A note on graphs without k-connected subgraphs

Raphael Yuster
Department of Mathematics
University of Haifa at Oranim
Tivon 36006, Israel.
e-mail: raphy@research.haifa.ac.il

Abstract

Given integers $k \geq 2$ and $n \geq k$, let $c(n, k)$ denote the maximum possible number of edges in an n-vertex graph which has no k-connected subgraph. It is immediate that $c(n, 2)=n-1$. Mader [2] conjectured that for every $k \geq 2$, if n is sufficiently large then $c(n, k) \leq(1.5 k-2)(n-k+1)$, where equality holds whenever $k-1$ divides n. In this note we prove that when n is sufficiently large then $c(n, k) \leq \frac{193}{120}(k-1)(n-k+1)<1.61(k-1)(n-k+1)$, thereby coming rather close to the conjectured bound.

1 Introduction

All graphs considered here are finite, undirected and have no loops or multiple edges. For the standard terminology used the reader is referred to [1]. This paper is about a classical extremal problem in graph connectivity, raised by Mader in [3]. Let $k \geq 2$ be an integer. Recall that a graph with $n \geq k+1$ vertices is k-connected if the removal of any set of $k-1$ vertices from the graph results in a connected subgraph (graphs with $n \leq k$ vertices are considered non k-connected). For $n \geq k$, let $c(n, k)$ denote the maximum possible number of edges in an n-vertex graph which has no k-connected subgraph. It is easy to see that $c(n, 2)=n-1$ since any tree does not have a 2 -connected subgraph, and any n-vertex graph with n edges contains a cycle, which is a 2 -connected subgraph. For the rest of this paper we shall assume $k \geq 3$, whenever necessary. Trivially, $c(k, k)=\binom{k}{2}$. Since the complete graph K_{k+1} is the only k-connected graph with $k+1$ vertices, one has $c(k+1, k)=\binom{k+1}{2}-1$ where the unique extremal graph is K_{k+1}^{-}(the complete graph missing one edge).

In [2], Mader gave a construction of an n-vertex graph with no k connected subgraph, and with a rather large number of edges. Let $G_{n, k}$ be defined as follows. Assume $n=(k-1) q+r$ where $1 \leq r \leq k-1$. The vertices of $G_{n, k}$ are arranged in $q+1$ classes V_{0}, \ldots, V_{q}, where each class contains exactly $k-1$ vertices, except for the final class V_{q} which contains r vertices. V_{0} is an independent set, and V_{i} is a complete graph for $i=1, \ldots, q$. Furthermore, there is an edge between each vertex of V_{0} and each vertex of V_{i} for $i \geq 1$. Note that V_{0} is a disconnecting set of size $k-1$. It is thus easy to check that $G_{n, k}$ has no k-connected subgraph. Let $e(n, k)$ denote the number of edges of $G_{n, k}$. We have:

$$
\begin{equation*}
e(n, k)=(q-1)\binom{k-1}{2}+\binom{r}{2}+(k-1)(n-k+1) \leq\left(\frac{3}{2} k-2\right)(n-k+1) \tag{1}
\end{equation*}
$$

and equality is obtained whenever n is a multiple of $k-1$. It follows that $c(n, k) \geq e(n, k)$. Mader [2] has conjectured the following:
Conjecture 1.1 (Mader [2]) For n sufficiently large, $c(n, k) \leq\left(\frac{3}{2} k-\right.$ $2)(n-k+1)$. Consequently, if n is a multiple of $k-1$ then $c(n, k)=$ $\left(\frac{3}{2} k-2\right)(n-k+1)$, and $G_{n, k}$ is an extremal graph.
Mader [3] has proved Conjecture 1.1 for all $k \leq 7$. The reason that n needs to be sufficiently large in Conjecture 1.1 follows from the fact that there exist n-vertex graphs with more than $\left(\frac{3}{2} k-2\right)(n-k+1)$ edges, and with no k-connected subgraph, for $n=\Theta\left(k^{2}\right)$.

