
Maximum matching in regular and almost regular graphs

Raphael Yuster ∗

Abstract

We present an O(n2 log n)-time algorithm that finds a maximum matching in a regular graph

with n vertices. More generally, the algorithm runs in O(rn2 log n) time if the difference between

the maximum degree and the minimum degree is less than r. This running time is faster than

applying the fastest known general matching algorithm that runs in O(
√
nm)-time for graphs

with m edges, whenever m = ω(rn1.5 log n).

Keywords: maximum matching, regular graph, algorithm

1 Introduction

A matching in a graph is a set of pairwise disjoint edges. A maximum matching is a matching of

largest possible cardinality. The problem of finding a maximum matching is fundamental in both

practical and theoretical computer science, and has numerous applications.

Maximum matching in bipartite graphs is significantly simpler than in general graphs, as com-

putations of augmenting paths do not encounter odd cycles. The seminal algorithm of Hopcroft and

Karp [10] solves maximum bipartite matching in O(
√
nm) time, for graphs with n vertices and m

edges. The first polynomial time algorithm for finding a maximum matching in a general graph was

obtained by Edmonds [5]. The currently fastest deterministic algorithm for this problem, obtained

by Micali and Vazirani, runs in O(
√
nm) time (see [11, 12, 7]). Faster algorithms are known for

several important special classes of graphs.

In this paper we consider the problem of finding a maximum matching in regular and almost

regular graphs. Recently, there has been much progress in the bipartite version of this problem,

and the complexity of the bipartite case is now fairly understood. A simple consequence of Hall’s

Theorem (see [3]) asserts that a regular bipartite graph has a perfect matching. Now, if the graph is

d-regular and d is a power of 2, the following recursive approach due to Gabow and Kariv [6] yields

an O(m)-time algorithm, which is significantly faster than applying the algorithm of Hopcroft and

Karp. First, compute an Euler tour of the graph in time O(m) and then take all the even numbered

edges of the tour, to obtain a spanning subgraph of degree d/2. Repeating this process eventually

∗Department of Mathematics, University of Haifa, Haifa 31905, Israel.

E–mail: raphy@math.haifa.ac.il

1

gives the desired 1-regular spanning subgraph, i.e. a perfect matching. Extending this idea to

the case where d is not a power of 2 is quite difficult. The fastest deterministic algorithm for this

problem is due to Cole, Ost, and Schirra [4] and runs in O(m) time. This running time was recently

shown to be optimal. It is shown by Goel, Kapralov, and Khanna in [8], that any deterministic

algorithm for maximum bipartite matching requires Ω(m) time (i.e., a deterministic algorithm

must, essentially, examine all the edges). In fact, in the same paper, they achieve a breakthrough

by presenting a randomized algorithm that computes a perfect matching in O(n log n) expected

time, with high probability. This improves an earlier randomized algorithm given in [9].

Unfortunately, these algorithms cease to work for non-bipartite graphs. Presently, the fastest

algorithms for regular non-bipartite graphs are obtained using the general algorithms, and require

O(
√
nm) time. The main result of this paper presents a significantly faster algorithm for sufficiently

dense graphs. It also applies to graphs that are not necessarily regular, but are not too far from

being regular.

For a graph G, the notations ∆(G) and δ(G) denote the maximum and minimum degree of G,

respectively. A graph G is called r-almost-regular if ∆(G) − δ(G) < r. Thus, regular graphs are

1-almost-regular. Our main result is the following.

Theorem 1.1 Let G be an r-almost-regular graph with n vertices. There is an algorithm that

finds a maximum matching of G in O(rn2 log n)-time. In particular, if G is a regular graph then a

maximum matching of G is found in O(n2 log n)-time.

The main idea of the proof is to overcome three obstacles that arise when trying to extend the

bipartite approach of [6, 4] to the non-bipartite case. The first problem is that the Euler tour

approach causes imbalances when applied to non-bipartite graphs, and these need to be controlled.

