
Finding and counting small tournaments in large tournaments

Raphael Yuster *

Abstract

We present new algorithms for counting and detecting small tournaments in a given tour-
nament. In particular, we prove that every tournament on four vertices (there are four) can be
detected in O(n2) time and counted in O(nω) time where ω < 2.372 is the matrix multiplication
exponent. We further prove that any tournament on five vertices (there are 12) can be counted
in O(nω+1) time. As for lower-bounds, we prove that for almost all k-vertex tournaments, the
complexity of the detection problem is not easier than the complexity of the corresponding
well-studied counting problem for undirected cliques of order k −O(log k).

2012 ACM Subject Classification: Theory of computation → Design and analysis of algo-
rithms → Graph algorithms analysis
Keywords: tournament; counting; detection

1 Introduction

Tournaments, which are orientations of complete graphs, are well-studied objects in combinatorics,
algorithmic graph theory, and computational social choice; see [4] for a large body of references in all
of these areas. This paper considers the basic problem of detecting and counting small tournaments
in larger tournaments. Detecting and counting small graphs in larger graphs are major topics of
research in algorithmic graph theory (see Subsection 1.2) and our goal is to investigate these
problems from the tournament perspective.

We usually denote small (fixed size) tournaments by T , and large tournaments (problem in-
stances) by G. The unique transitive tournament on k vertices is denoted by Tk. For a vertex v
in a tournament G, d+G(v) denotes its out-degree and d−G(v) denotes its in-degree; the subscript is
omitted if clear from context. Our main problems are:

T -DETECT. For a fixed tournament T , determine if an input tournament contains a copy of T
as a subgraph.

T -COUNT. For a fixed tournament T , count the number of copies of T in an input tournament.

For a tournament T , let c(T) denote the infimum over all reals t such that T -COUNT can be
computed in O(nt) time and let d(T) denote the infimum over all reals t such that T -DETECT can
be solved in O(nt) time. Let c(k) (resp. d(k)) be the maximum of c(T) (resp. d(T)) ranging over
all k-vertex tournaments. Finally, let c∗(k) and d∗(k) denote the corresponding exponents for the
counting and detection problems of Kk (the complete graph on k vertices) in undirected graphs.

*Department of Mathematics, University of Haifa, Haifa 3498838, Israel. Email: raphael.yuster@gmail.com .

1

Some basic observations regarding these parameters follow. Clearly, we must have d(k) ≤ c(k)
and d∗(k) ≤ c∗(k). It is well-known [28] that in any tournament, every set of 2k−1 vertices contains
a copy of Tk. We therefore have that Tk-DETECT can be solved in constant time and hence
d(Tk) = 0. It is also a simple exercise that the number of T3 is a given tournament G can be

obtained by
∑

v∈V (G)

(
d+(v)

2

)
. It immediately follows that c(T3) ≤ 2 and, in fact, c(T3) = 2 as one

must read the entire input to determine the number of T3. From this, it follows that c(C3) = 2 where
C3 is the directed triangle, and also d(C3) = 2 since it is easy to see that one must read the entire
input to determine if a given tournament G is transitive. As T3 and C3 are the only tournaments
on three vertices, it follows that d(3) = c(3) = 2. On the other hand, it is highly plausible that
d∗(3) = c∗(3) = ω (see Itai and Rodeh [20] and Vassilevska Williams and Williams [31] for additional
details) where ω is the matrix multiplication exponent, known to satisfy 2 ≤ ω < 2.372 [32]. Note
that if ω > 2 then the hypothesis implies that d∗(3) > c(3), i.e., detecting undirected triangles in
graphs is harder than counting any tournament on three vertices in a given tournament.

For k ≥ 4, the relationship between the parameters d(k), c(k), d∗(k) and c∗(k) (apart from the
trivial d(k) ≤ c(k) and d∗(k) ≤ c∗(k)) is far less obvious. The results in this paper shed light on
these relations and establish nontrivial upper bounds for d(T) and c(T) for some small tournaments.

1.1 Our results

The first main result consists of two reductions between these parameters.

Theorem 1.1. Let k ≥ 3. Then:
(1) d(k) ≤ d∗(k).
(2) d∗(k − O(log k)) ≤ c(k). In fact, as k goes to infinity, almost all tournaments T on k vertices
satisfy c(T) ≥ d∗(k −O(log k)).

Before stating our next results, we recall (one of) the definitions of the matrix multiplication
exponents. For positive integers a, b, c let ω(a, b, c) denote the infimum over all reals t such that any
O(na)×O(nb) matrix can be multiplied with an O(nb)×O(nc) matrix using O(nt) field operations.
It is well-known that the function ω(a, b, c) is symmetric. If the underlying field is finite and its
elements can be represented using O(log n) bits, then field operations translate to (usual) runtime.
Thus, a standard reduction shows that the product of two boolean matrices with dimensions as
above can be computed in O(nt) time. The special case ω(1, 1, 1) is called the matrix multiplication
exponent and is simply denoted by ω. As mentioned earlier, it is known that ω < 2.372 and clearly
ω ≥ 2, as trivially ω(a, b, c) ≥ max{a+ b, b+ c, a+ c}.