A simple upper bound showing that $c(n, k)<(2 k-3)(n-k+1)$ whenever $n \geq 2 k-1$ is presented in [1], p. 45. Mader showed that for n sufficiently large, $c(n, k)<(1+\sqrt{2} / 2)(k-1)(n-k+1)$. In this note we present a further improvement which is about halfway between Mader's bound and the bound in Conjecture 1.1:
Theorem 1.2 For $k \geq 3$ and for $n \geq \frac{9}{4}(k-1)$, $c(n, k) \leq \frac{193}{120}(k-1)(n-$ $k+1$).

2 Proof of Theorem 1.2

An (S, A, B)-partition of a non k-connected graph G is a partition of the vertex set of G into three parts S, A and B, where $|S|=k-1,|A| \leq|B|$ and there is no edge connecting a vertex of A and a vertex of B. Clearly, every non k-connected graph with at least $k+1$ vertices has an (S, A, B)-partition. Given an (S, A, B)-partition, let G_{A} and G_{B} denote the subgraphs of G induced by $S \cup A$ and $S \cup B$ respectively.
Proof of Theorem 1.2: Matula has proved [4] that

$$
\begin{equation*}
c(n, k) \leq\binom{ n}{2}-\frac{(n-k+1)^{2}-1}{3} \tag{2}
\end{equation*}
$$

We shall use this fact. For completeness, we reprove (2). This is done by induction on n. For $n=k,(2)$ is obvious. For $n=k+1$ we have $c(k+1, k)=\binom{k+1}{2}-1$, so (2) holds. Assume it holds for all $k \leq a<n$. Let G be an n-vertex graph without a k-connected subgraph. Consider an (S, A, B)-partition of G. Clearly, G misses at least the $|A||B|$ possible edges between A and B, and by the induction hypothesis, G_{B}, as a subgraph of G with $|B|+k-1<n$ vertices, misses at least $\left(|B|^{2}-1\right) / 3$ additional edges. Hence, since $|A| \leq|B|$:

$$
\begin{gathered}
e(G) \leq\binom{ n}{2}-|A||B|-\left(|B|^{2}-1\right) / 3 \leq \\
\binom{n}{2}-\frac{(|A|+|B|)^{2}-1}{3}=\binom{n}{2}-\frac{(n-k+1)-1}{3} .
\end{gathered}
$$

This proves (2) for all $n \geq k$.
Now let $n \geq \frac{9}{4}(k-1)$, and let G be an n-vertex graph without a k-connected subgraph. Put $n=\gamma(k-1)$ and assume first that $\gamma \leq \frac{17}{5}$. According to (1) we have:

$$
\begin{gathered}
e(G) \leq \frac{\gamma^{2}(k-1)^{2}-\gamma(k-1)}{2}-\frac{(\gamma-1)^{2}(k-1)^{2}-1}{3} \leq \\
(k-1)^{2}\left(\frac{\gamma^{2}}{2}-\frac{(\gamma-1)^{2}}{3}\right) \leq \frac{193}{120}(\gamma-1)(k-1)^{2}=\frac{193}{120}(k-1)(n-k+1)
\end{gathered}
$$

Now assume that $\gamma>\frac{17}{5}$. We use induction once again, and assume the theorem holds for each value smaller than n. Consider an (S, A, B)-partition of G, put $a=|A|$ and $b=|B|$, and recall that $a \leq b$. Let α and β be defined by $a=\alpha(k-1)$ and $b=\beta(k-1)$. Notice that $a+b+k-1=n$ and so $\alpha+\beta=\gamma-1$. Consider first the case $\alpha \leq 1$. In this case, $\beta+1 \geq \frac{12}{5}$, so the induction hypothesis holds for G_{B}. Hence, the number of edges of G is at most

$$
\begin{gathered}
\frac{a(a-1)}{2}+a(k-1)+\frac{193}{120}(k-1) b<1.5(k-1) a+\frac{193}{120}(k-1) b< \\
\frac{193}{120}(k-1)(a+b)=\frac{193}{120}(k-1)(n-k+1)
\end{gathered}
$$

