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Abstract

For a graph G let f(G) be the largest integer k so that there are two vertex-disjoint subgraphs
of G, each with k vertices, and that induce the same number of edges. Clearly f(G) ≤ bn/2c
but this is not always achievable.

Our main result is that for any fixed α > 0, if G has n vertices and at most n2−α edges then
f(G) = n/2 − o(n), which is asymptotically optimal. The proof also yields a polynomial time
randomized algorithm.

More generally, let t be a fixed nonnegative integer and let H be a fixed graph. Let fH(G, t)
be the largest integer k so that there are two k-vertex subgraphs of G having at most t vertices
in common, that induce the same number of copies of H. We prove that if H has r vertices then
fH(G, t) = Ω(n1−(2r−1)/(2r+2t+1)). In particular, there are two subgraphs of the same order
Ω(n1/2+1/(8r−2)) that induce the same number of copies of H and that have no copy of H in
common.

1 Introduction

All graphs in this paper are finite, undirected and simple. We follow the notation and terminology
of [3]. Many basic questions in extremal graph theory can be stated as asking for the existence of at
least two large induced subgraphs that share some property, and that are “far apart”. For example,
Ramsey’s Theorem asserts that we can always find two vertex-disjoint isomorphic subgraphs with
a logarithmic number of vertices.

In this paper we address perhaps the most basic property of having the same order and size
(throughout this paper order refers to the number of vertices while size refers to the number of
edges), and, more generally, having the same order and the same number of induced copies of a
fixed graph H.

Formally, if t is any fixed nonnegative integer and H is any fixed graph, then let fH(G, t)
denote the largest integer k so that there exist two induced subgraphs of G, having the same
order k, having the same number of induced copies of H, and that intersect in at most t vertices.
Especially interesting are the case H = K2 (having the same number of edges) that we denote by
f(G, t), the case t = 0 (the vertex-disjoint case) that we denote by fH(G) or by f(G) if H = K2,
and the case t = 1 (the edge-disjoint and complement edge-disjoint case).
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Clearly, if G has n vertices we always have f(G) ≤ bn/2c. However, this is not always achievable
since, for example f(K1,n−1) = n/2− 1. In fact, it is not difficult to construct examples of graphs
G where n/2−f(G) grows with n and is at least Ω(log log n) (see Section 4). Obtaining good lower
bounds for f(G, t), and, more generally, for fH(G, t), seems to be a nontrivial task, and the goal of
this paper is to provide such bounds.

Before stating our results, let us first observe that we always have f(G) ≥ n1/3 by a simple
pigeonhole argument. Indeed, arbitrarily select bn2/3c − 1 vertex disjoint induced subgraphs of
order dn1/3e each, and notice that the number of possible values for the number of edges in the
induced subgraphs is less than the number of disjoint induced subgraphs. This trivial lower bound
is also, of course, algorithmic.

However, there is a significantly better, though still simple, lower bound for f(G) that follows
from a difficult result of Lovász on the chromatic number of the Kneser graph.

Proposition 1.1 If k satisfies n − 2k + 2 >
(k
2

)
+ 1 then f(G) ≥ k. In particular, f(G) >√

2n+ 17/4− 2.

In Section 2 we give the simple proof of this proposition in the more general setting of fH(G), in
which case it yields a Θ(n1/r) lower bound for fH(G) where r denotes the number of vertices of H.

Our main result is that the trivial upper bound f(G) ≤ n/2− o(n) is asymptotically tight if G
is any graph which is not too dense. In fact, we prove that if α > 0 is any fixed constant and G

has at most n2−α edges then, indeed f(G) = n/2− o(n). More formally:

Theorem 1.2 For every fixed α > 0 and for every ε > 0 there exists N = N(α, ε) so that for all
n > N , if G is a graph with n vertices and at most n2−α edges then f(G) ≥ n/2− εn.

The proof is based upon several probabilistic and combinatorial arguments and yields, in particular,
a polynomial time randomized algorithm. Notice that since f(G) is complement invariant then
Theorem 1.2 also applies to graphs that have at most n2−α non-edges.

