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Abstract

Given integers k ≥ 2 and n ≥ k, let c(n, k) denote the maxi-
mum possible number of edges in an n-vertex graph which has no
k-connected subgraph. It is immediate that c(n, 2) = n − 1. Mader
[2] conjectured that for every k ≥ 2, if n is sufficiently large then
c(n, k) ≤ (1.5k − 2)(n− k + 1), where equality holds whenever k − 1
divides n. In this note we prove that when n is sufficiently large then
c(n, k) ≤ 193

120
(k − 1)(n − k + 1) < 1.61(k − 1)(n − k + 1), thereby

coming rather close to the conjectured bound.

1 Introduction

All graphs considered here are finite, undirected and have no loops or mul-
tiple edges. For the standard terminology used the reader is referred to
[1]. This paper is about a classical extremal problem in graph connectivity,
raised by Mader in [3]. Let k ≥ 2 be an integer. Recall that a graph with
n ≥ k + 1 vertices is k-connected if the removal of any set of k − 1 ver-
tices from the graph results in a connected subgraph (graphs with n ≤ k
vertices are considered non k-connected). For n ≥ k, let c(n, k) denote
the maximum possible number of edges in an n-vertex graph which has
no k-connected subgraph. It is easy to see that c(n, 2) = n − 1 since any
tree does not have a 2-connected subgraph, and any n-vertex graph with n
edges contains a cycle, which is a 2-connected subgraph. For the rest of this
paper we shall assume k ≥ 3, whenever necessary. Trivially, c(k, k) =

(
k
2

)
.

Since the complete graph Kk+1 is the only k-connected graph with k + 1
vertices, one has c(k + 1, k) =

(
k+1
2

)
− 1 where the unique extremal graph

is K−
k+1 (the complete graph missing one edge).
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In [2], Mader gave a construction of an n-vertex graph with no k-
connected subgraph, and with a rather large number of edges. Let Gn,k

be defined as follows. Assume n = (k − 1)q + r where 1 ≤ r ≤ k − 1.
The vertices of Gn,k are arranged in q + 1 classes V0, . . . , Vq, where each
class contains exactly k − 1 vertices, except for the final class Vq which
contains r vertices. V0 is an independent set, and Vi is a complete graph
for i = 1, . . . , q. Furthermore, there is an edge between each vertex of V0
and each vertex of Vi for i ≥ 1. Note that V0 is a disconnecting set of size
k− 1. It is thus easy to check that Gn,k has no k-connected subgraph. Let
e(n, k) denote the number of edges of Gn,k. We have:

e(n, k) = (q−1)

(
k − 1

2

)
+

(
r

2

)
+(k−1)(n−k+1) ≤ (

3

2
k−2)(n−k+1), (1)

and equality is obtained whenever n is a multiple of k − 1. It follows that
c(n, k) ≥ e(n, k). Mader [2] has conjectured the following:

Conjecture 1.1 (Mader [2]) For n sufficiently large, c(n, k) ≤ ( 3
2k −

2)(n − k + 1). Consequently, if n is a multiple of k − 1 then c(n, k) =
( 3
2k − 2)(n− k + 1), and Gn,k is an extremal graph.

Mader [3] has proved Conjecture 1.1 for all k ≤ 7. The reason that n needs
to be sufficiently large in Conjecture 1.1 follows from the fact that there
exist n-vertex graphs with more than ( 3

2k − 2)(n− k + 1) edges, and with
no k-connected subgraph, for n = Θ(k2).

A simple upper bound showing that c(n, k) < (2k−3)(n−k+1) whenever
n ≥ 2k − 1 is presented in [1], p. 45. Mader showed that for n sufficiently
large, c(n, k) < (1 +

√
2/2)(k − 1)(n − k + 1). In this note we present a

further improvement which is about halfway between Mader’s bound and
the bound in Conjecture 1.1:

Theorem 1.2 For k ≥ 3 and for n ≥ 9
4 (k − 1), c(n, k) ≤ 193

120 (k − 1)(n −
k + 1).

2 Proof of Theorem 1.2

An (S,A,B)-partition of a non k-connected graph G is a partition of the
vertex set of G into three parts S, A and B, where |S| = k−1, |A| ≤ |B| and
there is no edge connecting a vertex of A and a vertex of B. Clearly, every
non k-connected graph with at least k+1 vertices has an (S,A,B)-partition.
Given an (S,A,B)-partition, let GA and GB denote the subgraphs of G
induced by S ∪A and S ∪B respectively.
Proof of Theorem 1.2: Matula has proved [4] that

c(n, k) ≤
(
n

2

)
− (n− k + 1)2 − 1

3
. (2)
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We shall use this fact. For completeness, we reprove (2). This is done
by induction on n. For n = k, (2) is obvious. For n = k + 1 we have
c(k + 1, k) =

(
k+1
2

)
− 1, so (2) holds. Assume it holds for all k ≤ a < n.

