Mean Ramsey-Turán numbers

Raphael Yuster *
Department of Mathematics
University of Haifa at Oranim
Tivon 36006, Israel

Abstract

A ρ-mean coloring of a graph is a coloring of the edges such that the average number of colors incident with each vertex is at most ρ. For a graph H and for $\rho \geq 1$, the mean RamseyTurán number $R T(n, H, \rho-$ mean $)$ is the maximum number of edges a ρ-mean colored graph with n vertices can have under the condition it does not have a monochromatic copy of H. It is conjectured that $R T\left(n, K_{m}, 2-\right.$ mean $)=R T\left(n, K_{m}, 2\right)$ where $R T(n, H, k)$ is the maximum number of edges a k edge-colored graph with n vertices can have under the condition it does not have a monochromatic copy of H. We prove the conjecture holds for K_{3}. We also prove that $R T(n, H, \rho-$ mean $) \leq R T\left(n, K_{\chi(H)}, \rho-\right.$ mean $)+o\left(n^{2}\right)$. This result is tight for graphs H whose clique number equals their chromatic number. In particular we get that if H is a 3 -chromatic graph having a triangle then $R T(n, H, 2-$ mean $)=R T\left(n, K_{3}, 2-\right.$ mean $)+o\left(n^{2}\right)=$ $R T\left(n, K_{3}, 2\right)+o\left(n^{2}\right)=0.4 n^{2}(1+o(1))$.

1 Introduction

All graphs considered are finite, undirected and simple. For standard graph-theoretic terminology see [1]. Ramsey and Turán type problems are central problems in extremal graph theory. These two topics intersect in Ramsey-Turán Theory which is now a wide field of research with many interesting results and open problems. The survey of Simonovits and Sós [11] is an excellent reference for Ramsey-Turán Theory.

The Ramsey number $R(H, k)$ is the minimum integer n such that in any k-coloring of the edges of K_{n} there is a monochromatic H. An edge coloring is called k-local if every vertex is incident with at most k colors. The local Ramsey number $R(H, k-l o c)$ is the minimum integer n such that in any k-local coloring of the edges of K_{n} there is a monochromatic H. An edge coloring is called ρ-mean if the average number of colors incident with each every vertex is at most ρ. The mean Ramsey number $R(H, \rho-$ mean $)$ is the minimum integer n such that in any ρ-mean coloring of the edges of K_{n}

[^0]there is a monochromatic H. Clearly, $R(H, k) \leq R(H, k-l o c) \leq R(H, k-$ mean $)$. The relationship between these three parameters has been studied by various researchers. See, e.g., [2, 4, 7, 10]. In particular, Gyárfás et. al. [7] proved that $R\left(K_{m}, 2\right)=R\left(K_{m}, 2-l o c\right)$. Caro and Tuza proved that $R\left(K_{m}, 2-l o c\right)=R\left(K_{m}, 2-\right.$ mean $)$ and Schelp [10] proved that $R\left(K_{m}, k-l o c\right)=R\left(K_{m}, k-\right.$ mean $)$.

The Ramsey-Turán number $R T(n, H, k)$ is the maximum number of edges a k-colored graph with n vertices can have under the condition it does not have a monochromatic copy of H. We analogously define the local and mean Ramsey-Turán numbers, denoted $R T(n, H, k-l o c)$ and $R T(n, H, \rho-m e a n)$ respectively, to be the maximum number of edges a k-local (resp. ρ-mean) colored graph with n vertices can have under the condition it does not have a monochromatic copy of H. Clearly, $R T(n, H, k) \leq R T(n, H, k-l o c) \leq R T(n, H, k-$ mean $)$.