Since, by definition, fH(G, t) ≥ fH(G, t − 1), Proposition 1.1 also gives a Θ(
√
n) lower bound

for f(G, 1), as well as a Θ(n1/r) for fKr(G, 1). But can we do better if we allow the subgraphs
to intersect in a single vertex? The answer is yes, but the proof becomes more complicated. the
following theorem supplies a general lower bound for fH(G, t) which, already for t = 1, is far better
than the one given by Proposition 1.1.

Theorem 1.3 If H has r vertices then fH(G, t) = Ω(n1−(2r−1)/(2r+2t+1)).

The proof of theorem 1.3 is based upon probabilistic arguments, and the use of a generalized Erdős-
Ko-Rado Theorem of Wilson. One can immediately see that Theorem 1.3 asserts that, for example,
f(G, 1) = Ω(n4/7), and fK3(G, 1) = Ω(n4/9).

Another interesting case is t = r − 1, as two subgraphs that intersect in at most r − 1 vertices
cannot share a copy of H. We therefore have the following corollary:

Corollary 1.4 Let H be a fixed graph with r vertices. Then, a graph G with n vertices has two
subgraphs of the same order Ω(n1/2+1/(8r−2)) that induce the same number of copies of H and that
have no copy of H in common.
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The rest of this paper is organized as follows. In Section 2 we focus on vertex-disjoint subgraph
with the same order and prove Theorem 1.2 and Proposition 1.1. Section 3 focuses on almost
disjoint subgraphs with the same order and contains the proof of Theorem 1.3. The final section
contains some concluding remarks and open problems.

2 Large disjoint subgraphs with the same order

Before proving Theorem 1.2 we need to establish a few lemmas. Suppose G is any graph on the
vertex set V (G) = {v1, . . . , vn} where n is even and where d(vi) ≤ d(vi+1) for i = 1, . . . , n − 1
(hence the vertices are sorted according to their degrees). We say that (A,B) is a paired partition
of V (G) if |A ∩ {v2i−1, v2i}| = 1 for i = 1, . . . , n/2. Notice that G has precisely 2n/2 (ordered)
paired partitions. For a paired partition (A,B) let e(A) (resp. e(B)) denote the number of edges
induced by A (resp. B). Let e(A,B) denote the number of edges with one endpoint in A.

Lemma 2.1 For any paired partition (A,B) we have |e(A)−e(B)| ≤ ∆(G)/2 = d(vn)/2. Further-
more, if S ⊂ V (G) then, in a random paired partition both A and B contain at least |S|/3 elements
of S with probability at least 1− 2e−|S|/108.

Proof: Clearly 2e(A) + e(A,B) =
∑
v∈A d(v) and also 2e(B) + e(A,B) =

∑
v∈B d(v). Hence

2(e(A)− e(B)) =
∑
v∈A

d(v)−
∑
v∈B

d(v) .

Clearly
∑
v∈A d(v)−

∑
v∈B d(v) is maximal when A = {v2, v4, . . . , vn} but even then the difference

is at most d(vn)− d(v1).
For the second part of the lemma, let s = |S|, let j be the number of pairs {v2i−1, v2i} that

contain one element of S, and let S′ ⊂ S be those corresponding j elements. Thus, precisely
(s − j)/2 pairs have both of their elements in S. In a random paired partition (A,B) there are
precisely (s− j)/2 elements of S \ S′ in A and the same holds for B. Thus, if j ≤ s/3 we are done.
Otherwise, each element of S′ is chosen to A independently with probability 1/2. Notice that the
expectation of |S′ ∩ A| is j/2. By a standard large deviation Chernoff estimate (cf. [2] Theorem
A.1.13) we have that

Pr[|S′ ∩A| < j/3] < e−(j/6)2/j = e−j/36 < e−s/108.

Thus, with probability at least 1 − e−s/108 we have |S ∩ A| ≥ j/3 + (s − j)/2 = s/2 − j/6 ≥ s/3
and the same holds for B.