The second problem is that general regular graphs need not have a perfect matching, and hence

maximum matchings computed on their subgraphs need to be considerably augmented. Finally,

the number of such augmentations needs to be controlled in such a way that denser subgraphs

require less augmentations, as computing augmenting paths requires time that is proportional to

the number of edges. The details of the proof appear in the following section. The final section

contains some concluding remarks.

2 Proof of the main result

2.1 Almost regular subgraphs of almost regular graphs

For a graph G, let m(G) denote the cardinality of a maximum matching of G. Suppose that G has

n vertices and is r-almost-regular. The following lemma establishes a simple lower bound for m(G)

in terms of n, r,∆(G). It is a consequence of Vizing’s Theorem [13] that states that E(G) can be

partitioned into at most ∆(G) + 1 matchings.

2

Lemma 2.1 If G is an n-vertex graph which is r-almost-regular and ∆(G) = d, then m(G) ≥
(d− r + 1)n/(2d+ 2).

Proof: By the assumption, we have that 2|E(G)| ≥ (d− r + 1)n. By Vizing’s Theorem, m(G) ≥
|E(G)|/(d+ 1). It follows that m(G) ≥ (d− r + 1)n/(2d+ 2).

We also need the following lemma which follows from the existence of Euler tours in multigraphs

of connected graphs with even degrees.

Lemma 2.2 Any graph G = (V,E) has a spanning subgraph G′ such that d∆(G)/2e−1 ≤ ∆(G′) ≤
d∆(G)/2e and δ(G′) ≥ bδ(G)/2c unless G is regular of even degree, in which case δ(G′) ≥ δ(G)/2−
1. Furthermore, G′ can be constructed in O(|V |+ |E|) time.

Proof: We can assume that G is connected as otherwise we can prove the result for each connected

component separately. Let us first supplement G by adding an arbitrary perfect matching S on

the vertices with odd degree. Thus, if there are 2k vertices with odd degree, we add k edges such

that in the resulting multigraph G∗ all the degrees are even. As G∗ is connected, it has an Euler

tour consisting of edges e1, . . . , es where ei precedes ei+1 in the tour and s = |E|+ k. If k > 0 we

always choose e1 to be an edge of S. Let F = {e2i : 1 ≤ i ≤ bs/2c} be the set of edges in even

positions of the tour.

The spanning subgraph G′ has the edge set F ∩E = F \ S. As Euler tours can be constructed

in linear time, the complexity claim follows. It remains to show that the minimum degree and

maximum degree of G′ satisfy the claims in the statement. Let x denote the starting vertex of the

tour, so that e1 = (x, y) and es = (z, x). Consider first an arbitrary vertex v such that v 6= x.

Let dG(v) (dG′(v)) be the degree of v in G (resp. G′). If dG(v) is even, then dG′(v) = dG(v)/2

and we are done. If dG(v) is odd, then either dG′(v) = (dG(v) + 1)/2 or dG′(v) = (dG(v) − 1)/2

depending on whether the unique edge of S incident with v is in F or not. Hence, we are done in

this case as well. It remains to consider x. If dG(x) is even, then our assumption on the choice

of e1 implies that k = 0 and all the degrees of G are even. In this case we may take x to be any

vertex so we may assume that x is a vertex of maximum degree in G. Clearly, dG′(x) = dG(x)/2 or

dG′(x) = dG(x)/2− 1 depending on whether |E| is even or odd. In any case, we are done. Finally,

if dG(x) is odd, then dG′(x) = (dG(x) + 1)/2 or dG′(x) = (dG(x)− 1)/2 depending on whether s is

even or odd (observe that we must have es ∈ E since e1 /∈ E is the unique edge of S incident with

x). Hence, we are done in this case as well.

Starting with an initial graph G = G0, we can repeatedly apply Lemma 2.2 to obtain a sequence

of spanning subgraphs G0, . . . , Gt where for i = 1, . . . , t, Gi−1 and Gi play the roles of G and G′ of

Lemma 2.2 respectively. More precisely, we obtain the following corollary:

Corollary 2.3 Let G be an n-vertex graph which is r-almost-regular, ∆(G) = d, and let t =

O(log d) be a positive integer. There is a sequence of n-vertex graphs G0, . . . , Gt where G0 = G,

having the following properties.

