
Near linear time construction of an approximate
index for all maximum consecutive sub-sums of

a sequence

Ferdinando Cicalese1, Eduardo Laber2, Oren Weimann3, and Raphael Yuster4

1 Department of Computer Science, University of Salerno, Italy
cicalese@dia.unisa.it

2 Department of Informatics, PUC-Rio, Rio de Janeiro, Brazil
laber@inf.puc-rio.br

3 Department of Computer Science, University of Haifa, Israel, oren@cs.haifa.ac.il
4 Department of mathematics, University of Haifa, Israel, raphy@math.haifa.ac.il

Abstract. We present a novel approach for computing all maximum
consecutive subsums in a sequence of positive integers in near linear time.
Solutions for this problem over binary sequences can be used for reporting
existence (and possibly one occurrence) of Parikh vectors in a bit string.
Recently, several attempts have been tried to build indexes for all Parikh
vectors of a binary string in subquadratic time. However, to the best of
our knowledge, no algorithm is know to date which can beat by more
than a polylogarithmic factor the natural Θ(n2) exhaustive procedure.
Our result implies an approximate construction of an index for all Parikh
vectors of a binary string in O(n1+η) time, for any constant η > 0. Such
index is approximate, in the sense that it leaves a small chance for false
positives, i.e., Parikh vectors might be reported which are not actually
present in the string. No false negative is possible. However, we can tune
the parameters of the algorithm so that we can strictly control such
a chance of error while still guaranteeing strong sub-quadratic running
time.

Parikh vectors, maximum subsequence sum, approximate pattern matching,
approximation algorithms

1 Introduction

Let s = s1, . . . , sn be a sequence of non-negative integers. For each ` = 1, . . . , n,
we denote with m` the maximum sum over a consecutive subsequence of s of
size `, in formulae:

m` = max
i=1,...,n−`+1

i+`−1∑
j=i

sj .

The Maximum Consecutive Subsums Problem (MCSP) asks for com-
puting m` for each ` = 1, . . . , n.

Since an obvious implementation of the above formula allows to compute
m` for a single value of ` in O(n) time, it follows that there exists a trivial

O(n2) procedure to accomplish the above task. The interesting question is then
about subquadratic procedure for solving MCSP. Notwithstanding quite some
effort which has been recently devoted to the problem, surprisingly enough, no
algorithm is known which is significantly better than the natural Θ(n2).

In this paper we show that we can closely approximate the values m` (within
an approximation factor as close to 1 as desired) with a procedure whose running
time can be as close to linear as desired. More precisely, our main result is as
follows.

Main Theorem. For any ε, η > 0, there exists an algorithm that computes
values m̃1, . . . , m̃n such that 1 ≤ m̃j/mj ≤ 1 + ε, for each j = 1, . . . , n, in time
O(kε,η · n1+η), where kε,η is a constant only depending on ε and η.

MCSP arises in several scenarios of both theoretical and practical interest.
Our main motivation for studying MCSP comes from the following Parikh vector
matching problem.

An Index for constant time Parikh vector membership queries. Given
a string t over an alphabet [σ] = {1, 2, . . . , σ}, for each c ∈ [σ], let xc be the
number of occurrences of character c in t. The vector (x1, . . . , xσ) is called the
Parikh vector of t.

In the Parikh vector matching problem, given a string t (the text) over the
alphabet [σ], together with a vector of non-negative integers p = (x1, . . . , xσ) (the
Parikh vector pattern) we ask for (all/one/existence) of occurrences of substrings
s of t such that the Parikh vector of s is p.

Equivalently, we are asking for all the jumbled occurrences of a string s (the
pattern) in a string t (the text), i.e., any occurrence of some permutation of s
in t. Therefore, the Parikh vector matching problem is a type of approximate
string matching [16, 10].

Typical applications of such model come from interpretation of mass spec-
trometry data analysis [5]. More generally, Parikh vector matching applies in
scenarios where, notwithstanding the linearity (mono-dimensional) of the struc-
ture in which we perform the pattern search, it is not important the order in
which what we are searching for, actually occurs. A typical example might be
testing for bio-chemical characteristics of (part) of a macromolecule which only
depends upon the presence of some substructures and their occurrence within
a relatively short distance, whilst their relative order is not significant [1, 3, 15,
18].

Given an alphabet [σ] and a string s it is not hard to see that the maximum
number of Parikh vectors occurring in s is O(n2), since each Parikh vector is
associated to at least one of the Θ(n2) substrings of s. On the other hand, for any
given length n there exist Ω(nσ) distinct Parikh vectors.1 This also motivates
filtering algorithms based on executing membership queries before looking for
the actual occurrences of the Parikh vector query.