The proof of Theorem 1.2 can be deduced from the proof of the following, seemingly more
restricted theorem.

Theorem 2.2 For every positive integer r ≥ 4 and for every ε1 > 0 there exists N1 = N1(r, ε1)
so that for all n > N1, if G is a graph with n vertices and maximum degree at most n1−3/r then
f(G) ≥ n/2− ε1n.

3



Before proving Theorem 2.2 let us first see how to obtain Theorem 1.2 from it.
Proof of Theorem 1.2 given Theorem 2.2: Let α and ε be as in Theorem 1.2. We can assume
α < 2 otherwise the theorem is trivial. Choose r to be the smallest positive integer so that so that
3/r < α/2. Choose ε1 = ε/2. Let N1 = N1(r, ε1) be the constant from theorem 2.2. Choose

N = max{(4/ε)r/3 , 2N1} .

Now, suppose G has n > N vertices and at most n2−α edges. Clearly, by deleting from G the
vertices with degree greater than 0.5n1−3/r (if there are any) we remain with a subgraph G′ having
n′ > n− 4n1−3/r vertices and maximum degree at most 0.5n1−3/r < (n′)1−3/r. Since n′ > N1(r, ε1)
we have that

f(G) ≥ f(G′) ≥ n′

2
− ε1n′ ≥

n

2
− n

(
ε1 +

2
n3/r

− 4ε1
n3/r

)
≥ n

2
− εn.

Proof of Theorem 2.2: Throughout the proof we ignore floors and ceilings of fractional powers of
n as these have no effect on the asymptotic nature of our results. The proof proceeds by induction
on r starting with the basic case of r = 4. For this basic case we need to prove that for any ε′ > 0
there exists N ′(ε′) so that for all n > N , if G is a graph with n > N ′ vertices and maximum degree
at most n1/4 then f(G) ≥ n/2− ε′n.

We start by greedily finding an independent set of G of size n1/4 and denote it by T0. Denote the
set of neighbors of all vertices of T0 by X0 and notice that since ∆(G) ≤ n1/4 we have |X0| ≤ n1/2.
Delete X0 ∪ T0 from the graph G. In the remaining graph, find 0.5n1/4 independent edges in the
sense that any two of these edges only induce a matching. Denote this set of edges by T1 and
observe that T1 can be constructed greedily by picking an edge, and deleting both of its endpoints
and their at most 2n1/4 − 2 neighbors from the graph, and continuing in the same way. If we
cannot find 0.5n1/4 edges for T1 then we are left with n−n1/4−n1/2−n1/2 isolated vertices which
means that there are two vertex disjoint independent sets of order larger than n/2− 2n1/2, and in
particular f(G) ≥ n/2− ε′n as required (we assume whenever necessary that N ′ is sufficiently large
to satisfy the inequalities).

Otherwise, by deleting at most one additional vertex we are now left with a graph with s >

n − 3n1/2 vertices where s is even. By Lemma 2.1 an arbitrary paired partition (A,B) of this
remaining graph has |e(A) − e(B)| ≤ 0.5n1/4. Suppose e(A) − e(B) = t ≥ 0. Add to A precisely
2t isolated vertices from T0. Add to B precisely t independent edges from T1. The expanded sets
are still vertex-disjoint, have precisely s/2 + 2t > n/2− ε′n vertices each, and induce precisely e(A)
edges each.

We may now assume that the theorem has been proved for r−1 and for all ε. We need to prove
it for r and any given ε > 0. By the induction hypothesis we know that for every ε′ > 0 there exists
N ′ = N ′(ε′) so that for all n > N ′, if G is a graph with n vertices and maximum degree at most
n1−3/(r−1) then f(G) ≥ n/2− ε′n. We wish to use this fact in order to prove that for every ε > 0,
there exists N = N(ε) so that for all n > N , if G is a graph with n vertices and maximum degree
at most n1−3/r then f(G) ≥ n/2− εn.
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Let, therefore, ε > 0 be given. Throughout the rest of the proof we will always pick N to be
sufficiently large so as to guarantee the inequalities and we shall use the induction hypotheses with
a value ε′ sufficiently small (but still only a function of ε and r).

