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Abstract

For a graph G, denote by fk(G) the smallest number of vertices that must be deleted from G

so that the remaining induced subgraph has its maximum degree shared by at least k vertices.
It is not difficult to prove that there are graphs for which already f2(G) ≥

√
n(1− o(1)), where

n is the number of vertices of G. It is conjectured that fk(G) = Θ(
√
n) for every fixed k. We

prove this for k = 2, 3. While the proof for the case k = 2 is easy, already the proof for the case
k = 3 is considerably more difficult. The case k = 4 remains open.

A related parameter, sk(G), denotes the maximum integer m so that there are k vertex-
disjoint subgraphs of G, each with m vertices, and with the same maximum degree. We prove
that for every fixed k, sk(G) ≥ n/k − o(n). The proof relies on probabilistic arguments.

1 Introduction

All graphs considered in this paper are finite, simple, and undirected. Graph theory notation follows
[2]. A vertex with maximum degree in a graph can be viewed, in many circumstances, as the “most
influential” vertex in the graph. It may therefore be desired to distribute the influence among a few
vertices of the graph. More formally, let m(G) denote the number of vertices of the graph G that
attain the maximum degree. Clearly, m(G) = |V (G)| if and only if G is a regular graph, and, in the
other obvious extreme, there are graphs in which m(G) = 1. Can we always guarantee that, after
deleting just a few vertices of a given graph G, the remaining induced subgraph G′ has m(G′) ≥ k ?
This is the focus of the first main result in this paper. We note that research concerning repetitions
in the degree sequence of graphs (in this case, repetition of the maximum degree) has been treated
by several researchers; see, e.g., [3, 4, 5, 7].

For a given positive integer k, let fk(G) denote the minimum number of vertices that we need
to delete from G so that the remaining induced subgraph G′ has m(G′) ≥ k. Denote by fk(n)
the maximum of fk(G) where G ranges over all graphs with n vertices. Trivially, f1(n) = 0, and
clearly f2(n) is well defined for all n ≥ 2. For completeness, we will set fk(n) = n whenever there
is a graph G with n vertices for which no induced subgraph has m(G′) ≥ k. Thus, for example,
f3(4) = 4 as can be seen by taking the path with four vertices. It is easy to verify that f3(n) ≤ n−3
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for all n ≥ 5. In fact, fk(n) ≤ n − k for all n sufficiently large; in particular, if n ≥ R(k) where
R(k) is the k’th diagonal Ramsey number.

It is not difficult to prove that there are graphs with n vertices having the property that any
induced subgraph with more than n −

√
n + 2 vertices has a unique maximal vertex. This shows

that fk(n) ≥ Θ(
√
n) for all k ≥ 2. We conjecture that Θ(

√
n) is also the upper bound.

Conjecture 1.1 For any fixed k ≥ 2 we have fk(n) = Θ(
√
n).

It is quite easy to prove Conjecture 1.1 for k = 2. However already the case k = 3 requires
significant effort, as can be seen from our proof of the following theorem.

Theorem 1.2 For k = 2, 3 we have fk(n) = Θ(
√
n).

The case k = 4 of Conjecture 1.1 remains open. We are, however, able to verify Conjecture 1.1 for a
large family of graphs. Recall that a graph is K2,t-free if no two vertices have t common neighbors.

Proposition 1.3 For fixed integers k ≥ 2 and t ≥ 2, if G is a K2,t-free graph with n vertices then
fk(G) = O(

√
n).

The proofs of Theorem 1.2 and Proposition 1.3 appear in Section 2.
A related problem, along a line recently suggested in [6], asks for the deletion of as few as

possible vertices so that the remaining vertices can be split into k equal parts, each inducing a
subgraph with the same maximum degree. Formally, denote by sk(G) the maximum integer m so
that there are k vertex-disjoint subgraphs of G, each with m vertices, and with the same maximum
degree. Trivially, sk(G) ≥ bn/kc. However, it is easy to see that already s2(G) may be smaller
than bn/2c. Indeed, consider the star K1,n−1 when n is even. Clearly, s2(K1,n−1) = n/2 − 1.
Nevertheless, we prove that sk(G) is very close to n/k for every fixed k.