The relationship between $R T(n, H, k)$, Ramsey numbers and Turán numbers is well-known. The Turán graph $T(n, k)$ is the complete k-partite graph with n vertices whose vertex classes are as equal as possible. Let $t(n, k)$ be the number of edges of $T(n, k)$. Burr, Erdős and Lovász [3] introduced the Ramsey function $r(H, k)$ which is the smallest integer r for which there exists a complete r-partite graph having the property that any k edge-coloring of it has a monochromatic H. For example, $r\left(K_{m}, k\right)=R\left(K_{m}, k\right)$ and $r\left(C_{5}, 2\right)=5$. Clearly, $R T\left(n, K_{m}, k\right)=t\left(n, R\left(K_{m}, k\right)-1\right)$. As shown in Theorem 13 in [11], it follows from the Erdős-Stone Theorem [6] that

$$
R T(n, H, k)=\left(1-\frac{1}{r(H, k)-1}\right)\binom{n}{2}+o\left(n^{2}\right) .
$$

Clearly, a similar relationship holds between $R T(n, H, k-l o c)$ and the analogous Ramsey function $r(H, k-l o c)$. However, no such relationship is known for $R T(n, H, k-m e a n)$. We conjecture that such a relationship holds.

Conjecture 1.1

$$
R T(n, H, k-\text { mean })=\left(1-\frac{1}{r(H, k-\text { mean })-1}\right)\binom{n}{2}+o\left(n^{2}\right) .
$$

Combining this with the fact that $R\left(K_{m}, 2\right)=R\left(K_{m}, 2-l o c\right)=R\left(K_{m}, 2-\right.$ mean $)$ we have the following stronger conjecture for complete graphs and $k=2$.

Conjecture 1.2

$$
R T\left(n, K_{m}, 2-\text { mean }\right)=R T\left(n, K_{m}, 2\right)=t\left(n, R\left(K_{m}, 2\right)-1\right)
$$

For non-integral values of ρ is is not even clear what the right conjecture for $R T(n, H, \rho-$ mean $)$ should be.

The first result of this paper shows that Conjecture 1.2 holds for K_{3}.
Theorem 1.3 $R T\left(n, K_{3}, 2-\right.$ mean $)=R T\left(n, K_{3}, 2\right)=t\left(n, R\left(K_{3}, 2\right)-1\right)=t(n, 5)=\left\lfloor 0.4 n^{2}\right\rfloor$.

The second result of this paper asserts that $R T(n, H, \rho-$ mean $)$ is bounded by a function of the chromatic number of H. In fact, for graphs whose clique number equals their chromatic number, $R T(n, H, \rho-m e a n)$ is essentially determined by the chromatic number of H.

Theorem 1.4 For all $\rho \geq 1$ and for all graphs $H, R T(n, H, \rho-$ mean $) \leq R T\left(n, K_{\chi(H)}, \rho-\right.$ mean $)+$ $o\left(n^{2}\right)$. In particular, if the chromatic number of H equals its clique number then $R T(n, H, \rho-$ mean $)=R T\left(n, K_{\chi(H)}, \rho-\right.$ mean $)+o\left(n^{2}\right)$.

The proof of Theorem 1.4 uses a colored version of Szemerédi's Regularity Lemma together with several additional ideas. Notice that the trivial case $\rho=1$ in Theorem 1.4 is equivalent to the Erdős-Stone Theorem. Combining Theorem 1.3 with Theorem 1.4 we obtain:

Corollary 1.5 Let H be a 3 -chromatic graph. Then, $R T(n, H, 2-$ mean $) \leq 0.4 n^{2}(1+o(1))$. If H contains a triangle then $R T(n, H, 2-$ mean $)=0.4 n^{2}(1+o(1))$.

The next section contains the proof of Theorem 1.3. Section 3 contains the proof of Theorem 1.4.

2 Proof of Theorem 1.3

We need to prove that $R T\left(n, K_{3}, 2-\right.$ mean $)=t(n, 5)$. Since K_{5} has a 2 -coloring with no monochromatic triangle, so does $T(n, 5)$. Hence, $R T\left(n, K_{3}, 2-\right.$ mean $) \geq t(n, 5)$. We will show that $R T\left(n, K_{3}, 2-\right.$ mean $) \leq t(n, 5)$. Clearly, the result is trivially true for $n<6$, so we assume $n \geq 6$. Our proof proceeds by induction on n. Let G have $n \geq 6$ vertices and more than $t(n, 5)$ edges. Clearly we may assume that G has precisely $t(n, 5)+1$ edges. Consider any given 2-mean coloring of G. If $n=6$ then $G=K_{6}$. Recall from the introduction that $R\left(K_{3}, 2-\right.$ mean $)=R\left(K_{3}, 2\right)=6$. As a 2-mean coloring of K_{6} contains a monochromatic triangle this base case of the induction holds. If $n=7$ then G is K_{7}^{-}. Again, it is trivial to check that any 2 -mean coloring of K_{7}^{-}contains a monochromatic triangle. Similarly, if $n=8$ then G is a K_{8} missing two edges and it is straightforward to verify that any 2 -mean coloring of such a G contains a monochromatic triangle.