We start by finding in G an independent set T0 of size 3n2.9/r. We delete T0 and all of its
neighbors from G to obtain a graph G0. Notice that G0 has at least n − O(n1−0.1/r) vertices.
Similarly, we find in G0 a set of n2.9/r independent edges, denote their 2n2.9/r endpoints by T1, and
delete T1 and all of their neighbors. As in the case r = 4, if we cannot find such a T1 then there is a
huge independent set in G0 and we are done. Otherwise, notice that the remaining graph, denoted
G1, has at least n−O(n1−0.1/r) vertices.

Starting with the graphG1, we now construct a sequence of graphsG2, G3, . . . , Gr−2 as described
in the following process. Each Gi+1 will be a subgraph of Gi obtained by deleting several vertices
from Gi. Each Gi will contain at least n−O(n1−0.1/r) vertices (and recall that this initially holds
for G1).

While constructing Gi+1 from Gi we will color some vertices with a color i (vertices may be
colored by more than one color; for example a vertex may have color 3 as well as color 7 which
means that it was colored while creating G4 from G3 and also colored wile creating G8 from G7).
Uncolored vertices are those that have yet to receive any color. Initially, G1 has no colored vertices
at all before we construct G2 from it.

We denote by di(v) the degree of a vertex v ∈ Gi in Gi. We denote by ci(v) the number of
neighbors of v in Gi that have color i or less. Set pi = 0.5n−1+3/r+i/(r+1) to denote a probability
that will be used later. A property that we shall maintain is the following. If di(v) > 0.5n1−3/(r−1)

then
1
2
pidi(v) ≤ ci(v) ≤ 2pidi(v).

We now describe how to create Gi+1 from Gi. Randomly and independently color each vertex
of Gi with the color i with probability pi. Consider any vertex v ∈ Gi. The expected number of
i-colored neighbors is precisely di(v)pi. Now, if di(v) ≥ 0.5n1−3/(r−1) ≥ 0.5n1/4 we can use the
standard Chernoff large deviation bounds to obtain that with exponentially small probability, the
number of i-colored neighbors deviates from its mean di(v)pi by a factor of at most 1.5 (or any 1+δ
for that matter). Similarly, if Ci denotes the number of vertices colored by i then its expectation is
E[Ci] = |Gi|pi. Again, we have that the probability that Ci deviates from its mean by more than
a factor of 2 is exponentially small. Hence, we can fix an i-coloring of some of the vertices of Gi so
that the following holds:

Ci < 2|Gi|pi ≤ n3/r+i/(r+1) , (1)

and also the following holds for all v ∈ Gi with di(v) ≥ 0.5n1−3/(r−1) :

1
2
pidi(v) ≤ ci(v) ≤ 1.5pidi(v) +

i−1∑
j=1

2pjdi(v) < 2pidi(v) . (2)

We construct an independent set Ti+1 of vertices of Gi greedily as follows. As long as there is
an uncolored vertex v ∈ Gi independent of all previous vertices that were selected to Ti+1 and so
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that di(v) ≥ 0.5n1−3/(r−1), we add v to Ti+1. We halt when either no such vertex can be found
anymore, or once the following inequality holds for the first time:∑

v∈Ti+1

ci(v) ≥ 3n(i+1)/(r+1). (3)

Let Bi+1 denote the set of uncolored neighbors of the vertices of Ti+1. We define Gi+1 to be the
graph obtained from Gi by removing the vertices Ti+1 ∪Bi+1.

We now consider the two cases that caused the procedure for creating Ti+1 to halt. Suppose (3)
still does not hold, but we cannot find another uncolored vertex to add to Ti+1. Each uncolored
vertex u of Gi+1 has degree di+1(u) < 0.5n1−3/(r−1). Observe that if v ∈ Ti+1 then di(v) ≥
0.5n1−3/(r−1) and hence, by (2), ci(v) ≥ pidi(v)/2. Now, since (3) did not yet occur we have∑
v∈Ti+1

ci(v) < 3n(i+1)/(r+1). Therefore

∑
v∈Ti+1

di(v) <
2
pi

3n(i+1)/(r+1) = 12n1−3/r−i/(r+1)+(i+1)/(r+1) = 12n1−3/r+1/(r+1).