3

1. Gi is a spanning subgraph of Gi−1 for i = 1, . . . , t.

2. ∆(Gi) ≤ dd/2ie.

3. Gi is O(max{r/2i , 1})-almost-regular.

Furthermore, the sequence can be constructed in O(nd) time.

Proof: The properties follow directly from Lemma 2.2. The complexity claim follows from the

fact that Gi−1 has O(nd/2i) edges and from the fact that Gi is constructed from Gi−1 in O(nd/2i)

time.

2.2 Proof of Theorem 1.1

We begin with a short description of the proof of Theorem 1.1. The algorithm starts by constructing

the sequence of graphs G0, . . . , Gt where G0 = G, having the properties listed in Corollary 2.3.

We then gradually compute a maximum matching “bottom-up”. We first compute a maximum

matching Mt of Gt using a standard matching algorithm for general graphs. However, since Gt

is relatively sparse, computing Mt is relatively quick. We then move to Gt−1 which contains Gt,

and hence Mt is a (not necessarily maximum) matching of Gt−1. Modifying Mt to a maximum

matching Mt−1 of Gt−1 requires relatively few augmenting-path steps, that we show how to perform

quickly. This process is repeated over and over where we compute a maximum matching Mi of Gi

using the matching Mi+1 as a starting point. Finally, we obtain the desired matching M0 which is

a maximum matching of G. The remainder of this section contains the formal description of the

algorithm. We start with two lemmas that state known results that are required for our algorithm.

As noted in the introduction, the presently fastest algorithm for maximum matching in general

graphs runs in O(
√
nm) time (see [11, 12, 7]).

Lemma 2.4 A maximum matching in a graph with n vertices and m edges can be computed in

O(
√
nm) time.

Edmond’s algorithm, as well as the Micali-Vazirani algorithm [11] and the Goldberg-Tarjan algo-

rithm [7] are augmenting-path based algorithms. Recall that an augmenting path P for a matching

M is a path that begins and ends with unmatched vertices, and whose edges alternate between

unmatched and matched edges. Clearly, if M is a maximum matching then no augmenting path

for M exists. It is also easy to prove the converse; if M is not a maximum matching then an

augmenting path exists. Hence, starting with an arbitrary matching, and iteratively computing

augmenting paths, one finally ends up with a maximum matching. The algorithms of [11, 7, 2] all

show how to compute an augmenting path in linear time.

Lemma 2.5 An augmenting path for a given matching M (if it exists) in a graph with n vertices

and m edges can be computed in O(m) time.

4

Proof of Theorem 1.1: Given a graph G = (V,E) with n vertices and m edges, we compute (in

linear time) its maximum degree d = ∆(G) and its minimum degree δ(G) and hence r = d−δ(G)+1

is the least integer such that G is r-almost-regular.

We can assume that m > rn1.5 (and, in particular, that r <
√
n) as otherwise running the

general matching algorithm stated as Lemma 2.4 yields a faster running time than the one stated

in Theorem 1.1.

Let t be the least integer such that d/2t ≤
√
n and observe that t = O(log d). We construct,

in O(nd) time, the sequence of graph G0, . . . , Gt with G0 = G, as guaranteed to exist by Corollary

2.3. Let si = m(Gi) denote the cardinality of a maximum matching of Gi for i = 0, . . . , t. We next

show how to compute, for each Gi, a matching Mi with |Mi| = si.

A maximum matching Mt of Gt is computed using the algorithm stated as Lemma 2.4. Assume

that we have already computed Mi and wish to compute Mi−1. As Gi is a (spanning) subgraph

of Gi−1, we have that Mi is a (not necessarily maximum) matching of Gi−1. Using a sequence of

si−1 − si augmenting path iterations, starting with Mi and applying Lemma 2.5 repeatedly until

no further augmenting paths exist, we obtain a maximum matching Mi−1 of Gi−1. Finally, the

algorithm returns M0 which is a maximum matching of G, as required.