Theorem 1.4 For any fixed k, and for any graph G with n vertices, sk(G) ≥ n/k − o(n).

The proof of Theorem 1.4 that appears in Section 3 also shows that k can, actually, be more than a
constant. In fact, for sufficiently small ε, Theorem 1.4 also holds for k = nε where o(n) is replaced
with o(n1−ε).

2 Large induced subgraph with several maximum degree vertices

We begin this section by observing that f2(n) >
√
n(1−o(1)). We construct a graph G with n = p2

vertices having the property that any induced subgraph with more than n − p + 2 vertices has a
unique maximal vertex. This shows that f2(G) ≥ p − 2. The vertex set of G will be denoted by
V = {v1, . . . , vn}. The edge set of G is constructed as follows. For i = 0, . . . , p− 3, vertex vn−i will
have degree n − (i + 1)p by arbitrarily choosing this amount of neighbors from {v1, . . . , vn−p+2}.
Notice that the remaining n − p + 2 vertices have degree at most p − 2. Now, any subgraph that
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contains more than n− p+ 2 vertices must contain at least one vertex from {vn, . . . , vn−p+3}. The
vertex vn−k of this subgraph, where k is the smallest possible, is the unique vertex with maximum
degree in it, as its degree is between n− (k+ 1)p and greater than n− (k+ 2)p, and no other vertex
of the subgraph has degree in this range.
Proof of Theorem 1.2: By the construction above, we only need to prove that f3(G) ≤ C

√
n.

Let us first prove the much easier assertion that f2(G) ≤
√

8n. Assume that the vertices of G are
ordered by v1, . . . , vn where d(vi) ≥ d(vi+1) for i = 1, . . . , n− 1. Clearly, there must be and index
i <

√
n/2 so that d(vi) < d(vi+1) +

√
2n. Let, therefore, i be the smallest such index. Delete

from G the vertices v1, . . . , vi−1. In the remaining induced subgraph G′, the degree of every vertex
has decreased from its original degree in G by at most i − 1. Since both vi and vi+1 are in G′ we
have that the difference between the largest degree in G′ and the second largest one is less than√

2n+
√
n/2 (notice that we do not claim that vi or vi+1 are the largest or second largest vertices in

G′). Let x be the largest vertex in G′ with degree d′(x) and let y be the second largest vertex with
degree d′(y). We can delete d′(x)− d′(y) neighbors of x in G′ that are not neighbors of y, thereby
equating their degrees. The total number of deleted vertices is less than 2

√
n/2 +

√
2n =

√
8n, as

required.
We now proceed to the more difficult case, k = 3. Again, we assume that the vertices of G

are ordered by v1, . . . , vn where d(vi) ≥ d(vi+1) for i = 1, . . . , n− 1. By a similar argument to the
above, there is an index i <

√
n such that d(vi) < d(vi+5) + 5

√
n. Letting i be the smallest such

index and deleting from G the vertices v1, . . . , vi−1 we obtain an induced subgraph G′ where the
degrees of the first six largest vertices differ by less than 6

√
n. We denote by ti the i’th largest

degree in G′ where t1 is the maximum degree of G′. Hence, t1 − t6 < 6
√
n.

We will now modify G′ by considering several cases. In each case we do one of the following.
We either delete a few vertices from G′, so as to directly obtain an induced subgraph in which the
maximum degree is attained by at least three vertices, or else we reduce the case to another case
(namely, we modify G′ so that its structure applies to another case). We shall denote the vertices
of the current G′ by x1, x2, x3, . . . and their current degrees by d1, d2, d3, . . . where di ≥ di+1. When
we reduce once case to another we shall use the notation xi := xj to signify that vertex xj in
the current case becomes vertex xi in the case that we reduce to. We shall also use the notation
di := dj − q to signify that the i’th largest degree in the case that we reduce to equals the j’th
largest degree in the current case, minus q. Similarly we will denote di :≥ dj − q to signify that the
i’th largest degree in the case that we reduce to is at least as large as the j’th largest degree in the
current case, minus q.