Now consider the case where $\alpha \geq \frac{5}{4}$. Since $\beta \geq \alpha$ we also have $\beta \geq \frac{5}{4}$. In this case, both G_{A} and G_{B} have at least $\frac{9}{4}(k-1)$ edges, and since $e(G) \leq e\left(G_{A}\right)+e\left(G_{B}\right)$ we have by the induction hypothesis that:

$$
e(G) \leq \frac{193}{120}(k-1) a+\frac{193}{120}(k-1) b=\frac{193}{120}(k-1)(n-k+1)
$$

We remain with the case where $1<\alpha<\frac{5}{4}$. A useful observation is the following: For every $1<\alpha<\frac{5}{4}$:

$$
\begin{equation*}
\frac{\alpha^{2}}{2}-\frac{(\alpha-1)^{2}}{3}+\alpha-\frac{193}{120} \alpha \leq 0 \tag{3}
\end{equation*}
$$

Furthermore, the l.h.s. of (3) is monotone increasing in the range $\left[1, \frac{5}{4}\right]$.
Since there are at most $a(k-1)$ edges between S and A we have that $e(G) \leq e(A)+a(k-1)+e\left(G_{B}\right)$. If $\beta \geq \frac{5}{4}$ then, according to (2) applied to $e(A)$ and the induction hypothesis applied to $e\left(G_{B}\right)$, and using (3) we have:

$$
\begin{gathered}
e(G) \leq\binom{ a}{2}-\frac{(a-k+1)^{2}-1}{3}+a(k-1)+\frac{193}{120} b(k-1)= \\
\frac{\alpha(k-1)(\alpha(k-1)-1)}{2}-\frac{(\alpha-1)^{2}(k-1)^{2}-1}{3}+\alpha(k-1)^{2}+\frac{193}{120} \beta(k-1)^{2} \leq \\
(k-1)^{2}\left(\frac{\alpha^{2}}{2}-\frac{(\alpha-1)^{2}}{3}+\alpha+\frac{193}{120} \beta\right) \leq(k-1)^{2} \frac{193}{120}(\alpha+\beta)= \\
\frac{193}{120}(k-1)(n-k+1) .
\end{gathered}
$$

Finally, if $\beta<\frac{5}{4}$ then we can use (2) also for $e\left(G_{B}\right)$ and obtain:

$$
\begin{aligned}
& e(G) \leq(k-1)^{2}\left(\frac{\alpha^{2}}{2}-\frac{(\alpha-1)^{2}}{3}+\alpha\right)+e\left(G_{B}\right) \leq \\
& (k-1)^{2}\left(\frac{\alpha^{2}}{2}-\frac{(\alpha-1)^{2}}{3}+\alpha+\frac{(\beta+1)^{2}}{2}-\frac{\beta^{2}}{3}\right)
\end{aligned}
$$

We therefore need to show that:

$$
\frac{\alpha^{2}}{2}-\frac{(\alpha-1)^{2}}{3}+\alpha+\frac{(\beta+1)^{2}}{2}-\frac{\beta^{2}}{3} \leq \frac{193}{120}(\alpha+\beta)
$$

Since the l.h.s. of (3) is monotone increasing in the selected range, and since $\alpha \leq \beta$, the worst case in the last inequality occurs when $\alpha=\beta$. It therefore suffices to show that:

$$
\frac{\alpha^{2}}{3}+\frac{8}{3} \alpha+\frac{1}{6} \leq \frac{193}{60} \alpha
$$

which, in turn, is true for $1<\alpha<\frac{5}{4}$.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
[2] W. Mader, Connectivity and edge-connectivity in finite graphs, In: Surveys in Combinatorics, B. Bollobás, Ed., Cambridge University Press, London, 1979.
[3] W. Mader, Existenz n-fach zusammenhängender teilgraphen in graphen genügend grossen kantendichte, Abh. Math. Sem. Hamburg Univ. 37 (1972), 86-97.
[4] D. W. Matula, Ramsey Theory for graph connectivity, J. Graph Theory 7 (1983), 95-105.