Thus, |Ti+1 ∪ Bi+1| ≤ O(n1−3/r+1/(r+1)). Since, by (1) the number vertices colored by i or less is
at most 2rnpi ≤ O(n3/r+(r−3)/(r+1)) = O(n1−1/r+4/r(r+1)) we obtain that the graph G′ consisting
of the uncolored vertices of Gi+1 has at least

|G′| ≥ |Gi| −O(n1−3/r+1/(r+1))−O(n1−1/r+4/r(r+1)) = n−O(n1−1/r+4/r(r+1))

vertices and, furthermore, the maximum degree of G′ is at most 0.5n1−3/(r−1) < |G′|1−3/(r−1). We
may therefore apply the induction hypotheses to G′ and obtain that

f(G) ≥ f(G′) ≥ |G′|/2− ε′|G′| ≥ n/2− εn.

Assume, therefore that Ti+1 has been created and the last vertex added to it caused (3) to hold
for the first time. In this case we go to step i + 1 of the algorithm using the constructed graph
Gi+1. Notice that Gi+1 has at least

|Gi+1| = |Gi| − |Ti+1 ∪Bi+1| = n−O(n1−0.1/r)−O(n1−3/r+1/(r+1)) ≥ n−O(n1−0.1/r)

vertices. We will also need to bound |Ti+1| from above. Before inserting the last vertex to Ti+1 we
know that (3) still does not hold. It follows that

∑
v∈Ti+1

di(v) ≤
∑

v∈Ti+1

2
pi
ci(v) ≤ n1−3/r + 12n1−3/r−i/(r+1)+(i+1)/(r+1) ≤ 13n1−3/r+1/(r+1).

Since the degree if each vertex in Ti+1 is at least 0.5n1−3/(r−1) we have

|Ti+1| ≤ O
(
n1−3/r+1/(r+1)

n1−3/(r−1)

)
= O

(
n−3/r+1/(r+1)+3/(r−1)

)
� 1

r
(n2.9/r). (4)
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Consider the final graphGr−2 and the sets of vertices T0, T1, . . . , Tr−2 that have been constructed
during the process. Notice that T0 ∪ · · · ∪ Tr−2 is an independent set. We know that Gr−2 has at
least n−O(n1−0.1/r) vertices, and has maximum degree n1−3/r. By deleting from Gr−2 at most one
vertex we can assume that Gr−2 has an even number of vertices. Let (A,B) be a random paired
partition of Gr−2. By Lemma 2.1 we know that e(A)− e(B) = k < n1−3/r (assuming w.l.o.g. that
e(A) ≥ e(B)).

For j = 1, . . . r − 3 and for each vertex v ∈ Tj+1, the set Sv of neighbors of v in Gr−2 has
cardinality |Sv| = cj(v). By (2) we know that cj(v) ≥ 0.5pjdj(v) ≥ 0.25pjn1−3/(r−1) ≥ O(n1/r).
Hence, by Lemma 2.1 there exists a paired partition (A,B) so that for all j = 1, . . . r − 3 and for
each vertex v ∈ Tj+1, v has at least cj(v)/3 neighbors in B.

As A induces k more edges than B, we will attempt to correct this gap by carefully adding to B
vertices of T1 ∪ · · · ∪Tr−2 and by adding the same amount of isolated vertices to A from T0. By (4)
we recall that |T0| > |T1|+|T2|+· · ·+|Tr−2| and thus we always have enough isolated vertices to add
to A. Hence, we just need to show that it is possible to add to B vertices of T1 ∪ · · · ∪ Tr−2 so that
the sum of the number of neighbors in B of these added vertices is precisely k. For i = 1, . . . , r− 2
we will gradually add vertices of Tr−1−i to B so that k slowly decreases until it becomes zero. We
will denote the gap after step i by ki. Hence, initially k0 = k and we need to show that kr−2 = 0.
We will also make sure that ki < n1−(3+i)/(r+1). We denote by Bi the extension of B after step i.