Assume the theorem holds for all $6 \leq n^{\prime}<n$ and $n \geq 9$. For a vertex v, let $c(v)$ denote the number of colors incident with v and let $d(v)$ denote the degree of v.

If some v has $c(v) \geq 2$ and $d(v) \leq 4 n / 5$ then $G-v$ is also 2-mean colored and has more than $t(n-1,5)$ edges. Hence, by the induction hypothesis, $G-v$ has a monochromatic triangle.

Otherwise, if some v has $c(v)=1$ and $d(v) \leq 3 n / 5$ then let w be a vertex with maximum $c(w)$. Then, $G-\{v, w\}$ is also 2-mean colored and has more than $t(n-2,5)$ edges. Hence, by the induction hypothesis, $G-\{v, w\}$ has a monochromatic triangle.

Otherwise, if v is an isolated vertex of G then let u and w be two distinct vertices having maximum $c(u)+c(w)$. Then, $G-\{v, u, w\}$ is 2-mean colored and has more than $t(n-3,5)$ edges. Hence, by the induction hypothesis, $G-\{v, u, w\}$ has a monochromatic triangle.

We are left with the case where $\delta(G)>3 n / 5$ and whenever $c(v) \geq 2$ then also $d(v)>4 n / 5$. Let v be with $c(v)=1$ (if no such v exists then the graph is 2-local colored and hence contains a monochromatic triangle as, trivially, $\left.R T\left(n, K_{3}, 2-l o c\right)=t(n, 5)\right)$. We may assume that $3 n / 5<$ $d(v) \leq 4 n / 5$, since otherwise we would have $\delta(G)>4 n / 5$ which is impossible for a graph with $t(n, 5)+1$ edges. Consider the neighborhood of v, denoted $N(v)$. Clearly, if $w \in N(v)$ then $c(w)>1$ otherwise (because $d(w)>3 n / 5)$ there must be some $w^{\prime} \in N(v)$ for which $\left(v, w, w^{\prime}\right)$ is a monochromatic triangle and we are done. Thus, the minimum degree of $G[N(v)]$ is greater than $d(v)-n / 5$. Since $d(v)>3 n / 5$ it follows that $G[N(v)]$ has minimum degree greater than $2|N(v)| / 3$. If $|N(v)|$ is divisible by 3 then the theorem of Corrádi and Hajnal [5] implies that $G[N(v)]$ has a triangle factor. If $|N(v)|-1$ is divisible by 3 then the theorem of Hajnal and Szemerédi [8] implies that $G[N(v)]$ has a factor into $(|N(v)|-4) / 3$ triangles and one K_{4}. If $|N(v)|-2$ is divisible by 3 then, similarly, $G[N(v)]$ has a factor into $(|N(v)|-8) / 3$ triangles and two K_{4} or $(|N(v)|-5) / 3$ triangles and one K_{5}. Assume that G has no monochromatic triangle. The sum of colors incident with the vertices of any non-monochromatic triangle is at least $5=3 \cdot(5 / 3)$. The sum of colors incident with the vertices of any K_{4} having no monochromatic triangle is at least $8>4 \cdot(5 / 3)$. The sum of colors incident with the vertices of any K_{5} having no monochromatic triangle is at least $10>5 \cdot(5 / 3)$. Thus,

$$
2 n \geq \sum_{v \in V} c(v) \geq n+\frac{5}{3} d(v)>n+\frac{5}{3} \cdot \frac{3}{5} n=2 n
$$

a contradiction.

