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Abstract

A proper vertex coloring of a graph is called linear if the subgraph induced by the vertices

colored by any two colors is a set of vertex-disjoint paths. The linear chromatic number of a

graph G, denoted by lc(G), is the minimum number of colors in a linear coloring of G. Extending

a result of Alon, McDiarmid and Reed concerning acyclic graph colorings, we show that if G

has maximum degree d then lc(G) = O(d3/2). We also construct explicit graphs with maximum

degree d for which lc(G) = Ω(d3/2), thus showing that the result is optimal, up to an absolute

constant factor.
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1 Introduction

All graphs considered here are finite, undirected and simple. For the standard graph-theoretic

notations the reader is referred to [3]. A proper vertex coloring of a graph is called linear if the

subgraph induced by the union of any two color classes is a linear forest, i.e. a set of vertex-disjoint

paths. Let lc(G) be the minimum number of colors in a linear coloring of the graph G. We call

lc(G) the linear chromatic number of G. A linear coloring is a special case of an acyclic coloring,

where it is required that the subgraph induced by the union of any two color classes is a forest.

Thus, lc(G) ≥ A(G), where A(G) is the acyclic chromatic number of G. A related definition is that

of k-frugal colorings, considered by Hind, Molloy and Reed [5], where a graph is k-frugal if it can

be properly colored so that no color appears k times in a vertex neighborhood. Such a coloring is

called a k-frugal coloring. Clearly, a linear coloring is 3-frugal, but the converse is not necessarily

true. Erdös has conjectured in 1976 (cf. [6], problem 37) that if G has maximum degree d, then

A(G) = o(d2). This conjecture has been proved by Alon, McDiarmid and Reed in [2], where it
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is shown that A(G) = O(d4/3). They also give a probabilistic construction of a graph G with

A(G) = Ω(d4/3/(log d)1/3). Thus, there is still a logarithmic-factor gap between the upper and

lower bounds. Furthermore, there is no known explicit construction of a graph G which comes

close to the probabilistic lower bound for A(G). In this note we show that the conjecture of Erdös

is still valid under much stricter conditions, namely that lc(G) = o(d2). In fact, we prove that

lc(G) = O(d3/2). Furthermore, unlike the case of acyclic coloring, we are able to supply a lower

bound which matches the upper bound, up to a constant factor. That is, there are graphs G with

lc(G) = Ω(d3/2). The lower bound is given by an explicit construction. Our proof of the upper

bound is merely an extension of the result in [2], and is given is Section 2. The lower bound is

constructed in Section 3. It is interesting to note that the probabilistic upper bound supplies the

correct order of magnitude, and even the constant factor gap between the upper and lower bound

is relatively small (less than 10 · 11 = 110).

2 The upper bound

Theorem 2.1 If ∆(G) = d then lc(G) ≤ dmax{50d4/3, 10d3/2}e.

Proof: Our proof is an extension to the proof of Theorem 1.1 in [2]. Let x = dmax{50d4/3, 10d3/2}e,
and let f : V → {1, 2, . . . , x} be a random coloring of the vertices of G, where for v ∈ V , f(v)

is chosen randomly and uniformly from {1, 2, . . . , x}. We consider events of five different types,

and notice that if none of them occurs, then f is a linear coloring. The first four event types are

described in [2] and are repeated here for the reader’s convenience. The fifth type is a new set of

events, which never occur in a linear coloring.

I. For each pair of adjacent vertices u and v of G, let A{u,v} be the event that f(u) = f(v).

II. For each induced path of length four v0v1v2v3v4 in G, let B{v0,v1,v2,v3,v4} be the event that

f(v0) = f(v2) = f(v4) and f(v1) = f(v3).

III. For each induced 4-cycle v1v2v3v4 in G, in which v1 and v3 have at most d2/3 common

neighbors, and v3 and v4 have at most d2/3 common neighbors, let C{v1,v2,v3,v4} be the event

that f(v1) = f(v3) and f(v2) = f(v4).

IV. For each pair of non-adjacent vertices u,w with more than d2/3 common neighbors, let D{u,w}

be the event that f(u) = f(w).

V. For each triple of vertices v1, v2, v3 which have a common neighbor, let E{v1,v2,v3} be the event

that f(v1) = f(v2) = f(v3).