For i = 1, let us first use vertices of Tr−2 to add to B in order to decrease k. Each vertex
v ∈ Tr−2 has at least cr−3(v)/3 neighbors in Gr−2 and at most cr−3(v) neighbors. Since, by (2)
cr−3(v) < 2pr−3n

1−3/r = n1−4/(r+1) each addition of a vertex from Tr−2 does not decrease the gap
by more than n1−4/(r+1). Hence, by adding sufficiently many vertices from Tr−2 we can make the
gap smaller than n1−4/(r+1). But how can we make sure that we do not exhaust Tr−2 before getting
this smaller gap? We therefore need to show that the sum of the number of neighbors of the vertices
of Tr−2 in B is greater than k, or, equivalently, that the sum of the number of neighbors of the
vertices of Tr−2 in Gr−2 is greater than 3k. But, by (3) this latter sum is at least 3n(r−2)/(r+1) >

3n1−3/r > 3k, as required. We have therefore proved that e(A)− e(B1) = k1 < n1−4/(r+1).
Let us now consider a general step i = 2, . . . , r − 3 (the last step i = r − 2 will be handled

separately). Each addition of a vertex from from Tr−1−i to Bi−1 does not decrease ki−1 by more
than cr−2−i(v) < 2pr−2−in

1−3/r = n1−(3+i)/(r+1). Thus we can make sure that ki < n1−(3+i)/(r+1).
Again, we must make sure that we do not exhaust Tr−1−i before getting this smaller gap. We
therefore need to show that the sum of the number of neighbors of the vertices of Tr−1−i in B (which
is precisely the same as in Bi−1 because the union of all of the Tj is an independent set) is greater
than ki−1, or, equivalently, that the sum of the number of neighbors of the vertices of Tr−1−i in Gr−2

is greater than 3ki−1. But, by (3) this latter sum is at least 3n(r−1−i)/(r+1) = 3n1−(2+i)/(r+1) >

3ki−1, as required. We have therefore proved that e(A)− e(Bi) = ki < n1−(3+i)/(r+1).
Consider now the final step i = r − 2. Prior to this step we have e(A) − e(Br−3) = kr−3 <

n1−r/(r+1) = n1/(r+1). But T1 has n2.9/r independent edges which is far more than what we
need in order to close the gap and make e(A) − e(Br−2) = 0. We have therefore proved that
f(G) ≥ |Gr−2|/2 ≥ n/2−O(n1−0.1/r), as required.
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The Kneser graph KG(n, k) has as its vertex set all k-subsets of {1, . . . , n} and two vertices of
KG(n, k) are adjacent if the corresponding k-subsets are disjoint. Kneser conjectured in [5] that the
chromatic graph of KG(n, k) is n−2k+2. This conjecture was solved in a seminal paper of Lovász
[6]. Using this result one can easily derive the following proposition, generalizing Proposition 1.1.

Proposition 2.3 Suppose that P is a graph-theoretic parameter and let gP (k) denote the number
of possible values that P can attain in the family of k-vertex graphs. Let k be the largest integer for
which n − 2k + 2 > gP (k). Then any n-vertex graph has two induced vertex-disjoint subgraphs of
order k for which the value of P is the same.

proof: Consider the set of all induced k-vertex subgraphs of G. If H is such a subgraph then
color H with the color P (H). This corresponds to a coloring of the vertices of KG(n, k) with gP (k)
colors. The coloring cannot be proper since χ(KG(n, k)) = n− 2k+ 2 > gP (k). Hence two disjoint
k-vertex subgraphs receive the same color.

If P is the property “number of edges” then gP (k) =
(k
2

)
+ 1. If P is the property “number

of induced copies of H” then gP (k) ≤
(k
r

)
+ 1 where r is the number of vertices of H. Thus, by

Proposition 2.3, fH(G) = Ω(n1/r).