3 Proof of Theorem 1.4

Before we prove Theorem 1.4 we need several to establish several lemmas.
Lemma 3.1 For every $\epsilon>0$ there exists $\alpha=\alpha(\epsilon)>0$ such that for all m sufficiently large, if a graph has m vertices and more than $R T\left(m, K_{s}, \rho-m e a n\right)+\epsilon m^{2} / 4$ edges and is $(\rho+\alpha)$-mean colored, then it has a monochromatic K_{s}.

Proof: Pick α such that $\epsilon m^{2} / 4>(\alpha m+1)(m-1)$ for all sufficiently large m. Given a graph G with m vertices and more than $R T\left(m, K_{s}, \rho-\right.$ mean $)+\epsilon m^{2} / 4$ edges, consider a $(\rho+\alpha)$-mean coloring of G. By picking $\lceil\alpha m\rceil$ non-isolated vertices of G and deleting all edges incident with them we obtain a spanning subgraph of G with m vertices, more than $R T\left(m, K_{s}, \rho-\right.$ mean $)+\epsilon m^{2} / 4-(\alpha n+1)(n-1) \geq$ $R T\left(m, K_{s}, \rho-m e a n\right)$ edges, and which is ρ-mean colored. By definition, it has a monochromatic K_{s}.

Lemma 3.2 If n is a multiple of m then $R T\left(n, K_{s}, \rho-\right.$ mean $) \geq R T\left(m, K_{s}, \rho-m e a n\right) n^{2} / m^{2}$.

Proof: Let G be a graph with m vertices and $R T\left(m, K_{s}, \rho-m e a n\right)$ edges having a ρ-mean coloring without a monochromatic K_{s}. Let G^{\prime} be obtained from G by replacing each vertex v with an independent set X_{v} of size n / m. For $u \neq v$, we connect a vertex from X_{u} with a vertex from X_{v} if and only if $u v$ is an edge of G, and we color this edge with the same color of $u v$. Clearly, G^{\prime} has $R T\left(m, K_{s}, \rho-m e a n\right) n^{2} / m^{2}$ edges, the corresponding coloring is also ρ-mean, and there is no monochromatic K_{s} in G^{\prime}. As G^{\prime} has n vertices we have that $R T\left(n, K_{s}, \rho-\right.$ mean $) \geq$ $R T\left(m, K_{s}, \rho-m e a n\right) n^{2} / m^{2}$.

As mentioned in the introduction, our main tool in proving Theorem 1.4 is a colored version of Szemerédi's Regularity Lemma. We now give the necessary definitions and the statement of the lemma.

Let $G=(V, E)$ be a graph, and let A and B be two disjoint subsets of V. If A and B are non-empty, let $e(A, B)$ denote the number of edges with one endpoint in A and another endpoint in B and define the density of edges between A and B by

$$
d(A, B)=\frac{e(A, B)}{|A||B|}
$$

For $\gamma>0$ the pair (A, B) is called γ-regular if for every $X \subset A$ and $Y \subset B$ satisfying $|X|>\gamma|A|$ and $|Y|>\gamma|B|$ we have

$$
|d(X, Y)-d(A, B)|<\gamma
$$

An equitable partition of a set V is a partition of V into pairwise disjoint classes V_{1}, \ldots, V_{m} of almost equal size, i.e., $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$ for all i, j. An equitable partition of the set of vertices V of G into the classes V_{1}, \ldots, V_{m} is called γ-regular if $\left|V_{i}\right|<\gamma|V|$ for every i and all but at most $\gamma\binom{m}{2}$ of the pairs $\left(V_{i}, V_{j}\right)$ are γ-regular. Szemerédi [12] proved the following.

Lemma 3.3 For every $\gamma>0$, there is an integer $M(\gamma)>0$ such that for every graph G of order $n>M$ there is a γ-regular partition of the vertex set of G into m classes, for some $1 / \gamma<m<M$.

To prove Theorem 1.4 we will need a colored version of the Regularity Lemma. Its proof is a straightforward modification of the proof of the original result (see, e.g., [9] for details).