1 The number of Parikh vector of length n is equal to the number of ways we an split
n elements into σ parts, which is exactly

(
n+σ−1
σ−1

)
.

For binary string t, knowing for each ` = 1, . . . , n the minimum and maximum
number of 1’s found in a substring of size ` of t, we can answer membership
queries in constant time. More precisely, the connection between MCSP and
Parikh vector membership query problem is given by the following.

Lemma 1. [9] Let s be a binary string and for each i = 1, . . . , n let µmin
` (resp.

µmax
`) denote the minimum (resp. maximum) number of ones in a substring of
s of lenght `. Then for any Parikh vector p = (x0, x1) we have that there exists
a substring in s with Parikh vector p if and only if µmin

x0+x1
≤ x1 ≤ µmax

x0+x1
.

It follows that, after constructing the tables of µmin’s and µmax’s—which is
equivalent to solving two instances of the MCSP—we can answer in constant
time Parikh vector membership queries, i.e., questions asking: “Is there an oc-
currence of the Parikh vector (x0, x1) in s?” This is achieved by simply checking
the condition in the previous Lemma.

Therefore, there has been significant interest in trying to solve the MCSP
on binary sequences in subquadratic time.

To the best of our knowledge the best known constructions are as follows:
Burcsi et al. in [9, 8] showed a O(n2/ log n)-time algorithm which is based on
the O(n2/ log n) algorithm of Bremner et al. [7, 12] for computing (min,+)-
convolution; Moosa and Rahman in [17] obtained the same result by a different
use of (min,+)-convolution, moreover, they show that an O(n2/ log2 n) construc-
tion can be obtained assuming word-RAM operations.

Another interesting application of MCSP is in the following problem in the
analysis of statistical data.

Finding large empty regions in data sets. Bergkvist and Damaschke in [4]
used the index of all maximum consecutive subsums of a sequence of numbers for
speeding up heuristics for the following problem: Given a sequence of positive
real numbers x1, . . . , xn, called items, and integers s ≥ 1 and p ≥ 0, find s
pairwise disjoint intervals with total of s + p items and maximum total length.
Here an interval is a set of consecutive items xi, xi+1, . . . , xj (i ≤ j) and its
length is xi + xi+1 + . . . xj . This problem, aka DIMaxL (Disjoint Intervals of
Maximum Length) and its density variant where we are interested in interval
of maximum density [12], rather than absolute length, are motivated by the
problem of finding large empty regions (big holes) in data sets. Several other
motivating applications can be found in [4] and [12].

By employing a geometric argument, in [4] a heuristic procedure is presented
for the MCSP which can solve the problem in O(n3/2) time in the best case,
but whose worst case remains quadratic.

2 The Approximate Index

Let s = s1, . . . , sn be a sequence of non-negative integers. Our aim is to compute
m` = maxi=1,...,n−`+1

∑i+`−1
j=i sj for each ` = 1, . . . , n. In this section we will

prove the following result

Theorem 1. For any constant ε, η ∈ (0, 1), let k be the minimum positive inte-
ger such that the positive real solution α̃ of the equation α = 1 + 1/αk, satisfies
1 + ε > α̃. Let t = d1/ηe.

There exists an algorithm which in time O(kt−1 · n1+η) computes values
m̃1, . . . , m̃n such that 1 ≤ m̃`/m` ≤ 1 + ε, for each ` = 1, . . . , n.

We shall start describing our approach by first presenting an algorithm which

computes a (1+
√
5

2)-approximation of the values m`’s in O(n3/2) time. Then we
will show a variant of the approach which can be parametrized to achieve the
desired (1 + ε)-approximation in time O(n1.5). Finally, we will show how, by
recursively applying such a strategy we can achieve the same approximation in
time O(n1+η), for any constant η > 0.

We will use the following simple facts.

Fact 1 For each 1 ≤ i < j ≤ n it holds that mi ≤ mj .

Fact 2 For each ` ∈ [n] and positive integers i, j such that i + j = `, it holds
that m` ≤ mi +mj .

