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Abstract

A family of graphs possesses the common gcd property if the greatest common divisor of the

degree sequence of each graph in the family is the same. In particular, any family of trees has

the common gcd property. Let F = {H1, . . . ,Hr} be a family of graphs having the common gcd

property, and let d be the common gcd. It is proved that there exists a constant N = N(F )

such that for every n > N for which d divides n − 1, and for every equality of the form

α1e(H1) + . . .+ αre(Hr) =
(
n
2

)
, where α1, . . . , αr are nonnegative integers, the complete graph

Kn has a decomposition in which each Hi appears exactly αi times. In case F is a family of trees

the bound N(F ) is shown to be polynomial in the size of F , and, furthermore, a polynomial (in

n) time algorithm which generates the required decomposition is presented.

1 Introduction

All graphs considered here are finite and undirected, unless otherwise noted. For the standard

graph-theoretic terminology the reader is referred to [4]. List-decomposition is a term frequently

used [12, 10] to capture and unify several decomposition problems and conjectures having the

following form: Given a complete multigraph λKn and a multiset, or list, L = {H1, . . . ,Hr} of

graphs such that
∑r
i=1 e(Hi) = λ

(n
2

)
and gcd(L) | λ(n− 1) (where gcd(Hi) is the greatest common

divisor of the degree sequence of Hi and gcd(L) = gcd(gcd(H1), . . . , gcd(Hr))) is it then true that

G has an L-decomposition, namely: E(λKn) is the edge-disjoint union of the members of L such

that each Hi appears exactly once in the decomposition. Note that since L is a list, there may be

several graphs which are isomorphic in L. If H appears α times in L we say that H has multiplicity

α in L.

Several particular cases of this general problem are already well known classical decomposition

problems [6]. Here we mention a few of them to illustrate the generality of the concept of list-

decomposition:
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1. G-designs: In this case L consists of a given graph G with multiplicity λ
(n
2

)
/e(G) and this is

the classical G-design (G-decomposition) of λKn solved asymptotically by Wilson [22].

2. The Gyárfás-Lehel conjecture [11]: In this case L = {T1, . . . , Tn−1}, where Ti denotes a tree

having i edges. The conjecture is that there is an L-decomposition of Kn. This famous

conjecture is mostly open (see e.g. [12, 5, 16]). No progress has been made on the weaker

version in which each tree has multiplicity λ and the object is to decompose λKn.

3. The Alspach conjecture [2, 14]: In this case L is any list of cycles of order at most n satisfying

the necessary sum and divisibility conditions. For the case λ = 1, the Alspach conjecture is

also stated for even values of n, where in this case the cycles should decompose Kn minus

a one-factor. There are many recent developments, but only special cases of this conjecture

are solved completely (see e.g. [1, 2, 3, 12, 13]). In particular, it has been solved for any set

of two cycles whose length is at most 10 [17], and, for two cycles, the conjecture has been

reduced to a finite problem [7].

4. Paths-list: In this case L is any list of paths of order at most n satisfying the necessary sum

and divisibility conditions. The problem has been solved almost completely by Tarsi [19, 21]

who showed that the necessary conditions are also sufficient provided all paths are of order

at most n− 3 and any λ.

5. Stars-list: In this case L is any list of stars of order at most n satisfying the necessary sum

and divisibility conditions. This problem has been solved recently in [15] who extended earlier

results and ideas of Tarsi [18, 20].

6. Designs with holes: In this case L is usually a set of two kinds of complete graphs, say, Kp

and Kq, p 6= q, such that Kq appears only once in L. There is rich literature on this issue

and we refer the reader to [9].

Given a family of nonempty graphs F = {H1, . . . ,Hr} we say that F is totally list-decomposable if

there exists N = N(F ) such that for every n > N for which gcd(F ) divides n − 1, and for every

equality of the form α1e(H1) + . . . + αre(Hr) =
(n
2

)
, where α1, . . . , αr are nonnegative integers,

the complete graph Kn has a decomposition in which each Hi appears exactly αi times. It is not

difficult to construct examples of families of graphs which are not totally list decomposable. In the

final section we give such an example. The common phenomena of all these examples is that there

are at least two graphs in the family with different gcd. We say that a family of nonempty graphs

F = {H1, . . . ,Hr} has the common gcd property if gcd(Hi) = gcd(Hj) for any pair 1 ≤ i < j ≤ r.

