the smallest index t = t(i, j, z) ∈ I(i, j, z) such that

C
(z)
t [i, j] = 1 is done sequentially using at most |I(i, j, z)| ≤ nγz−1−γz operations. The overall

time required for this step is therefore

O(|Wz|nγz−1−γz) =

{
O(n3−γ) if z = 0,
O(n2+ε) if z = 1, . . . , h.

(11)

Constructing a representation of A
(z)
t as a sparse matrix takes O(n2) time for all the t = 1, . . . , rz

together. As in the previous section, minimum witnesses for pairs (i, j) for which row i of A
(z)
t

(where t = t(i, j, z)) has at most nδ nonzero entries is located using O(nδ) operations. Otherwise,
the pair is moved on to the list Wz+1. The overall time for this step is therefore at most

O(|Wz|nδ) = O(n2+δ) . (12)

The final step of stage z is the partitioning of the matrices B
(z)
t and A

(z)
t (recall that for A

(z)
t

we first remove the rows with at most nδ nonzero entries) into nγz−γz+1 sub-matrices. This is a
straightforward operation that takes time proportional to the overall size of these matrices which
is O(n2). Likewise, determining |I(i, j, z + 1)| takes O(1) time for each pair so at most O(n2) time
overall. This final step is therefore not a bottleneck in the running time of the algorithm.

It remains to optimize γ, δ, h (which also define ε) so that none of (9),(10),(11),(12) exceed the
running time stated in Theorem 1.1. As in the previous section, we see immediately that (11)
is redundant as it never exceeds (9). So we only need to optimize using (9),(10),(12). Observe
that (10) is maximized for γz = γ0 = γ. Also, we will use h = log n so ε = O(1/ log n) making
ε asymptotically negligible in the exponent of (10). Observe, however, that h = log n causes the
logarithmic factor in the running time. It remains to determine γ and δ so that the following three
exponents are equated:

1− γ + ω(1, γ, 1) = 2 + δ = x− 1− δ + ω(1, γ, 1)

where we define m = nx (and recall that we assume ω − 1 ≤ x ≤ 2). This is optimized when
δ = x− 2 + γ and x− 1 = ω(1, γ, 1)− 2γ. Using the estimate from Lemma 2.1 for ω(1, γ, 1) gives

γ =
3− x
4− ω

, δ = x− 2 +
3− x
4− ω

.

The overall running time of the algorithm is therefore

Õ(n2+δ) = Õ(n
3

4−ωm1− 1
4−ω) = O(n1.848m0.384) (13)

where the r.h.s. uses ω < 2.376.
Finally, using the estimate from Lemma 2.2 for ω(1, γ, 1) with α = 0.294 we obtain a slightly

improved running time of O(n1.939m0.318).

4 Concluding remarks

Any algorithm that uses witness matrix computations as an ingredient, and where (at least) one of
the matrices involved can be assumed to have m nonzero entries may benefit from the algorithm
of Theorem 1.1. We give two examples.

9

In [13] it was shown, in particular, how to compute, for any pair of vertices in vertex-weighted
graph, a minimum weight triangle containing the pair, if one exists. (If a globally minimum weight
triangle is required, a faster algorithm that does not rely on witnesses in given in [6].) The main and
most costly ingredient of the algorithm in [13] uses just one witness computation of matrices whose
number of non-zeros correspond to the number of edges of the graph. It hence runs in O(n2.575)
time. Our new algorithm shows that this problem can be solved, for graphs with m edges, in time
O(n1.939m0.318), which is faster for m = O(n2−ε). Notice that in this application, both matrices
have at most m nonzero entries, so it does not exploit the full power of Theorem 1.1.

In [11] it was shown how to compute the All Pairs Bottleneck Paths in directed vertex weighted
graphs using several maximum witness computations as (the most costly) ingredient. In this prob-
lem the goal is to find a path connecting the pair of vertices, where the smallest weight of a vertex
on the path is maximized. Again, the running time they obtain is O(n2.575). The problem is that
in some of the boolean products involved, both matrices may have Θ(n2) nonzero entries even if
the initial graph only has m� n2 edges. However, if one settles for bottleneck paths consisting of
at most 4 vertices, then in each boolean product at least one of the matrices has m nonzero entries
(see Section 2.2 in [11]). Hence, this case can be solved in O(n1.939m0.318) time.

The most notable open problem in this area is whether or not a faster algorithm exists. In
fact, we cannot rule out the existence of a faster algorithm for minimum witnesses even when
m = Θ(n2). At present, the fastest algorithm for this dense case still runs in O(n2.575) time.
Interestingly, the fastest algorithm for All-Pairs Shortest Paths in unweighted directed graphs also
has this complexity [15], but for the latter we still do not know how to exploit the fact that the
graph may be sparser to obtain faster running times. In fact, at present, APSP runs in O(n2.575)
time for graphs with m > n1.576 edges. On the other hand, for minimum witnesses we do know
how to exploit sparseness, even if only one of the matrices is sparse.

References

[1] N. Alon and M. Naor. Derandomization, witnesses for boolean matrix multiplication and
construction of perfect hash functions. Algorithmica, 16(4):434–449, 1996.

[2] G.E. Blelloch, V. Vassilevska, and R. Williams. A new combinatorial approach for sparse
graph problems. In Proceedings of the 35th international colloquium on Automata, Languages
and Programming, pages 108–120. Springer-Verlag, 2008.

[3] D. Coppersmith. Rectangular matrix multiplication revisited. Journal of Complexity, 13(1):42–
49, 1997.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal
of Symbolic Computation, 9(3):251–280, 1990.

[5] A. Czumaj, M. Kowaluk, and A. Lingas. Faster algorithms for finding lowest common ancestors
in directed acyclic graphs. Theoretical Computer Science, 380(1-2):37–46, 2007.

[6] A. Czumaj and A. Lingas. Finding a heaviest vertex-weighted triangle is not harder than
matrix multiplication. SIAM Journal on Computing, 39(2):431–444, 2009.

10

[7] Z. Galil and O. Margalit. Witnesses for boolean matrix multiplication and for transitive
closure. Journal of Complexity, 9(2):201–221, 1993.

[8] X. Huang and V.Y. Pan. Fast rectangular matrix multiplication and applications. Journal of
Complexity, 14:257–299, 1998.

[9] M. Kowaluk and A. Lingas. LCA queries in directed acyclic graphs. In Proceedings of the 32nd
international colloquium on Automata, Languages and Programming, pages 241–248. Springer
Verlag, 2005.

[10] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal
of Computer and System Sciences, 51(3):400–403, 1995.

[11] A. Shapira, R. Yuster, and U. Zwick. All-pairs bottleneck paths in vertex weighted graphs.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
978–985. Society for Industrial and Applied Mathematics, 2007.

[12] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–356,
1969.

[13] V. Vassilevska, R. Williams, and R. Yuster. Finding heaviest h-subgraphs in real weighted
graphs, with applications. ACM Transactions on Algorithms, 6(3):1–23, 2010.

[14] V. Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In Proceed-
ings of the 44th Symposium on Theory of Computing, New York, pages 887–898. ACM Press,
2012.

[15] U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
Journal of the ACM, 49(3):289–317, 2002.

11