Lemma 3.4 For every $\gamma>0$ and integer r, there exists an $M(\gamma, r)$ such that if the edges of a graph G of order $n>M$ are r-colored $E(G)=E_{1} \cup \cdots \cup E_{r}$, then there is a partition of the vertex set $V(G)=V_{1} \cup \cdots \cup V_{m}$, with $1 / \gamma<m<M$, which is γ-regular simultaneously with respect to all graphs $G_{i}=\left(V, E_{i}\right)$ for $1 \leq i \leq r$.

A useful notion associated with a γ-regular partition is that of a cluster graph. Suppose that G is a graph with a γ-regular partition $V=V_{1} \cup \cdots \cup V_{m}$, and $\eta>0$ is some fixed constant (to be thought of as small, but much larger than γ.) The cluster graph $C(\eta)$ is defined on the vertex
set $\{1, \ldots, m\}$ by declaring $i j$ to be an edge if $\left(V_{i}, V_{j}\right)$ is a γ-regular pair with edge density at least η. From the definition, one might expect that if a cluster graph contains a copy of a fixed clique then so does the original graph. This is indeed the case, as established in the following well-known lemma (see [9]), which says more generally that if the cluster graph contains a K_{s} then, for any fixed t, the original graph contains the Turán graph $T(s t, s)$.

Lemma 3.5 For every $\eta>0$ and positive integers s, t there exist a positive $\gamma=\gamma(\eta, s, t)$ and a positive integer $n_{0}=n_{0}(\eta, s, t)$ with the following property. Suppose that G is a graph of order $n>n_{0}$ with a γ-regular partition $V=V_{1} \cup \cdots \cup V_{m}$. Let $C(\eta)$ be the cluster graph of the partition. If $C(\eta)$ contains a K_{s} then G contains a $T(s t, s)$.

Proof of Theorem 1.4: Fix an s-chromatic graph H and fix a real $\rho \geq 1$. We may assume $s \geq 3$ as the theorem is trivially true (and meaningless) for bipartite graphs. Let $\epsilon>0$. We prove that there exists $N=N(H, \rho, \epsilon)$ such that for all $n>N$, if G is a graph with n vertices and more than $R T\left(n, K_{s}, \rho-\right.$ mean $)+\epsilon n^{2}$ edges then any ρ-mean coloring of G contains a monochromatic copy of H.

We shall use the following parameters. Let t be the smallest integer for which $T(s t, s)$ contains H. Let $r=\left\lceil 18 \rho^{2} / \epsilon^{2}\right\rceil$. In the proof we shall choose η to be sufficiently small as a function of ϵ alone. Let $\alpha=\alpha(\epsilon)$ be as in lemma 3.1. Let γ be chosen such that (i) $\gamma<\eta / r$, (ii) $\rho /(1-\gamma r)<\rho+\alpha$, (iii) $1 / \gamma$ is larger than the minimal m for which Lemma 3.1 holds. (iv) $\gamma<\gamma(\eta, s, t)$ where $\gamma(\eta, s, t)$ is the function from Lemma 3.5. In the proof we shall assume, whenever necessary, that n is sufficiently large w.r.t. all of these constants, and hence $N=N(H, \rho, \epsilon)$ exists. In particular, $N>n_{0}(\eta, s, t)$ where $n_{0}(\eta, s, t)$ is the function from Lemma 3.5 and also $N>M(\gamma, r)$ where $M(\gamma, r)$ is the function from Lemma 3.4.

Let $G=(V, E)$ be a graph with n vertices and with $|E|>R T\left(n, K_{s}, \rho-\right.$ mean $)+\epsilon n^{2}$. Notice that since $s \geq 3$ and since $R T\left(n, K_{s}, \rho-\right.$ mean $) \geq R T\left(n, K_{3}, 1\right)=t(n, 2)=\left\lfloor n^{2} / 4\right\rfloor$ we have that $n^{2} / 2>|E|>n^{2} / 4$. Fix a ρ-mean coloring of G. Assume the colors are $\{1, \ldots, q\}$ for some q and let c_{i} denote the number of edges colored with i. Without loss of generality we assume that $c_{i} \geq c_{i+1}$. We first show that the first r colors already satisfy $c_{1}+c_{2}+\cdots+c_{r} \geq|E|-\epsilon n^{2} / 2$. Indeed, assume otherwise. Since, trivially, $c_{r+1} \leq|E| / r$, let us partition the colors $\{r+1, \ldots, q\}$ into parts such that for each part (except, perhaps, the last part) the total number of edges colored with a color belonging to the part is between $|E| / r$ and $2|E| / r$. The number of edges colored by a color from the last part is at most $2|E| / r$. The number of parts is, therefore, at least