In particular, note that any family of trees has the common gcd property (the gcd of a tree is
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1). Also, any family of d-regular graphs has the common gcd property, and there are many other

examples. Our main result in this paper is the following.

Theorem 1.1 Every finite family of graphs which possesses the common gcd property is totally

list-decomposable.

The proof of Theorem 1.1 appears in Section 2. It should be pointed out that the constant N(F ) in

the definition of total list decomposability, which is computed in Theorem 1.1, is very large. In fact,

it is exponential in the product of the sizes of the graphs appearing in F . This is not surprising as

even the best known lower bounds in Wilson’s Theorem mentioned above (which is clearly a special

case of Theorem 1.1, where the set F consists of a single graph) are exponential [8]. Furthermore,

the proof of Theorem 1.1 is an existence proof. It is not algorithmic. In case the family of graphs

consists only of trees we can overcome both of these disadvantages using a different proof.

Theorem 1.2 Every finite family F = {H1, . . . ,Hr} of trees is totally list-decomposable. In fact,

N(F ) ≤ (6h)26, where h =
∑r
i=1 e(Hi). Furthermore, given any equality of the form α1e(H1) +

. . . + αre(Hr) =
(n
2

)
, where α1, . . . , αr are nonnegative integers and n > N(F ), we can produce a

decomposition of Kn into αi copies of Hi for i = 1, . . . , r in polynomial (in n) time.

The proof of Theorem 1.2 appears in Section 3. The final section contains some concluding remarks

and open problems.

2 Proof of the main result

Before we prove Theorem 1.1 we need two important lemmas. The first one is a theorem of

Gustavsson [10] which says that for every fixed graph H, if G is a large enough graph, which is

also very dense (as a function of H), then G has an H-decomposition, provided, of course, that the

necessary conditions hold, namely, gcd(H) divides gcd(G) and e(H) divides e(G).

Lemma 2.1 [Gustavsson [10]] Let H be a fixed nonempty graph. There exists a positive integer

n0 = n0(H), and a small positive constant γ = γ(H), such that if G is a graph with n > n0 vertices,

and δ(G) ≥ (1− γ)n, and G satisfies the necessary conditions for an H-decomposition, then G has

an H-decomposition.

We note here that the constant γ(H) used in Gustavsson’s proof is very small. In fact, even for the

case where H is a triangle, Gustavsson’s proof uses γ = 10−24. Thus, the graph G is very dense.

We also note that Gustavsson’s proof is an existence proof, and is non-constructive. Namely, it

does not provide a polynomial time algorithm which generates the guaranteed decomposition.
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The proof of the next lemma uses the special case of Lemma 2.1, where the graph G is Kn.

This special case is the famous theorem of Wilson [22] which states that for every fixed graph H,

there exists n0 = n0(H) such that if n > n0(H) and e(H) divides
(n
2

)
and gcd(H) divides n − 1,

then Kn has an H-decomposition. Using Wilson’s theorem one can prove the next result.

Lemma 2.2 Let H = {H1, . . . ,Hr} be any family of nonempty graphs. Then for every M > 0

there exists m > M such that Km has an Hi-decomposition for each i = 1, . . . , r.

Proof: Let N = maxri=1 n0(Hi), where n0(Hi) is the constant appearing in Wilson’s Theorem.

Now let M > 0 be any number. Let m > max{N,M} be the smallest integer such that (m−1)/2 is

a multiple of all the 2r numbers e(H1), . . . , e(Hr), gcd(H1), . . . , gcd(Hr). Then,
(m
2

)
is a multiple of

e(Hi) for each i = 1, . . . , r and m−1 is a multiple of gcd(Hi) for each i = 1, . . . , r. Since m > n0(Hi)

for each i = 1, . . . , r it follows from Wilson’s Theorem that Km has an Hi-decomposition for each

i = 1, . . . , r. 2

Proof of Theorem 1.1 Let F = {H1, . . . ,Hr} be a set with the common gcd property, and let

d = gcd(F ) denote the common gcd. We need to define a number of constants before we can proceed.

Let hi = e(Hi) for i = 1, . . . , r. Let k = maxri=1 v(Hi). Let m be the smallest positive integer such

that
(m
2

)
≥
(k
2

)
r and such that Km has an Hi-decomposition for each i = 1, . . . , r. According to

Lemma 2.2, such an m exists. Now, for each i = 1, . . . , r define the graph Fi = Km ∪Hi, namely,

Fi is the vertex-disjoint union of Km and Hi. Note that gcd(Fi) = d. Now define γi = γ(Fi) and

ni = n0(Fi) as in Lemma 2.1. Put γ = minri=1 γi. Finally put

N = max{n1, . . . , nr ,
k

γ
, kr

(
m

2

)
}.