We denote by Z the set of vertices of the current G′, not including x1, x2, and that have degree
at least d4. In particular, Z ⊃ {x3, x4} but also contains other vertices with the same degree as x4,
if there are any. We call a vertex of Z good if it is adjacent to x2 or if it is not adjacent to x1. The
following are the cases we consider.

Case 1: (x1, x2) /∈ E and there exists a good vertex. We modify G′ by deleting from it a set of
d1 − d2 ≥ 0 neighbors of x1 that are not neighbors of x2. Notice that a good vertex is not deleted.
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After the deletion, we have that x1 and x2 both have the same maximum degree which is d2 and
that the third largest vertex, denoted by u, has degree denoted by `, and ` ≥ d4 − d1 + d2. If x1

and x2 now have d2 − ` common neighbors that are not neighbors of u then we can delete them
and we are done, as x1, x2, u all have the same maximum degree `. Otherwise, if there are only
p < d2 − ` such common neighbors we first delete them. Then, we delete d2 − ` − p neighbors of
x1 that are not neighbors of u (none of these are neighbors of x2) and delete d2 − `− p neighbors
of x2 that are not neighbors of u (none of these are neighbors of x1). Again, we are done. Notice
that we have used here the fact that x2 is not adjacent to x1. Altogether, the number of vertices
we have deleted from G′ is at most

d1 − d2 + 2(d2 − `) ≤ d1 − d2 + 2(d2 − (d4 − d1 + d2)) ≤ 3(d1 − d4) . (1)

Case 2: (x1, x2) /∈ E and there is no good vertex. In this case we delete x1 from G′. Notice
that x1 is connected to all the vertices of Z and that x2 is not connected to any of the vertices of
Z. After the deletion, the largest vertex is x2 and its degree is d2. The second largest vertex is x3

and its degree is d3 − 1. The third largest vertex is x4 and its degree is d4 − 1. Since the (now)
first largest vertex (x2) is not connected to the (now) second largest vertex (x3) and since x2 is also
not connected to x4, we reduce to Case 1 and notice that x1 := x2, x2 := x3, x3 := x4, d1 := d2,
d2 := d3 − 1 and d3 := d4 − 1. We notice also that when applying Case 1, the new x3 (which is the
old x4) is a good vertex. Thus, in Case 1, the value of ` is at least d3−d1 +d2 (in terms of the new
di’s) and hence, by (1), at most 3(d1 − d3) (in terms of the new di’s) vertices are deleted to settle
Case 1. In terms of the current di’s we have that Case 2 can be settled directly by deleting at most

1 + 3(d2 − d4 + 1) = 4 + 3(d2 − d4) (2)

vertices.
Case 3: (x1, x2, x3) form a triangle. We first delete d1−d2 neighbors of x1 that are not neighbors

of x2. After the deletion, both x1 and x2 have maximum degree d2. The degree of x3 is ` and we
have ` ≥ d3− d1 + d2. We now perform the following operation for at most d2− ` times, as long as
there are no three vertices with the same maximum degree. If there is a neighbor common to x1

and x2 that is not a neighbor of x3 we delete it. Otherwise, we delete a neighbor of x1 that is not
a neighbor of x3 and a neighbor of x2 that is not a neighbor of x3. Notice that in either case, the
maximum degree is reduced by 1 and is still shared by x1 and x2, while x3 remained with degree
`. After performing this operation at most d2 − ` times we must have three vertices sharing the
maximum degree. The overall number of vertices deleted in Case 3 is at most

d1 − d2 + 2(d2 − `) ≤ d1 − d2 + 2(d1 − d3) ≤ 3(d1 − d3) . (3)