2



I II III IV V

I 2d 6d4 2d8/3 2d4/3 d3

II 5d 15d4 5d8/3 5d4/3 2.5d3

III 4d 12d4 4d8/3 4d4/3 2d3

IV 2d 6d4 2d8/3 2d4/3 d3

V 3d 9d4 3d8/3 3d4/3 1.5d3

Table 1: Upper bounds in the dependency graph H

It is proved in [2] that if none of the events of the first four types occurs, then f is an acyclic

coloring. Thus, if none of the events of the five types above occurs, then f is a linear coloring.

It remains to show that with positive probability none of these events happen. For this purpose,

we construct H, a dependency graph on the events. The nodes of H are the events of all the five

different types, and two nodes XS and YT (where X,Y ∈ {A,B,C,D,E}) are adjacent if and only

if S ∩ T 6= ∅. In order to apply the Lovász Local Lemma (cf. [4], see also [1]), we need to estimate

the number of nodes of each type in H which are adjacent to any given node. This estimate is

given in Table 1. In this table, the (i, j) entry is an upper bound on the number of nodes of type

j (i.e. nodes which correspond to events of type j) which are adjacent in H to a node of type i.

The values in the first four rows and first four columns are proved correct in Lemmas 2.4 and 2.5

of [2]. We need to prove the correctness of the bounds in the last row and column. Consider a

vertex w ∈ G. Since ∆(G) = d, there are at most d ·
(d−1

2

)
< d3/2 events of type V in which w

participates. Thus, an event of type I, denoted by A{u,v}, is adjacent in H to at most 2 · d3/2 = d3

events of type V . This validates entry (1,5) in Table 1. Similarly, an event of type II, denoted by

B{v0,v1,v2,v3,v4} is adjacent in H to at most 5 · d3/2 events of type V , validating entry (2,5). The

other entries in the last column are verified analogously. The entries in the last row are proved

correct by the fact that events of type V are formed by sets of three vertices, and by Lemma 2.4

of [2], which bounds the number of occurrences of a vertex v in an event of type i, for i = 1, 2, 3, 4

(for i = 1 this bound is d, for i = 2 it is 3d4, for i = 3 it is d8/3 and for i = 4 it is d4/3).

Since the coloring f is random, we obviously have that Prob[E] = 1
x2 , where E is an event of type

V . We add this fact to fact 2.6 in [2] which states that Prob[A] = 1
x , Prob[B] = 1

x3 , Prob[C] = 1
x2 ,

and Prob[D] = 1
x , where A,B,C,D are events of types I, II, III, IV respectively. Finally, in order

to apply the Local Lemma we define the weight of each event to be twice its probability. Hence, in

order to prove that with positive probability none of the forbidden events hold, we need to show
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that the following four inequalities hold.

1

x
≤ 2
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x3
)6d

4
(1− 2

x2
)2d
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Inequality (1) corresponds to events of type I and IV, inequality (2) to events of type II, inequality

(3) to events of type III and inequality (4) to events of type V. Note that the validity of inequality

(2) implies that of the other three, and inequality (2) is valid since

(1− 2

x
)5d+5d4/3(1− 2

x3
)15d

4
(1− 2

x2
)5d

8/3+2.5d3 ≥

(1− 20d4/3

x
)(1− 30d4

x3
)(1− 15d3

x2
) ≥ (1− 20

50
)(1− 30

503
)(1− 15

100
) >

1

2
.
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3 The lower bound

We give an explicit construction of a graph Gr = (Vr, Er) with r3 vertices, with ∆(Gr) = Θ(r2)

and with lc(Gr) ≥ r3/2. Gr is defined as follows: Vr = A ∗ A ∗ A where A = {1, . . . , r}. A vertex

(a1, a2, a3) is connected to (b1, b2, b3) if and only if they coincide in at least one coordinate, i.e,

ai = bi for some i. Note that Gr has r3 vertices, and the degree of every vertex is 3r(r − 1). We

show that lc(Gr) ≥ r3/2. It suffices to show that in every linear coloring of Gr, no color appears in

more than two vertices. Indeed, assume that (a1, a2, a3), (b1, b2, b3) and (c1, c2, c3) are all colored

with the same color. Since the coloring is proper, this means that for i = 1, 2, 3, the set {ai, bi, ci}
contains three distinct values. Thus, the vertex (a1, b2, c3) is distinct from all of these three vertices,

but it is a neighbor of each of them. This cannot happen in a linear coloring.

By putting d = 3r2 we obtain a graph Gr with maximum degree less than d, and with lc(Gr) ≥
d3/2/(6

√
3) > d3/2/11. By taking vertex-disjoint components of Gr, we obtain that for every

n > 0, there exists a graph G with more than n vertices, and maximum degree less than d, and

lc(G) > d3/2/11.
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