Note that N = N(F ). Now let n > N , where d divides n − 1, and assume that α1, . . . , αr are

nonnegative integers satisfying α1h1+. . .+αrhr =
(n
2

)
. We must show that Kn has a decomposition

with αi copies of Hi for each i = 1, . . . , r.

We claim that there exists some j such that αj ≥
(n
2

)
/
(m
2

)
. To see this, note that by averaging we

have that there exists some j such that αjhj ≥
(n
2

)
/r. Now, since hj ≤

(k
2

)
and since

(m
2

)
≥
(k
2

)
r

the claim holds. For the remainder of the proof we fix a j having the property

αj ≥
(n
2

)(m
2

) .
For each i = 1, . . . , r except for i = j, we perform the integer division of αi by the integer

(m
2

)
/hi

and define the quotient qi and the remainder ti in the obvious manner:

αi = qi ·
(m
2

)
hi

+ ti , 0 ≤ ti ≤
(m
2

)
hi
− 1.
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Let q = q1 + . . .+ qj−1 + qj+1 + . . .+ qr. We claim that αj > q. Indeed,

q = q1 + . . .+ qj−1 + qj+1 + . . .+ qr <
r∑
i=1

αihi(m
2

) =

(n
2

)(m
2

) ≤ αj .
We may now define qj and tj by the integer division of αj − q by the integer 1 +

(m
2

)
/hj namely:

αj − q = qj ·
(m
2

)
+ hj

hj
+ tj 0 ≤ tj ≤

(m
2

)
hj

.

Consider the graph X composed of ti vertex-disjoint copies of Hi for each i = 1, . . . , r. The

maximum degree of X is, obviously, at most k− 1. X has at most k(t1 + . . .+ tr) ≤ kr
(m
2

)
vertices.

Also, trivially, gcd(X) = d. Since n > N ≥ kr
(m
2

)
it follows that X is a subgraph of Kn. Let

G = Kn \X denote the graph obtained from Kn by deleting a copy of X. We claim that G satisfies

the conditions of Lemma 2.1 for the graph H = Fj . First note that G has n > N ≥ nj = n0(Fj)

vertices. Next, note that since N ≥ k/γ, we have that the minimum degree of G satisfies:

δ(G) ≥ (n− 1)− (k − 1) = n− k ≥ n(1− γ) ≥ n(1− γj).

Since d divides n − 1 and since gcd(X) = d we have that gcd(G) = d = gcd(Fj). Finally, the

number of edges of G satisfies:

e(G) =

(
n

2

)
− e(X) =

(
n

2

)
−

r∑
i=1

tihi = (

(
m

2

)
+ hj)(q1 + . . .+ qr) = e(Fj)(q1 + . . .+ qr).

Hence, by Lemma 2.1, G has an Fj-decomposition into q1+. . .+qr copies of Fj . Since Fj = Km∪Hj

we also have a decomposition of G into q1 + . . . + qr copies of Km and q1 + . . . + qr copies of Hj .

For each i = 1, . . . , r and i 6= j we can obtain αi edge-disjoint copies of Hi in Kn as follows: We

take the ti copies of Hi from X, and take qi copies of Km from the decomposition of G, which have

not yet been used, and decompose each of these copies of Km to Hi. This results in an additional

qi
(m
2

)
/hi copies of Hi. Together we have ti + qi

(m
2

)
/hi = αi edge-disjoint copies of Hi. We can

continue taking non-used copies of Km in the decomposition of G since there are q1 + . . .+ qr such

copies. Finally, we remain with qj copies of Km, the q1 + . . .+ qr copies of Hj in the decomposition

of G, and with the tj copies of Hj in X. Decomposing each of the remaining Km’s to Hj this

amounts to:

qj

(m
2

)
hj

+ (q1 + . . .+ qr) + tj = qj

(m
2

)
hj

+ q + qj + tj = αj

edge-disjoint copies of Hj . Thus, we obtained a decomposition of Kn into αi copies of Hi for each

i = 1, . . . , r. 2
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3 An algorithmic proof for trees

Before we prove Theorem 1.2, we need the following lemma, whose proof appears in [23]:

Lemma 3.1 [Yuster [23]] If H is a tree and G is an n-vertex graph where e(H) divides e(G), and

δ(G) ≥ n/2 + 10v(H)4
√
n log n then G has an H-decomposition. 2

Proof of Theorem 1.2 Let F = {H1, . . . ,Hr} be a family of trees, and let hi = e(Hi) denote the

number of edges of Hi. Put h = h1 + . . . + hr. Clearly, we can assume h ≥ 3, otherwise there is

nothing to prove. Let

N = (6h)26.