Case 4: (x1, x2) ∈ E, (x1, x3) /∈ E, (x2, x3) /∈ E. We delete x2 from G′. After the deletion, x1

is still the largest vertex with degree d1 − 1, and x3 becomes the second largest vertex with degree
d3. Since x1 is not connected to x3 we can now reduce to either Case 1 or Case 2. We notice that
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x1 := x1, x2 := x3, d1 := d1 − 1, d2 := d3, d3 :≥ d4 − 1 and d4 :≥ d5 − 1. Notice that if we reduce
to Case 1 then, by (1), we can settle Case 4 directly by deleting at most 1 + 3(d1 − d5) vertices (in
terms of the current di’s) and if we reduce to Case 2 then, by (2), we can settle Case 4 directly by
deleting at most 8 + 3(d3 − d5) vertices (in terms of the current di’s). In any case, the number of
vertices we need to delete in order to settle Case 4 directly is at most

8 + 3(d1 − d5) . (4)

Case 5: (x1, x2) ∈ E, d3 > d4, and x3 is connected to precisely one of x1 or x2. If (x1, x3) ∈ E we
delete x1. We reduce to either Case 1 or Case 2 with x1 := x2, x2 := x3, d1 := d2− 1, d2 := d3− 1,
d3 :≥ d4 − 1 and d4 :≥ d5 − 1. Similarly, if (x2, x3) ∈ E we delete x2. Again we reduce to either
Case 1 or Case 2 with x1 := x1, x2 := x3, d1 := d1 − 1, d2 := d3 − 1, d3 :≥ d4 − 1 and d4 :≥ d5 − 1.
Again, by (1) and (2) we see that in terms of the current di’s, the number of vertices that we need
to delete in order to resolve Case 5 directly is at most

5 + 3(d1 − d5) . (5)

Case 6: (x1, x2) ∈ E, d3 = d4 = · · · = dk where k ≥ 5, and each of x3, . . . , xk is adjacent to
precisely one of x1 or x2. We delete x1 and x2. After the deletion all the vertices x3, . . . , xk have
the same maximum degree d3 − 1 and we are done. We deleted only two vertices.

Case 7: (x1, x2) ∈ E, d3 = d4 > d5, (x3, x4) /∈ E and each of x3, x4 is adjacent to precisely one
of x1 or x2. We delete x1 and x2. After the deletion x3 and x4 have maximum degree d3− 1. Since
they are not connected we reduce to either Case 1 or Case 2 with x1 := x3, x2 := x4, d1 := d3 − 1,
d2 := d3 − 1, d3 :≥ d5 − 2 and d4 :≥ d6 − 2. Again, by (1) and (2) we see that in terms of the
current di’s, the number of vertices that we need to delete in order to resolve Case 7 directly is at
most

9 + 3(d3 − d6) . (6)

Case 8: (x1, x2) ∈ E, d3 = d4 > d5, (x3, x4) ∈ E and each of x3, x4 is adjacent to precisely one
of x1 or x2. There are several sub-cases to consider.

If both x3, x4 are adjacent to x1, we delete x1 and reduce to Case 1 or Case 2 with x1 := x2,
x2 := x3, x3 := x4, d1 := d2 − 1, d2 := d3 − 1, d3 := d3 − 1 and d4 :≥ d5 − 1. In terms of the
current di’s, the number of vertices that we need to delete in order to resolve this subcase of Case
8 directly is at most 5 + 3(d2 − d5).

Similarly, if both x3, x4 are adjacent to x2, we delete x2 and reduce to Case 1 or Case 2 with
x1 := x1, x2 := x3, x3 := x4, d1 := d1 − 1, d2 := d3 − 1, d3 := d3 − 1 and d4 :≥ d5 − 1. In terms of
the current di’s, the number of vertices that we need to delete in order to resolve this subcase of
Case 8 directly is at most 5 + 3(d1 − d5).