Let G be an n-vertex graph without a k-connected subgraph. Consider an
(S,A,B)-partition of G. Clearly, G misses at least the |A||B| possible edges
between A and B, and by the induction hypothesis, GB , as a subgraph of
G with |B| + k − 1 < n vertices, misses at least (|B|2 − 1)/3 additional
edges. Hence, since |A| ≤ |B|:

e(G) ≤
(
n

2

)
− |A||B| − (|B|2 − 1)/3 ≤

(
n

2

)
− (|A|+ |B|)2 − 1

3
=

(
n

2

)
− (n− k + 1)− 1

3
.

This proves (2) for all n ≥ k.
Now let n ≥ 9

4 (k−1), and let G be an n-vertex graph without a k-connected
subgraph. Put n = γ(k − 1) and assume first that γ ≤ 17

5 . According to
(1) we have:

e(G) ≤ γ2(k − 1)2 − γ(k − 1)

2
− (γ − 1)2(k − 1)2 − 1

3
≤

(k − 1)2(
γ2

2
− (γ − 1)2

3
) ≤ 193

120
(γ − 1)(k − 1)2 =

193

120
(k − 1)(n− k + 1).

Now assume that γ > 17
5 . We use induction once again, and assume the

theorem holds for each value smaller than n. Consider an (S,A,B)-partition
of G, put a = |A| and b = |B|, and recall that a ≤ b. Let α and β be defined
by a = α(k − 1) and b = β(k − 1). Notice that a + b + k − 1 = n and so
α + β = γ − 1. Consider first the case α ≤ 1. In this case, β + 1 ≥ 12

5 , so
the induction hypothesis holds for GB . Hence, the number of edges of G is
at most

a(a− 1)

2
+ a(k − 1) +

193

120
(k − 1)b < 1.5(k − 1)a+

193

120
(k − 1)b <

193

120
(k − 1)(a+ b) =

193

120
(k − 1)(n− k + 1).

Now consider the case where α ≥ 5
4 . Since β ≥ α we also have β ≥ 5

4 .
In this case, both GA and GB have at least 9

4 (k − 1) edges, and since
e(G) ≤ e(GA) + e(GB) we have by the induction hypothesis that:

e(G) ≤ 193

120
(k − 1)a+

193

120
(k − 1)b =

193

120
(k − 1)(n− k + 1).
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We remain with the case where 1 < α < 5
4 . A useful observation is the

following: For every 1 < α < 5
4 :

α2

2
− (α− 1)2

3
+ α− 193

120
α ≤ 0. (3)

Furthermore, the l.h.s. of (3) is monotone increasing in the range [1, 54 ].
Since there are at most a(k − 1) edges between S and A we have that
e(G) ≤ e(A) + a(k − 1) + e(GB). If β ≥ 5

4 then, according to (2) applied
to e(A) and the induction hypothesis applied to e(GB), and using (3) we
have:

e(G) ≤
(
a

2

)
− (a− k + 1)2 − 1

3
+ a(k − 1) +

193

120
b(k − 1) =

α(k − 1)(α(k − 1)− 1)

2
− (α− 1)2(k − 1)2 − 1

3
+α(k−1)2+

193

120
β(k−1)2 ≤

(k − 1)2(
α2

2
− (α− 1)2

3
+ α+

193

120
β) ≤ (k − 1)2

193

120
(α+ β) =

193

120
(k − 1)(n− k + 1).

Finally, if β < 5
4 then we can use (2) also for e(GB) and obtain:

e(G) ≤ (k − 1)2(
α2

2
− (α− 1)2

3
+ α) + e(GB) ≤

(k − 1)2(
α2

2
− (α− 1)2

3
+ α+

(β + 1)2

2
− β2

3
).

We therefore need to show that:

α2

2
− (α− 1)2

3
+ α+

(β + 1)2

2
− β2

3
≤ 193

120
(α+ β).

Since the l.h.s. of (3) is monotone increasing in the selected range, and
since α ≤ β, the worst case in the last inequality occurs when α = β. It
therefore suffices to show that:

α2

3
+

8

3
α+

1

6
≤ 193

60
α

which, in turn, is true for 1 < α < 5
4 .
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genügend grossen kantendichte, Abh. Math. Sem. Hamburg Univ. 37
(1972), 86-97.

[4] D. W. Matula, Ramsey Theory for graph connectivity, J. Graph Theory
7 (1983), 95-105.

5