Fact 1 directly follows by the non-negativity of the elements in the sequence.
Fact 2 is a consequence of the following easy observation. For a fixed `, let
sr, . . . , sr+`−1 be a subsequence achieving sr + · · ·+ sr+`−1 = m`. By definition
we have that, for any i, j such that i+ j = ` it holds that sr + · · ·+ sr+i−1 ≤ mi

and sr+i + · · ·+ sr+`−1 ≤ mj , from which we obtain the desired inequality.
For ease of presentation, we shall usually neglect rounding necessary to pre-

serve the obvious integrality constraints. The reader can assume that, when
necessary, numbers are rounded to the closest integer. It will always be clear
that these inaccuracies do not affect the asymptotic results. On the other hand,
this way, we gain in terms of much lighter expressions.

2.1 Warm-up: A golden ratio approximation in O(n3/2)

Let α = 1+
√
5

2 . The value α defines the approximation of our solutions. Fix an

integer t ≥ 2 and set g = n1/2.
The basic idea is to compute via exhaustive search the value of mj×g for each

j = 1, . . . , n/g and then to use these values for approximating all the others.
For each j = 1, . . . , n/g, we set m̃j×g = mj×g, i.e., our approximate index

will contain the exact value.
Let ` be such that j × g < ` < (j + 1) × g for some j = 1, . . . , n/g − 1. By

Fact 1 we have that mj×g ≤ m` ≤ m(j+1)×g. Therefore, if m(j+1)×g/mj×g ≤ α,
by setting m̃` = m(j+1)×g we also have that m̃` is an α-approximation of the
real value m`.

What happens if the gap between m(j+1)×g and mj×g is large?
If m(j+1)×g/mj×g > α, our idea is to compute exhaustively m` for each

` = j×g+1, . . . , (j+1)×g−1. The critical point here is that the above “large”
gap can only happen once! This is formalized in the following argument: Let

j > 0 be the minimum integer such that m(j+1)×g/mj×g > α. Therefore, by
Fact 1 we also have

m(j+1)×g/mg > α. (1)

Now, for each i > j, we have

m(i+1)×g

mi×g
≤ mi×g +mg

mi×g
= 1 +

mg

mi×g
≤ 1 +

mg

m(j+1)×g
< 1 + 1/α = α, (2)

where the first inequality follows by Fact 2; the second inequality follows by Fact
1 together with i ≥ (j + 1), respectively; the third inequality follows from (1)
and the last equality because α = (1 +

√
5)/2.

Therefore, after encountering the first large gap between mj×g and m(j+1)×g
all the following gaps will be “small”, hence we can safely set m̃` = m(i+1)×g
for each i > j and i × g < ` ≤ (i + 1) × g. In fact, using again Fact 1 we have
m̃`/m` ≤ m(i+1)×g/mi×g and then by (2) we are guaranteed that m̃` = m(i+1)×g
is indeed an α-approximation of the exact m`.

2.2 As closed to 1 as wished

In this section we prove our main result which follows by refining the algorithm
described in the previous section. Here we use the expression “compute m` ex-
haustively” (for some fixed `) to indicate the linear time computation attained
by scanning the sequence s from left to right and computing the sum of all con-
secutive subsequences of size `. This exhaustive computation for a single ` can
be clearly achieved in Θ(n) time.

Let k be the minimum positive integer such that α ≤ 1 + ε, where α is
the positive real solution of the equation α = 1 + 1/αk. In an explicit way,

k = d− ln(ε)
ln(1+ε)e.

The value α defines the approximation of our solutions. Let us also set g =
n1/2.

We partition the list of values m` (` = 1, . . . , n) into n/g intervals, each of
them with g consecutive values. Then, we proceed as follows:

1. Compute exhaustively the exact value for each m` in the first interval, i.e.,
for m` such that ` = 1, . . . , g.

2. Compute exhaustively the exact value for the extremes of all intervals (i.e.,
for m` such that ` = 2g, 3g, . . .).

3. Let mg,m2g, . . . be the extremes of the n/g intervals. We say that an extreme
mi×g is relevant if mi×g/m(i−1)×g > α. Compute exhaustively m` for every
` such that the rightmost extreme of its interval is among the first k relevant
extremes.

4. The remaining points are approximated by the value of the rightmost point
in the interval where they lie (i.e., for ` ∈ {jg+1, . . . , (j+1)g−1} such that
m(j+1)g/mjg ≤ α we set m̃` = m(j+1)g).

We have to prove that the values m̃’s satisfy the desired (1+ε)-approximation.
Let j1, . . . , jr, with r ≤ k, be the values of j for which the algorithm verified

mj×g/m(j−1)×g > α and hence computed exhaustively m` in the interval ` =
(j − 1)g, . . . , jg.