We must show that if n > N , and if α1, . . . , αr are nonnegative integers satisfying α1h1+. . .+αrhr =(n
2

)
, then Kn has a decomposition in which there are exactly αi copies of Hi for i = 1, . . . , r.

We will partition F into two parts F1, F2 as follows. If αi <
(n
2

)
/(2h2) then Hi ∈ F1, otherwise

Hi ∈ F2. Note that it is possible that F1 = ∅, but, obviously, we must always have F2 6= ∅. Put

|F1| = s and |F2| = r − s, and assume, w.l.o.g. that F1 = {H1, . . . ,Hs}.
Our first goal is to show that there exists an n-vertex graph G, with ∆(G) ≤ n/h, which has a

decomposition in which there are exactly αi copies of Hi for i = 1, . . . , s. This can be done using a

greedy algorithm as follows. Let α = α1 + . . .+ αs. We shall construct graphs Gj for j = 0, . . . , α,

where ∆(Gj) ≤ n/h and Gj has a decomposition into αi copies of Hi for i = 1, . . . , k − 1 and

j−α1− . . .−αk−1 copies of Hk, where 1 ≤ j−α1− . . .−αk−1 ≤ αk. Thus, Gα = G is the required

graph. We begin with G0 which is the empty graph on n vertices. Assume that we have already

constructed Gj−1 and we wish to construct Gj . We wish to add to Gj−1 a copy of Hk by adding

an appropriate set of hk new edges, such that the resulting graph Gj still has ∆(Gj) ≤ n/h. The

number of edges in Gj−1 satisfies

e(Gj−1) < α1h1 + . . .+ αshs <

(n
2

)
2h2

(h1 + . . .+ hs) <

(n
2

)
2h
.

Thus, there are at least n/4 vertices of Gj−1 with degree at most (2/3)n/h. Consider such a set of

dn/4e vertices of Gj−1. The subgraph G′ of Gj−1 induced by them has ∆(G′) ≤ (2/3)n/h. Thus,

the complement of G′, denoted by G∗ has δ(G∗) ≥ dn/4e− (2/3)n/h−1 ≥ n/36−1 ≥ h−1. Thus,

G∗ contains every tree with h − 1 edges, and, in particular, it contains Hk. Adding the edges of

such a copy of Hk into Gj−1 we obtain Gj and, clearly,

∆(Gj) ≤ max{∆(Gj−1) , (2/3)n/h+ ∆(Hk)} ≤ max{n/h , (2/3)n/h+ h− 1} = n/h.

Having obtained the graph G described above, we now consider M = Kn \ G. We need to show

that M has a decomposition into αi copies of Hi for i = s + 1, . . . , r. We note that δ(M) =

6



n− 1−∆(G) ≥ n− 1− n/h. For i = s+ 1, . . . , r we define

ti =

⌊
40h2

αi
αs+1 + . . .+ αr

⌋
.

We have ti ≥ 20 since αi ≥
(n
2

)
/(2h2) and since, clearly, αs+1 + . . .+ αr <

(n
2

)
. Thus,

20 ≤ ti ≤ 40h2. (1)

Given any set of trees, we can concatenate them into one tree by choosing one vertex from each

tree, and identifying all the chosen vertices. The concatenated tree is, by definition, decomposable

into its original constituents. Let H denote the tree obtained by concatenating ti copies of Hi for

each i = s + 1, . . . , r. Note that H has exactly t = ts+1hs+1 + . . . + trhr edges. By (1), t ≤ 40h3.

Now define

q =

⌊
0.95

e(M)

t

⌋
.

Claim: tiq ≤ αi for i = s+ 1, . . . , r.

Proof: It suffices to prove that

0.95
e(M)

t
· 40h2

αi
αs+1 + . . .+ αr

≤ αi.

Since e(M) = αs+1hs+1 + . . .+ αrhr it suffices to show that

0.95
αs+1hs+1 + . . .+ αrhr

t
40h2 ≤ αs+1 + . . .+ αr. (2)

We will use the fact that

ti =

⌊
40h2

αi
αs+1 + . . .+ αr

⌋
≥ 40h2

αi
αs+1 + . . .+ αr

− 1 ≥ 38h2
αi

αs+1 + . . .+ αr
.