It remains to analyze the time complexity of the algorithm, which is dominated by the single

application of Lemma 2.4 to obtain Mt, and the repeated applications of Lemma 2.5. For notational

clarity, let mi denote the number of edges of Gi for i = 0, . . . , t, and hence m = m0.

Computing Mt using Lemma 2.4 takes O(
√
nmt) time. Since ∆(Gt) ≤ dd/2te ≤ d

√
ne, we have

that mt = O(n1.5) and hence the time to compute Mt is O(n2).

The number of applications required to obtain Mi−1 from Mi using Lemma 2.5 is si−1− si and

each application takes O(mi−1) time. It therefore remains to prove that

t∑
i=1

mi−1(si−1 − si) = O(rn2 log n) . (1)

As t = O(log d), it remains to show that each term in the last sum is O(rn2).

Consider the graph Gi. Denote di = ∆(Gi) and recall that Gi is O(max{r/2i , 1})-almost-

regular. In particular, it is ri-almost-regular for ri = O(r). By Lemma 2.1,

si = m(Gi) ≥
(di − ri + 1)n

2(di + 1)
=
n

2
− rin

2(di + 1)
=
n

2
−O

(
rn

di

)
.

Since si−1 ≤ n/2 we have si−1 − si = O(rn/di). Also, trivially, mi−1 ≤ di−1n/2. We therefore

obtain

mi−1(si−1 − si) ≤ O
(
n

2
di−1 ·

rn

di

)
= O

(
rn2

di−1
di

)
= O(rn2)

where in the last equality we have used Lemma 2.1 that states, in particular, that di = ∆(Gi) ≥
∆(Gi−1)/2− 1 = di−1/2− 1 implying that di−1/di < 3.

5

3 Concluding remarks

We presented an O(rn2 log n) algorithm for maximum matching in r-almost-regular graphs. The

most interesting open problem is whether a faster algorithm exists. Already for the regular case,

the result from [8] asserts that any deterministic algorithm requires Ω(m) time. We note that

for the special case of 3-regular bridgeless graphs, an almost linear time algorithm is known. By

Petersen’s Theorem, such graphs always have a perfect matching, and Biedl et al. [1] show how to

find such a matching in O(n log4 n) time.

References

[1] T.C. Biedl, P. Bose, E.D. Demaine, and A. Lubiw. Efficient algorithms for petersen’s matching

theorem. In Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms

(SODA), pages 130–139. Society for Industrial and Applied Mathematics, 1999.

[2] N. Blum. A new approach to maximum matching in general graphs. In Proceedings of the

17th International Colloquium on Automata, Languages and Programming (ICALP), pages

586–597, 1990.

[3] B. Bollobás. Extremal Graph Theory. Academic Press, 1978.

[4] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in o(elogd) time. Com-

binatorica, 21(1):5–12, 2001.

[5] J. Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,

1965.

[6] H.N. Gabow and O. Kariv. Algorithms for edge coloring bipartite graphs and multigraphs.

SIAM Journal on Computing, 11:117, 1982.

[7] H.N. Gabow and R.E. Tarjan. Faster scaling algorithms for general graph matching problems.

Journal of the ACM, 38(4):815–853, 1991.

[8] A. Goel, M. Kapralov, and S. Khanna. Perfect matchings in o(n log n) time in regular bipartite

graphs. In Proceedings of the 42nd ACM symposium on Theory of computing (STOC), pages

39–46. ACM, 2010.

[9] A. Goel, M. Kapralov, and S. Khanna. Perfect matchings via uniform sampling in regular

bipartite graphs. ACM Transactions on Algorithms (TALG), 6(2):1–13, 2010.

[10] J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.

SIAM Journal on Computing, 2:225, 1973.

6

[11] S. Micali and V. Vazirani. An o(
√

(|v|)|e|) algorithm for finding maximum matching in general

graphs. In Proceedings of the 21st annual Symposium on Foundations of Computer Science

(FOCS), pages 17–27, 1980.

[12] V. Vazirani. A theory of alternating paths and blossoms for proving correctness of the general

graph maximum matching algorithm. Combinatorica, 14(1):71–109, 1994.

[13] V.G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz, 3(7):23–30,

1964.

7