Finally, we can assume that (x1, x3) ∈ E and (x2, x4) ∈ E and hence (x1, x2, x3, x4) induce a
4-cycle. We delete a set of d2− d3 neighbors of x2 that are not neighbors of x4. After this deletion,
the degree of x2 and x4 is d3, while the degree of x1 is at least d1−d2 +d3 and the degree of x3 is at
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least 2d3− d2. Thus, we can reduce to Case 1 or Case 2 with x1 := x1, x2 := x4, x3 := x2, x4 := x3

and d1 :≥ d1 − d2 + d3, d2 := d3, d3 := d3, d4 :≥ 2d3 − d2. If we reduce to Case 1, then by (1), we
can settle this subcase of Case 8 directly by deleting at most d2−d3 + 3(d1−2d3 +d2) ≤ 7(d1−d3)
(all in terms of the current di’s). If we reduce to Case 2, then by (2), we can settle this subcase of
Case 8 directly by deleting at most d2 − d3 + 4 + 3(d3 − 2d3 + d2) = 4 + 4(d2 − d3) (all in terms of
the current di’s).

Considering all the above subcases of Case 8, we see that in terms of the current di’s, the
number of vertices that we need to delete in order to resolve Case 8 directly is at most

max{5 + 3(d2 − d5) , 5 + 3(d1 − d5) , 7(d1 − d3) , 4 + 4(d2 − d3)} . (7)

We have concluded the description of all cases. Notice that these cases cover all possibilities
for the original G′. Indeed Cases 1 and 2 cover the possibility that (x1, x2) /∈ E in the original G′.
Case 3 covers the possibility that x1 and x2 form a triangle with any vertex with degree d3. Case 4
covers the possibility that x1 and x2 are both not connected to a vertex with degree d3. We remain
with the possibility that each vertex with degree d3 is connected to exactly one of x1 or x2. Cases
5,6,7,8 cover this possibility.

Since in the original G′ we have di = ti for i = 1, 2, 3, 4, 5, 6 we see from (1),(2),(3),(4),(5),(6),(7)
that all of the cases can be resolved completely by deleting from the original G′ at most 7(t1 − t6)
vertices, assuming t1 − t6 ≥ 3, or otherwise at most 15 vertices if t1 − t6 ≤ 2. In any case, this is
less than 42

√
n vertices. Recalling the (less than)

√
n vertices that were deleted from G to obtain

G′ we have that we can always delete from G less than 43
√
n vertices and obtain a subgraph in

which the maximum degree is attained by at least three vertices.

Proof of Proposition 1.3: Let G be a K2,t-free graph on n vertices, and suppose that n ≥ t2
(k
2

)2
.

We will prove that fk(G) ≤ (3k − 3)n1/2.
We perform the following process. If there are k vertices with degrees in (n, n −

√
n] we halt.

Otherwise, we delete all (less than k) vertices with degrees in (n, n−
√
n] from G. If in the remaining

graph there are k vertices with degrees in (n −
√
n, n − 2

√
n] we halt. Otherwise, we delete all

vertices with degrees in this interval. Assume that halt after j ≥ 0 deletion steps. Hence, we have
a subgraph G′ with at least n− (k− 1)j vertices where the k vertices with highest degrees all have
degrees in (n− j

√
n, n− (j + 1)

√
n]. Notice that we must have j ≤

√
n.

Assume first that the maximum degree of G′ is less than 2
√
n. This case is resolved by perform-

ing the following process on G′. As long as there are less than k vertices that share the maximum
degree, delete the vertices that share the maximum degree, and continue. Notice that after at most
2
√
n deletion steps we obtain a graph G′′ with m(G′′) ≥ k. We obtained G′′ by deleting at most

2(k− 1)
√
n vertices of G′. We obtained G′ by deleting at most (k− 1)j ≤ (k− 1)

√
n vertices of G.

Thus. fk(G) ≤ (3k − 3)
√
n.

Assume next that the maximum degree of G′ is at least 2
√
n. Let A be the set consisting of the

k vertices with largest degree in G′. Let B be the set of vertices of G′ that are not in A but have at
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least two neighbors in A. Since G′ is K2,t-free, we have that |B| ≤ (t− 1)
(k
2

)
. Since a vertex v ∈ A

has at most k − 1 neighbors in A and since its degree in G′ is at least 2
√
n we have that v has at

least 2
√
n− (k− 1)− (t− 1)

(k
2

)
≥
√
n neighbors in G′ that are not in A and that are not neighbors

of any other vertex of A. Since the difference of the degrees of two vertices of A is less than
√
n we

see that we can equate the degrees of all the vertices of A by deleting less than
√
nk vertices (for

each v ∈ A we only delete the correct amount of the unique neighbors of v). Altogether we have
deleted at most j(k − 1) +

√
nk vertices of G. Hence fk(G) ≤ (3k − 3)

√
n in this case as well.