It is easy to see that m̃`/m` ≤ α for each ` ≤ jr × g.
Moreover, if r < k, it also means that mj×g/m(j−1)×g ≤ α for each j > jr.

Hence, we also have that m̃`/m` ≤ α for each ` > jr × g.
Assume now that r ≥ k. Let us write j∗ for jr. Since for k times we had that

mj×g/m(j−1)×g > α, we have in particular that

mj∗×g

mg
> αk. (3)

Now, let us consider an integer ` such that i×g < ` < (i+1)×g−1 for some
i ≥ j∗. In such case we have that m̃` = m(i+1)×g. Therefore, for our purposes,

it is enough to show that
m(i+1)×g

m`
≤ α.

Indeed we have

m(i+1)×g

m`
≤
m(i+1)×g

mi×g
≤ mi×g +mg

mi×g
= 1 +

mg

mi×g
≤ 1 +

mg

mj∗×g
< 1 +

1

αk
= α.

The first inequality follows by Fact 1, since ` > i× g. The second inequality
follows by Fact 2 yielding m` ≤ mi×g +m`−i×g together with m`−i×g ≤ mg (by
Fact 1 and `− i× g < g).

The third inequality follows by mi×g ≥ mj∗×g (i ≥ j∗ and Fact 1). The
fourth inequality follows from (3) and the last equality by the definition of α.

This concludes the proof that for each ` the values m̃` is indeed an α-
approximation (and hence a (1 + ε)-approximation) of m`.

For the time bound, we observe that the number of times in the above proce-
dure we compute with the exhaustive linear procedure some value m` is at most
(k + 1)× n1/2 for the full intervals of size g and n1−1/2 for the extremes of the
intervals. Therefore the algorithm runs in time O(k × n3/2).

2.3 The last piece: a recursive argument

In the above procedure, for g = n1/2 we first compute mg,m2g,m3g, . . . ,mn in
time O(n3/2). Then, we identify (up to) k+1 relevant intervals. The first interval
is [m1,mg] and the other k intervals are all the ones of the form [mjg,m(j+1)g]
where m(j+1)g/mjg > α. For each one of the k + 1 relevant intervals we com-
pute exhaustively all m` values inside the interval, hence in total requiring time
O(n3/2).

In order to reduce the time complexity, instead of computing all the values
exhaustively in the relevant intervals we can recursively use in each interval the
argument we use for the full “interval” m1, . . . ,mn. In particular, this means
subdividing each relevant interval into subintervals and compute exhaustively the

m` values only at the subintervals’ boundaries, but for k+1 relevant subintervals,
where we recurse again.

Let us first consider an example giving a (1 + ε)-approximation in time
O(n1+1/3). For this we choose g = n2/3 and compute exhaustivelymg,m2g, . . . ,mn,
so spending in total O(n1+1/3) time. Then, we identify k + 1 relevant intervals
just as before. Suppose that [mjg,m(j+1)g] is one of the k+ 1 relevant intervals,

i.e., m(j+1)g/mjg > α. We partition this interval into n1/3 sub-intervals each

of size n1/3. Now, we first compute m` for every sub-interval endpoint, which
requires n1/3×n = O(n1+1/3) time. Then, we compute m` exhaustively for each
` in the k + 1 relevant sub-intervals, i.e., the first sub-interval and the ones for
which the ratio of the values m` at the boundaries is greater than α. As done in
the previous subsection, it can be easily shown that at most k sub-intervals can
exists for which such condition is verified.

Overall, the number of values of ` for which we compute m` exhaustively are:

– the n1/3 boundaries g, 2g, This requires O(n1/3) exhaustive computa-
tions of some m`.

– the n1/3 boundaries of the sub-interval in the k + 1 relevant intervals, i.e.,
in total O(kn1/3) exhaustive computations of some m`.

– for each one of the k+ 1 relevant interval, we may have up to k+ 1 relevant
sub-intervals and each relevant sub interval requires to compute n1/3. In
total this gives additional O(k2n1/3) exhaustive computations of some m`.

Therefore, we have that the time complexity becomes O(k2n1+1/3).
If we want to get O(n1+1/4) running time we can choose g = n3/4 and add

one more level of recursion, i.e., partition the sub-intervals to sub-sub-intervals.
This way the running time becomes O(k3n1+1/4).

In general, given any fixed η > 0 we can set t = d1/ηe and g = n1−1/t.
By using t − 1 levels of recursion we then get a (1+epsilon) approximation in
O(ktn1+1/t) = O(kε,ηn

1+η) time, where kε,η is a constant depending only on ε
and η. This provides the proof of our main theorem. The algorithm is described
in the pseudocode below.