We therefore have

t = ts+1hs+1 + . . .+ trhr ≥ 38h2
αs+1hs+1 + . . .+ αrhr

αs+1 + . . .+ αr
,

and, therefore, (2) holds. This completes the proof of the claim. According to the last claim, we

can define bi = αi − tiq for i = s + 1, . . . , r and we are guaranteed that the bi are nonnegative

integers. Our next goal is to find in M a spanning subgraph M ′ with the property that M ′ has a

decomposition in which there are exactly bi copies of Hi for each i = s+1, . . . , r, and ∆(M ′) ≤ n/9.

This is done in a similar way as when creating G. However, we must now be more careful, since M ′

must be a spanning subgraph of M (unlike G which had no such restriction). We use the greedy

procedure once again. Assume that we have already found a subgraph M ′′ of M with ∆(M ′′) ≤ n/9
and which contains a decomposition into bi copies of each Hi, i = s+1, . . . , r−1 and br−1 copies of
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Hr (completing the last element is, clearly, the most difficult situation in the greedy construction,

as we may assume hr is the largest tree in F2, and the following arguments work at any earlier

stage of the process). We wish to add a copy of Hr to M ′′ such that the edges of Hr are taken

from e(M) \ e(M ′′), and such that the resulting graph M ′ has ∆(M ′) ≤ n/9. We first estimate the

number of edges in M ′′:

e(M ′′) < hs+1bs+1 + . . .+ hrbr =
r∑

i=s+1

hi(αi − tiq) = e(M)− qt ≤

e(M)− t(0.95
e(M)

t
− 1) = 0.05e(M) + t ≤ 0.05e(M) + 40h3.

It follows that M ′′ has at least dn/2e vertices whose degrees do not exceed (0.2e(M) + 160h3)/n.

Let X be such a set of dn/2e vertices. Consider the graph induced by the vertices of X and the

edges of M \M ′′. We denote this graph by X as well. Clearly,

δ(X) ≥ δ(M)− bn/2c − 0.2e(M) + 160h3

n
.

Recalling the facts that δ(M) ≥ n− 1− n/h, h ≥ 3, e(M) ≤
(n
2

)
and n ≥ (6h)26 we get that

δ(X) ≥ 2n

3
− 1− n

2
− 0.1n− 160

h3

n
≥ 0.05n.

Since 0.05n > h > hr we can find in X a copy of Hr. Joining the edges of a copy of Hr in X to

M ′′ we obtain the graph M ′ which, by construction, is a subgraph of M and, furthermore,

∆(M ′) ≤ max{∆(M ′′) ,
0.2e(M) + 160h3

n
+ ∆(Hr)} ≤

max{n
9
, 0.1n+

160h3

n
+ h} ≤ max{n

9
,
n

9
} =

n

9

(in the last inequality we used the fact that n > N = (6h)26). Having constructed the graph M ′

we now come to the final stage of the proof. Denote by M∗ the spanning subgraph of M obtained

by deleting the edges of M ′. We claim that M∗ has an H-decomposition, and the number of

elements in this decomposition in q. We prove this using Lemma 3.1. First, we must show that

e(M∗) = q · e(H) = qt. This is true since

e(M∗) = e(M)− e(M ′) =
r∑

i=s+1

αihi −
r∑

i=s+1

bihi = q
r∑

i=s+1

hiti = qt.

Next, we show that M∗ and H satisfy the other condition of Lemma 3.1, namely:

δ(M∗) ≥ n/2 + 10(t+ 1)4
√
n log n.
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We can estimate δ(M∗) by

δ(M∗) ≥ δ(M)−∆(M ′) ≥ n− 1− n

h
− n

9
≥ 0.555n.

Now, since t ≤ 40h3 it suffices to show that

0.555n ≥ n/2 + 10(40h3 + 1)4
√
n log n

and this holds since n ≥ (6h)26. We thus have by Lemma 3.1 that M∗ has an H-decomposition into

q copies of H. Since every copy of H is decomposable into ti copies of Hi for each i = s+ 1, . . . , r,

we have that M∗ has a decomposition into qti copies of Hi for each i = s+ 1, . . . , r. It is now easy

to see that the decompositions of G, M ′ and M∗ together supply the required decomposition of

Kn. First note that by our construction, G, M ′ and M∗ are edge-disjoint and their edge union is

Kn. Now consider Hi. If i ≤ s then the decomposition of G constructed above contains exactly αi

copies of Hi. If i ≥ s+ 1 then the decomposition of M ′ has bi copies of Hi and the decomposition

of M∗ has qti copies of Hi. Together, this gives bi + qti = αi copies of Hi.