3 Disjoint induced subgraphs with equal order and maximum de-

gree

Proof of Theorem 1.4: For the rest of the proof, we assume that k ≥ 2 is fixed and that G is an
n-vertex graph. Whenever necessary we shall assume that n is sufficiently large, as this does not
affect the asymptotic result.

Consider first the case where ∆(G) (the maximum degree of G) is at most n1/4. We perform
the following process. If m(G) > k∆(G)2, then we can clearly select k vertices of G with maximum
degree ∆(G) with the property that no two of them are neighbors or have a common neighbor.
Thus if v1, . . . , vk are such vertices, we can define k pairwise vertex-disjoint subgraphs of G, each
with bn/kc vertices, as follows. Gi will contain vi and all of its neighbors, for i = 1, . . . , k, and
the other vertices of G are assigned arbitrarily to the Gi. Notice that each Gi has maximum
degree ∆(G), as required, and hence sk(G) = bn/kc in this case. Otherwise, we can assume that
m(G) < k∆(G)2. So we modify G by deleting from it all the m(G) vertices with maximum degree.
We have deleted less than k∆(G)2 ≤ kn1/2 vertices and the new graph has maximum degree at
most n1/4 − 1. We now repeat the same process as before. Notice that the process consists of at
most n1/4 steps (as each step decreases the maximum degree) and that in each step we delete less
than kn1/2 vertices. Thus, once we halt we have only deleted at most kn3/4 vertices and hence
sk(G) ≥ b(n− kn3/4)/kc = n/k − o(n), and we are done.

We may now assume that ∆(G) > n1/4. We denote the vertices of G by v1, . . . , vn where
d(vi) ≥ d(vi+1) for i = 1, . . . , n − 1. We perform the following process. If d(v1) − d(vk) < n0.1

we halt. Otherwise we delete v1, . . . , vk from G and repeat the same argument for the new graph
which now has maximum degree less than n− n0.1. After t repetitions we have deleted kt vertices
and have a subgraph of G with maximum degree less than n − tn0.1. Hence, by deleting at most
kn0.9 = o(n) vertices from G we can assume that the degrees of the first k vertices with highest
degree differ by at most n0.1. We therefore have a subgraph G′ of G with s = n − o(n) vertices
that we denote v1, . . . , vs and d(v1) − d(vk) < n0.1. Notice that if d(v1) ≤ s1/4 we are done by
the previous case. We may therefore assume that d(v1) = t > s1/4. Another easy case is when
t ≥ s−s3/4. In this case, we delete from the graph all the vertices other than v1, . . . , vk that are not
common neighbors of all the v1, . . . , vk. This amounts to deleting less than k(s3/4 + n0.1) = o(n)
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vertices. We can now partition the remaining vertices to equal parts V1, . . . , Vk (after throwing
away at most k − 1 vertices because of divisibility considerations) where we place vi in part Vi for
i = 1, . . . , k. Notice that in each Vi the vertex vi is adjacent to all other vertices, and we are done.
Thus, we can now assume that s− s3/4 > t > s1/4.