3 Applying the index to the Parikh vector matching
problem

We can now analyze the consequences of our result with respect to the connection
between MCSP and Parikh vector membership query problem.

An immediate corollary of Theorem 1 is the following.

Corollary 1. Let s be a binary string and for each i = 1, . . . , n let µmin
` (resp.

µmax
`) denote the minimum (resp. maximum) number of ones in a substring of s

of lenght `. For any ε, η ∈ (0, 1), we can compute in O(n1+η) approximate values
µ̃min
` (resp. µ̃max

`) such that

µmin
` ≥ µ̃min

` ≥ (1− ε)µmin
` µmax

` ≤ µ̃max
` ≤ (1 + ε)µmax

`

Algorithm 1 Approximate index for all maximum consecutive subsums

Input: A string s, an approximation value ε and a time threshold η s.t. ε, η ∈ (0, 1).
Output: m̃1, . . . , m̃n such that mj/m̃j ≤ ε, for each j ∈ [n].

1: Set k to the minimum integer s.t. 1+ε is not smaller than the positive real solution
of α = 1 + 1/αk.

2: Set t = d1/ηe
3: Recursive-Approx(1, n, 1)
4: return m̃1, . . . , m̃n.

Recursive-Approx(start, end, depth)

1: if depth = t− 1 then
2: for all ` = start, . . . , end do
3: compute m` exaustively and set m̃` = m`

4: end for
5: else
6: Set size = (end− start+ 1) and g = size/n1/t.
7: Recursive-Approx(start, start+ g, depth+ 1)
8: Set j = 2 and κ = 0.
9: while j ≤ n1/t and κ < k do

10: compute mstart+jg exaustively and set m̃start+jg = mstart+jg

11: if mstart+j×g > αmstart+(j−1)×g then
12: Recursive-Approx(start+ (j − 1)g, start+ jg, depth+ 1, t, k)
13: κ = κ+ 1
14: else
15: for all ` = start+ (j − 1)g + 1, . . . , start+ jg − 1 do
16: Set m̃` = mstart+jg

17: end for
18: end if
19: j = j + 1
20: end while
21: for all i = j, . . . , n1/t do
22: compute mstart+ig exaustively and set m̃start+ig = mstart+ig

23: for all ` = start+ (i− 1)g + 1, . . . , start+ ig − 1 do
24: Set m̃` = mstart+ig

25: end for
26: end for
27: end if

Let s be a binary string of length n. Fix a tolerance threshold ε > 0, and
let µ̃min

` and µ̃max
` (` = 1, . . . , n) be as in Corollary 1. In terms of Parikh vector

membership queries, we have the following necessary condition for the occurrence
of a Parikh vector in the string s.

Corollary 2. For any p = (x0, x1) such that there exists a substring of s whose
Parikh vector equals p, we have that

µ̃min
x0+x1

≤ x1 ≤ µ̃max
x0+x1

.

We also have an ”almost matching” sufficient condition, which also follows
from Lemma 1 and Corollary 1.

Corollary 3. Fix a Parikh vector p = (x0, x1). If

µ̃min
x0+x1

1− ε
≤ x1 ≤

µ̃max
x0+x1

1 + ε

then p occurs in s.

As a consequence, if we use the values µ̃min and µ̃max we can answer correctly
to any membership query involving a Parikh vector which occurs in s. Moreover,
we can also answer correctly any membership query involving a Parikh vector
satisfying the condition in Corollary 3. In contrast, it might be that the approxi-
mate index makes us report false positives, when the membership query is about
a Parikh vectors p = (x0, x1) such that

µ̃min
x0+x1

≤ x1 ≤
µ̃min
x0+x1

1− ε
or

µ̃max
x0+x1

1 + ε
≤ x1 ≤ µ̃max

x0+x1
.

4 Some final observations and open problems

We presented a novel approach to to approximating all maximum consecutive
subsums of a sequence of non-negative integers in time O(n1+η), for any con-
stant η > 0. This can be directly used for obtaining a linear size index for
binary string, which allows to answer in constant time Parikh vector member-
ship queries. The existence of a o(n2) time solution for the exact case remains
open. Some observations are in order regarding our approach.

A first observation is that we do not need to store m̃j for each j = 1, . . . , n
as it is sufficient to store only the distinct values computed exhaustively. This
brings down also the space complexity of our approximate index to O(nε).