3 Large almost-disjoint subgraphs with the same order

In this section we prove Theorem 1.3. We need the following result of Wilson [7] who generalized
the Erdős-Ko-Rado Theorem for t-intersecting families.

Lemma 3.1 If n ≥ (t+ 2)(k− t− 2) then any family of more than
(n−t−1
k−t−1

)
k-subsets of n contains

two subsets that intersect in at most t elements.

Proof of Theorem 1.3: We fix a graph H with r vertices and an integer t ≥ 1. Throughout
the proof we assume that n is sufficiently large to satisfy the various inequalities. We set k =
0.5n1−(2r−1)/(2r+2t+1) and wish to prove that if G is a graph with n vertices then there are two
k-vertex subgraphs of G that intersect in at most t vertices and that induce precisely the same
number of copies of H. It will be convenient to denote the number of induced H-subgraphs of G
by m = α

(n
r

)
, where 0 ≤ α ≤ 1.

Let R be a random subset of k vertices of G, chosen uniformly from all possible
(n
k

)
subsets. Let

G[R] be the subgraph induced by R and let X be the random variable corresponding to the number
of induced H-subgraphs or R. As each H-subgraph of G is also a subgraph of R with probability(n−r
k−r
)
/
(n
k

)
. we have that the expectation of X is E[X] = α

(k
r

)
. In fact, if H is the set of induced

H-subgraphs of G then X is just the sum of the indicator random variables XJ for J ∈ H, where
XJ = 1 if J is a subgraph of G[R]. Clearly, Pr[XJ = 1] =

(n−r
k−r
)
/
(n
k

)
.

Let us now estimate the variance of X. We recall (see [2], Page 42) that

V ar[X] ≤ E[X] +
∑
J 6=J ′

Cov[XJ , XJ ′ ] .
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Now, to estimate Cov[XJ , XJ ′ ] we observe that if J and J ′ share no vertex then

Cov[XJ , XJ ′ ] =
k(k − 1) · · · (k − 2r + 1)
n(n− 1) · · · (n− 2r + 1)

− k2(k − 1)2 · · · (k − r + 1)2

n2(n− 1)2 · · · (n− r + 1)2
< 0 .

If J and J ′ share s vertices where 1 ≤ s ≤ r − 1 then

Cov[XJ , XJ ′ ] =
k(k − 1) · · · (k − 2r + s+ 1)
n(n− 1) · · · (n− 2r + s+ 1)

− k2(k − 1)2 · · · (k − r + 1)2

n2(n− 1)2 · · · (n− r + 1)2
<

(
k

n

)2r−s
.

As there are less than n2r−s ordered pairs (J, J ′) that share s vertices we obtain that

V ar[X] < E[X] + (r − 1)k2r−1 < rk2r−1.

From Chebyschev’s Inequality we have that for any a > 0

Pr[|X − E[X]| ≥ a] ≤ V ar[X]
a2

.

We will choose a2 = 2V ar[X] and obtain that with probability at least 0.5, X receives one of
1 + 2(2V ar[X])1/2 <

√
8rkr−1/2 possible values. Since there are

(n
k

)
distinct k-subsets it follows

that at least
1
2

(n
k

)
√

8rkr−1/2

k-subsets R have the same number of induced copies of H. It remains to show that not all of them
have more than t vertices in common. By Lemma 3.1 it suffices to prove that(

n− t− 1
k − t− 1

)
<

1
2

(n
k

)
√

8rkr−1/2
.

In particular, it suffices to show that

√
32rkr−1/2 <

(
n

k

)t+1

.

The latter follows immediately from k = 0.5n1−(2r−1)/(2r+2t+1).

4 Concluding remarks and open problems

• It seems that extending Theorem 1.2 to the set of all graphs is a difficult task. We do suspect,
however that f(G) = n/2 − o(n) for all graphs. The following construction shows that one
cannot hope to replace o(n) with a constant. Consider the sequence of positive integers {ak}
defined as follows. a1 = 3 and ak is the smallest odd number so that

∑k−1
i=1

(ai
2

)
< ak/4.