$$
\frac{\frac{\epsilon}{2} n^{2}}{\frac{2|E|}{r}}>\frac{\epsilon}{2} r .
$$

Since any set of z edges is incident with at least $\sqrt{2 z}$ vertices we have that the total number of vertices incident with colors $r+1$ and higher is at least

$$
\left(\frac{\epsilon}{2} r-1\right) \sqrt{2|E| / r}>\frac{\epsilon}{3} r \frac{n}{\sqrt{2 r}}=\frac{\epsilon \sqrt{r}}{\sqrt{18}} n>\rho n
$$

a contradiction to the fact that G is ρ-mean colored.
Let E_{i} be the set of edges colored i, let $G_{i}=\left(V, E_{i}\right)$, let $E^{\prime}=E_{1} \cup \cdots \cup E_{r}$ and let $G^{\prime}=\left(V, E^{\prime}\right)$. By the argument above, $\left|E^{\prime}\right|>R T\left(n, K_{s}, \rho-m e a n\right)+\epsilon n^{2} / 2$ and G^{\prime} is ρ-mean colored. It suffices to show that G^{\prime} has a copy of H.

We apply Lemma 3.4 to G^{\prime} and obtain a partition of V into m classes $V_{1} \cup \cdots \cup V_{m}$ where $1 / \gamma<m<M$ which is γ-regular simultaneously with respect to all graphs $G_{i}=\left(V, E_{i}\right)$ for $1 \leq i \leq r$. Consider the cluster graph $C(\eta)$. By choosing η sufficiently small as a function of ϵ we are guaranteed that $C(\eta)$ has at least $R T\left(m, K_{s}, \rho-m e a n\right)+\epsilon m^{2} / 4$ edges. To see this, notice that if $C(\eta)$ had less edges then, by Lemma 3.2 , by the definition of γ-regularity and by the definition of $C(\eta)$, the number of edges of G^{\prime} would have been at most

$$
\begin{aligned}
& \left(R T\left(m, K_{s}, \rho-\text { mean }\right)+\frac{\epsilon}{4} m^{2}\right) \frac{n^{2}}{m^{2}}+\eta \frac{n^{2}}{m^{2}}\binom{m}{2}+\gamma\binom{m}{2} \frac{n^{2}}{m^{2}}+\binom{n / m}{2} m \\
& \quad<R T\left(m, K_{s}, \rho-\text { mean }\right) \frac{n^{2}}{m^{2}}+\frac{\epsilon}{2} n^{2} \leq R T\left(n, K_{s}, \rho-\text { mean }\right)+\frac{\epsilon}{2} n^{2}
\end{aligned}
$$

contradicting the cardinality of $\left|E^{\prime}\right|$. In the last inequality we assume each color class has size n / m precisely. This may clearly be assumed since floors and ceilings may be dropped due to the asymptotic nature of our result.