We still need to show how to implement the proof of Theorem 1.2 as a polynomial time al-

gorithm. Fix a family F = {H1, . . . ,Hr} of trees. The algorithm receives as its input a set of r

nonnegative integers α1, . . . , αr which satisfy α1e(H1) + . . . + αre(Hr) =
(n
2

)
for some integer n

which satisfies n > N(F ). The algorithm must output a list-decomposition of Kn which consists of

αi copies of each Hi. Reviewing the proof of Theorem 1.2, this is done as follows: The sets F1 and

F2 are easily created by checking for each i if αi <
(n
2

)
/(2h2). Now, the graph G consisting of αi

edge-disjoint copies of Hi for each Hi ∈ F1 is created in polynomial time since the embedding of the

graphs is done by a greedy method. The numbers ti and the concatenated graph H are constructed

in constant time, as they only depend on the fixed family F and the fixed set of r − s numbers

αs+1, . . . , αr. Hence, the number q and the nonnegative numbers bi are also computed in constant

time. The graph M = Kn \G is generated in polynomial time since we have already generated G.

The spanning subgraph M ′ of M with bi edge-disjoint copies of Hi for each Hi ∈ F2 is created in

polynomial time since, as in the creation of G, the embeddings of the graphs composing M ′ are

done by the greedy method. Now, M∗ = M \M ′ is, obviously, generated in polynomial time since

both M and M ′ are already given. Since H is a fixed graph which has already been generated, we

can now generate the H-decomposition of M∗ in polynomial time using the algorithmic version of

Lemma 3.1 [23]. This completes the algorithm and the proof of Theorem 1.2. 2
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4 Concluding remarks

1. We demonstrate the existence of simple families which are not totally list-decomposable.

Consider the family F = {K3,K4}. Let N be any positive integer. We will find n > N and

positive integers α1, α2 which satisfy 3α1+6α2 =
(n
2

)
whileKn does not have the corresponding

list-decomposition with α1 copies of K3 and α2 copies of K4. Indeed, Let n > N be a number

satisfying n ≡ 0 (mod 12). Choose α1 = 2 and α2 =
(n
2

)
/6− 1. Clearly, these numbers are

integers, and

3α1 + 6α2 =

(
n

2

)
.

We will prove that Kn does not have a decomposition into two copies of K3 and
(n
2

)
/6 − 1

copies of K4. Assume the contrary, then the two copies of K3 contain at most 6 vertices.

Thus, there is some vertex which does not appear in any K3, so it must appear in exactly

(n− 1)/3 copies of K4, but (n− 1)/3 is not an integer, so this is impossible.

2. It would be interesting to find an algorithmic proof of Theorem 1.1. This may be plausible

since the major non-algorithmic part is Gustavsson’s Theorem, namely Lemma 2.1. However,

note that in the proof we only use a very weak form of this theorem, since the graph G on

which we apply Lemma 2.1 is very close to being complete, since its complement (the graph X

in the proof) has bounded degree k. Thus, a weaker form of Gustavsson’s theorem replacing

γn with any function w(n), where w(n)→∞ arbitrarily slowly suffices. Such a weaker form

may be easier to prove and implement as an algorithm.

3. Reviewing the proof of Theorem 1.1 it is obvious that the decomposed graph does not have

to be Kn, and it suffices that the graph should be very dense, as in Lemma 2.1. Thus, we

can state the following theorem.

Theorem 4.1 Let F = {H1, . . . ,Hr} be a set of graphs having the common gcd property.

Then, there exists a positive integer N = N(F ), and a positive constant γ = γ(F ), such that

for every graph G with n > N vertices, δ(G) ≥ n(1−γ) for which gcd(F ) divides gcd(G), and

for every linear combination α1e(H1)+. . .+αre(Hr) = e(G), where α1, . . . , αr are nonnegative

integers, there exists a decomposition of G in which there are αi copies of Hi for i = 1, . . . , r.

Note that, in particular, Theorem 4.1 solves the Alspach conjecture mentioned in the intro-

duction, for any set of fixed cycles, and for every n sufficiently large. Note also that in the

proof of Theorem 4.1 we need the full strength of Gustavsson’s Theorem.
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