We now partition the set of vertices of G′ into k parts V1, . . . , Vk as follows. We place vi in Vi

for i = 1, . . . , k. Each of the remaining vertices vk+1, . . . , vs is placed in one of the parts V1 . . . , Vk

by selecting the part uniformly at random. All s− k choices are independent.
Notice that the expected cardinality of Vi is s/k. By a Chernoff large deviation estimate (see

[1]), we have that with probability exponentially small in n, Vi deviates from its mean s/k by more
than s2/3. Thus, with extremely high probability, for all i = 1, . . . , k,

| |Vi| − s/k | < s2/3 . (8)

Since no vertex of G′ has degree greater than t, we have that for each vertex, its expected degree
in its part is at most t/k. Again, by the same Chernoff large deviation estimate, with very high
probability, no vertex deviates from its expected degree by more than t2/3. Now consider vertex vi
in Vi. We know, in particular, that with very high probability the degree of vi in G′[Vi] is at least
d(vi)/k− t2/3 > (t− n0.1)/k− t2/3 > t/k− 2t2/3 (we use here the fact that t2/3 > (s1/4)2/3 > n0.1).
Notice the we do not claim that vi has maximum degree in G′[Vi], but we have shown that with
very high probability, for all i = 1, . . . , k,

|∆(G′[Vi])− t/k| < 2t2/3. (9)

Let us therefore fix a partition V1, . . . , Vk so that (8) and (9) hold for i = 1, . . . , k. Let ui be
a vertex of maximum degree ∆(G′[Vi]) in Vi. We next select a random subset Wi ⊂ Vi − {ui} of
cardinality 10k|Vi|/t1/3 for i = 1, . . . , k. Notice that for each vertex v ∈ Vi, the expected number
of neighbors of v in Wi is asymptotically a 10kt−1/3 fraction of its degree in G′[Vi], and by (9) this
expectation is much larger than 9t2/3. From standard large deviation estimates we obtain that with
very high probability, v has at least 8t2/3 neighbors in Wi and this holds for each v ∈ Vi and for all
i = 1, . . . , k. Let us therefore fix the Wi for i = 1, . . . , k, having this property.

Consider the following process that equates the maximum degrees. Define

y =
k

min
i=1

∆(G′[Vi]) .

We will show that it is possible to delete relatively few vertices from each Vi until the maximum
degree becomes y. So, lets pick Vi and recall that by (9), ∆(G′[Vi]) − y ≤ 4t2/3 and that ui has
degree ∆(G′[Vi]) in Vi. Also recall that ui /∈ Wi. We start deleting from Vi the vertices of Wi one
by one, until the first time the maximum degree becomes y. Indeed, this will eventually happen
at some point since after deleting all of Wi each vertex has lost at least 8t2/3 neighbors, and hence
all vertices have degree smaller than y. Notice that once the maximum degree becomes y we have
obtained a subset V ′i with at least |Vi| − 10k|Vi|/t1/3 vertices.
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After equating all of the maximum degrees to y it may still be the case that not all the V ′i
have the same cardinality. By (8), however, we know the difference in cardinalities is at most
2s2/3 + 10k(s/k + s2/3)/t1/3 = o(s). Let zi be a vertex with degree y in V ′i . Recall that the degree
of zi in Vi is at most t/k + 2t2/3. Hence, zi has at least |Vi| − t/k − 2t2/3 non-neighbors in Vi. By
(8), this is at least

s

k
− s2/3 − t

k
− 2t2/3

non-neighbors. Thus, zi has at least

s

k
− s2/3 − t

k
− 2t2/3 − 10k

s/k + s2/3

t1/3

non-neighbors in V ′i . It therefore remains to show that

2s2/3 + 10k
s/k + s2/3

t1/3
<
s

k
− s2/3 − t

k
− 2t2/3 − 10k

s/k + s2/3

t1/3
.

Since t < s it suffices to prove that

21
s

t1/3
<
s

k
− t

k
− 5s2/3.

The last inequality clearly holds since s1/4 < t < s− s3/4.

4 Concluding remarks

By taking graph complements it is easy to see that both Theorem 1.2 and Theorem 1.4 hold for
the analogous problems for minimum degrees. Proposition 1.3 holds, in particular, for trees as
they are K2,2-free. However, for trees a somewhat better bound can be obtained. For every n-
vertex tree T we have fk(T ) ≤ (2k − 1)n1/3. In fact, it is not difficult to construct trees for which
fk(T ) > c(k)n1/3. We omit the relatively easy proof.
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