Thus, a2 = 13, a3 = 325 and so on. Now, clearly, if n = a1 + · · · + ak then k = Θ(log log n)
(each element is of the order of a square of its predecessor). Consider, therefore, the graph G
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with n vertices obtained by taking vertex disjoint cliques of sizes a1, . . . , ak. We claim that
f(G) ≤ n/2−k/4. Assume that A,B are disjoint sets of vertices realizing f(G). Let j be the
largest index for which the clique Kaj of G does not contribute the same number of vertices
to A and B. If j ≤ k/2 then the fact that the cliques are odd implies that each Kai with
i > j has at least one vertex not in A ∪ B and hence f(G) ≤ (n − k/2)/2. If j > k/2 there
are two cases. Either Kaj has at least aj/2 − 1 vertices not in A ∪ B in which case clearly
f(G) ≤ n/2− (aj/2− 1)/2 > n/2− k/4. Otherwise, Kaj has x > aj/2 + 1 vertices in A ∪B.
Without loss of generality it has y vertices in A and x − y vertices in B where y > x − y.
Since

(y
2

)
−
(x−y

2

)
> aj/4, we have that Kaj contributes to A more than aj/4 edges than what

it contributes to B. Hence, even if all the Kai for i < j are completely with B this cannot
make A and B induce the same number of edges.

• A different approach for proving a lower bound for f(G, t) is through the chromatic number
of generalized Kneser graphs. The t-generalized Kneser graph KG(n, k, t) has as its vertex set
all k-subsets of {1, . . . , n} and two vertices of KG(n, k, t) are adjacent if the corresponding
k-subsets are have at most t elements in common. clearly, as in Proposition 1.1, if k satisfies
χ(KG(n, k, 1)) <

(k
2

)
+ 1 then f(G, 1) ≥ k. Unfortunately, the known values (and lower

bounds) for χ(KG(n, k, 1)) are of the order n2/k only for values of n that are exponential in
k [1, 4]. If k = nα then there are no nontrivial lower bound for χ(KG(n, k, 1)) and the trivial
ones yield results that are inferior to those of Theorem 1.3.

• It is possible to prove an analogue of Theorem 1.2 for the parameter fH(G). In other words,
for n-vertex graphs G that are not too dense, fH(G) = n/2 − o(n). The proof, however,
becomes even more complicated than the present proof of Theorem 1.2 since there is no
analogue of Lemma 2.1. We thus omit it from the present paper.

• It seems interesting to characterize the graph parameters for which the bound in Proposition
2.3 is far from tight. For example, the graph parameter “maximum matching number” has
this property. For this parameter we have gP (k) = bk/2 + 1c. Thus, Proposition 2.3 only
guarantees two vertex-disjoint subgraph of order roughly 0.4n having the same maximum
matching number. But clearly, we can always find two vertex disjoint subgraphs of the same
order greater than n/2− 2 having the same maximum matching number.

• As can be seen from the proof of Theorem 1.2, all of its ingredients are algorithmic (the
greedy selection of independent sets and independent edges, the randomized colorings, and
the construction of the graph sequence). In fact, it is not difficult to see that, with high
probability, two vertex-disjoint subsets of the same order n/2 − o(n) and the same size can
be constructed in O(n2) time.

10



References

[1] N. Alon, P. Frankl, and L. Lovász, The chromatic number of Kneser hypergraphs, Transactions
of the AMS 298 (1986), 359–370.

[2] N. Alon and J. H. Spencer, The Probabilistic Method, Second Edition, Wiley, New York,
2000.

[3] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.

[4] P. Frankl, On the chromatic number of the general Kneser-graph, Journal of Graph Theory 9
(1985), 217–220.

[5] M. Kneser, Aufgabe 360, Jahresbericht der Deutschen Mathematiker-Vereinigung 58 (1955).

[6] L. Lovász, Kneser’s Conjecture, Chromatic Numbers and Homotopy, Journal of Combinatorial
Theory, Series A 25 (1978), 319–324.
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