The computation of the approximate index is extremely easy and fast to im-
plement, and, in contrast to the previous exact solution present in the literature
[9, 8, 17], it does not require any tabulation or convolution computation. In or-
der to get the flavor of the quantities involved, notice that for k = 30 we can
already guarantee an approximation ratio α = 1.085 and with k = 500, we get
α = 1.009.

With respect to the Parikh vector indexing problem, one can clearly modify
the algorithm in order to store together with the value m̃k also the position
where the corresponding maximizing substring occurs. This way the algorithm
can report a substring whose Parikh vector is an (1 + ε)-approximation of the
desired Parikh vector. Moreover, this can also serve as a starting point for ex-
amining, in time proportional to εk the surrounding part of s in order to check
whether the reporting position actually leads to an exact match. Along this
line, an alternative is to associate to each m̃s both m(j−1)×g and mj×g and the
corresponding positions.

It would be interesting to investigate whether it is possible to obtain Las
Vegas algorithms for the Parikh vector problem based on our approximation
perspective. Another direction for future investigation regards the extension of
our approach to cover the case of Parikh vector membership queries in strings
over non-binary alphabets.

References

1. A. Amir, A. Apostolico, G. M. Landau, and G. Satta. Efficient text fingerprinting
via Parikh mapping. J. Discrete Algorithms, 1(5-6):409–421, 2003.

2. L. Babai and P. F. Felzenszwalb. Computing rank-convolutions with a mask. ACM
Trans. Algorithms, 6(1):1–13, 2009.

3. G. Benson. Composition alignment. In Proc. of the 3rd International Workshop
on Algorithms in Bioinformatics (WABI’03), pages 447–461, 2003.

4. A. Bergkvist and P. Damaschke. Fast algorithms for finding disjoint subsequences
with extremal densities. Pattern Recognition, 39:2281–2292, 2006.

5. S. Böcker. Sequencing from compomers: Using mass spectrometry for DNA de
novo sequencing of 200+ nt. Journal of Computational Biology, 11(6):1110–1134,
2004.

6. S. Böcker and Zs. Lipták. A fast and simple algorithm for the Money Changing
Problem. Algorithmica, 48(4):413–432, 2007.

7. D. Bremner, T. M. Chan, E. D. Demaine, J. Erickson, F. Hurtado, J. Iacono,
S. Langerman, and P. Taslakian. Necklaces, convolutions, and X + Y . In 14th
Annual European Symposium on Algorithms (ESA’06), pages 160–171, 2006.

8. P. Burcsi, F. Cicalese, G. Fici, and Zs. Lipták. On Approximate Jumbled Pattern
Matching. Theory of Computing Systems, 50(1):35-51, 2012.

9. P. Burcsi, F. Cicalese, G. Fici, and Zs. Lipták. Algorithms for Jumbled Pattern
Matching in Strings. In 5th International Conference FUN with Algorithms (FUN
2010), pages 89-101.

10. A. Butman, R. Eres, and G. M. Landau. Scaled and permuted string matching.
Inf. Process. Lett., 92(6):293–297, 2004.

11. T. M. Chan. All-pairs shortest paths with real weights in O(n3/ logn) time. Al-
gorithmica, 50(2):236–243, 2008.

12. Y.H. Chen, H.I. Lu, C.Y. Tang. Disjoint segments with maximum density. In
Proc. of the International Workshop on Bioinformatics Research and Applications
(IWBRA 2005), LNCS 3515, pages 845–850, 2005.

13. F. Cicalese, G. Fici, and Zs. Lipták. Searching for jumbled patterns in strings. In
Proc. of the Prague Stringology Conference 2009 (PSC’09), pages 105–117, 2009.

14. M. Cieliebak, T. Erlebach, Zs. Lipták, J. Stoye, and E. Welzl. Algorithmic complex-
ity of protein identification: Combinatorics of weighted strings. Discrete Applied
Mathematics, 137(1):27–46, 2004.

15. R. Eres, G. M. Landau, and L. Parida. Permutation pattern discovery in biose-
quences. Journal of Computational Biology, 11(6):1050–1060, 2004.

16. P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate string match-
ing algorithms. Software Practice and Experience, 26(12):1439–1458, 1996.

17. T.M. Moosa and M.S. Rahman. Sub-quadratic time and linear size data structures
for permutation matching in binary strings. J. Discrete Algorithms, 10(1):5–9,
2012.

18. L. Parida. Gapped permutation patterns for comparative genomics. In Proc. of
WABI 2006, pages 376–387, 2006.