We define a coloring of the edges of $C(\eta)$ as follows. The edge $i j$ is colored by the color whose frequency in $E^{\prime}\left(V_{i}, V_{j}\right)$ is maximal. Notice that this frequency is at least $\left(n^{2} / m^{2}\right) \eta / r$. Let ρ^{*} be the average number of colors incident with each vertex in this coloring of $C(\eta)$. We will show that $\rho^{*} \leq \rho+\alpha$. For $i=1, \ldots, m$ let $c(j)$ denote the number of colors incident with vertex j in our coloring of $C(\eta)$. Clearly, $c(1)+\cdots+c(m)=\rho^{*} m$. For $v \in V$, let $c(v)$ denote the number of colors incident with vertex v in the coloring of G^{\prime}. Clearly, $\sum_{v \in V} c(v) \leq \rho n$. We will show that almost all vertices $v \in V_{j}$ have $c(v) \geq c(j)$. Assume that color i appears in vertex j of $C(\eta)$. Let $V_{j, i} \subset V_{j}$ be the set of vertices of V_{j} incident with color i in G^{\prime}. We claim that $\left|V_{j}-V_{j, i}\right|<\gamma n / m$. Indeed, if this was not the case then by letting $Y=V_{j}-V_{j, i}$ and letting $X=V_{j^{\prime}}$ where j^{\prime} is any class for which $j j^{\prime}$ is colored i we have that $d(X, Y)=0$ with respect to color i, while $d\left(V_{j}, V_{j^{\prime}}\right) \geq \eta / r$ with respect to color i. Since $\eta / r>\gamma$ this contradicts the γ-regularity of the pair $\left(V_{j}, V_{j^{\prime}}\right)$ with respect to color i. Now, let $W_{j}=\left\{v \in V_{j}: c(v) \geq c(j)\right\}$. We have therefore shown that $\left|W_{j}\right| \geq\left|V_{j}\right|-\gamma r n / m$. Hence,

$$
\rho n \geq \sum_{v \in V} c(v) \geq \sum_{j=1}^{m} \sum_{v \in W_{j}} c(v) \geq \sum_{j=1}^{m} c(j) \frac{n}{m}(1-\gamma r)=\rho^{*} n(1-\gamma r)
$$

It follows that

$$
\rho^{*} \leq \frac{\rho}{1-\gamma r} \leq \rho+\alpha
$$

We may now apply Lemma 3.1 to $C(\eta)$ and obtain that $C(\eta)$ has a monochromatic K_{s}, say with color j. By Lemma 3.5 (applied to the spanning subgraph of $C(\eta)$ induced by the edges colored j) this implies that $G_{j}=\left(V, E_{j}\right)$ contains a copy of $T(s t, s)$. In particular, there is a monochromatic copy of H in G. We have therefore proved that $R T(n, H, \rho-$ mean $) \leq R T\left(n, K_{s}, \rho-m e a n\right)+\epsilon n^{2}$. Now, if H contains a K_{s} then we also trivially have $R T(n, H, \rho-m e a n) \geq R T\left(n, K_{s}, \rho-m e a n\right)$. This completes the proof of Theorem 1.4.

4 Acknowledgment

The author thanks Y. Caro for useful discussions.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, 1978.
[2] B. Biollobás, A. Kostochka and R. Schelp, Local and mean Ramsey numbers for trees, J. Combin. Theory Ser. B 79 (2000), 100-103.
[3] S. Burr, P. Erdős and L. Lovász, On graphs of Ramsey type, Ars Combin. 1 (1976), 167-190.
[4] Y. Caro and Z. Tuza, On k-local and k-mean colorings of graphs and hypergraphs, Q. J. Math., Oxf. II. Ser. 44, No. 176 (1993), 385-398.
[5] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423-439.
[6] P. Erdős and A.H. Stone On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-1091.
[7] A. Gyárfás, J. Lehel, R. Schelp and Z. Tuza, Ramsey numbers for local colorings. Graphs Combin. 3 (1987), no. 3, 267-277.
[8] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdös, in: Combinatorial Theory and its Applications, Vol. II (P. Erdös, A. Renyi and V. T. Sós eds.), Colloq. Math. Soc. J. Bolyai 4, North Holland, Amsterdam 1970, 601-623.
[9] J. Komlós and M. Simonovits, Szemerédi Regularity lemma and its application in Graph Theory, in: Paul Erdős is 80, Proc. Coll. Bolyai Math. Soc. Vol 2. (Keszthely, 1993), 295-352.
[10] R. Schelp, Local and mean k-Ramsey numbers for complete graphs, J. Graph Theory 24 (1997), 201-203.
[11] M. Simonovits and V.T. Sós, Ramsey-Turán theory, Discrete Math. 229, No.1-3 (2001), 293340.
[12] E. Szemerédi, Regular partitions of graphs, in: Proc. Colloque Inter. CNRS 260, CNRS, Paris, 1978, 399-401.

[^0]: *e-mail: raphy@research.haifa.ac.il World Wide Web: http:
research.haifa.ac.il ${ }^{\text {~ raphy }}$