Extending the result of Itai and Rodeh [20] who proved that c∗(3) ≤ ω, Nešetřil and Poljak
[26] and Eisenbrand and Grandoni [15] proved that c∗(k) ≤ ω(⌊k/3⌋, ⌈(k − 1)/3⌉, ⌈k/3⌉). In fact,
no better bound is known for any k, even for d∗(k), and it is conceivable that ω(⌊k/3⌋, ⌈(k −
1)/3⌉, ⌈k/3⌉) equals both c∗(k) and d∗(k) for all k. As shown in Section 2, it is easy to adapt the
arguments of [15, 26] to the tournament setting and obtain that c(k) ≤ ω(⌊k/3⌋, ⌈(k−1)/3⌉, ⌈k/3⌉).
While this does not imply that c(k) ≤ c∗(k), we conjecture that the latter inequality holds, i.e.,
that counting any given k-vertex tournament is not harder than counting Kk.

Conjecture 1.2. For all k ≥ 3 it holds that c(k) ≤ c∗(k).

In fact, we conjecture an even stronger statement; that at some point, the two parameters
coincide.

2

Conjecture 1.3. For all sufficiently large k it holds that c(k) = c∗(k).

Given the discussion above, and given that c(3) = d(3) = 2, it is of interest to investigate the
first nontrivial cases, starting with k = 4.

Theorem 1.4. d(4) = 2 and c(4) ≤ ω.

We note that if ω > 2 and if the inequality in Theorem 1.4 is an equality, then d(4) < c(4)
(finding is easier than counting for four-vertex tournaments). Furthermore, assuming d∗(3) = ω,
counting each tournament on four vertices is not more difficult than detecting K3 and, assuming
ω > 2, detecting each tournament on four vertices is easier than detecting K3. Another consequence
of Theorem 1.4 is an O(nω) deterministic algorithm for deciding whether a given tournament is
quasi-random; see Chung and Graham [9] for this important and well-studied notion. It has been
proved by Lovász ([24] exercise 10.44(b)) and by Coregliano and Razborov [10] that tournament
quasi-randomness can be determined from the number of T4 it contains.

While it is an easy exercise that c∗(k) ≤ 1+c∗(k−1) and that c(Tk) ≤ 1+c(Tk−1), it is certainly
not obvious that c(k) ≤ 1 + c(k − 1).

Conjecture 1.5. For all k ≥ 3 it holds that c(k) ≤ c(k − 1) + 1.

A consequence of the following theorem is that Conjecture 1.5 holds for all k ≤ 5.

Theorem 1.6. c(5) ≤ ω + 1.

Note that if d∗(5) = ω(1, 2, 2) ≥ 4 then counting each tournament on five vertices (there are 12
such tournaments) in a given tournament is faster than detecting a K5 in an undirected graph.

The rest of this paper is organized as detailed. Following a subsection on related research,
Section 2 contains the proof of the reductions yielding Theorem 1.1. Section 3 considers the case
k = 4 and the proof of Theorem 1.4. Section 4 considers the case k = 5 and the proof of Theorem
1.6.

1.2 Related research

Detecting and counting (possibly induced) copies of a specified fixed (possibly directed) graph
(a.k.a. pattern) in a given host graph is a major topic of research in algorithmic graph theory. We
mention some of the main results in this area that are most relevant to our work.

Itai and Rodeh [20] proved several decades ago that counting and detection of K3 can be done in
O(nω) time, i.e., c∗(3) ≤ ω. Their method was generalized by Nešetřil and Poljak [26] who proved
that when k is a multiple of 3 then c∗(k) ≤ ω(k/3, k/3, k/3) and Eisenbrand and Grandoni [15]
proved that for arbitrary k ≥ 3, d∗(k) ≤ ω(⌊k/3⌋, ⌈(k − 1)/3⌉, ⌈k/3⌉). In fact, their method works
for counting the number of induced copies of any graph on k vertices. Cliques in sparser graphs
can be found faster. Alon, Yuster, and Zwick [3] showed how to detect a K3 in time O(m2ω/(ω+1))
in graphs with m edges. This was generalized to larger cliques by Kloks, Kratsch, and Müller [21]
and by Eisenbrand and Grandoni [15]. In particular, the latter paper proves that for k ≥ 6, a Kk

can be detected in O(mω(⌊k/3⌋,⌈(k−1)/3⌉,⌈k/3⌉)/2) time. If the input graph is further assumed to be of
bounded degeneracy, some small patterns can be counted in linear time, while some cannot. A full
characterization of such patterns was recently obtained by Bera et al. [5], extending earlier results
of Chiba and Nishizeki [8], Bressan [7] and of Bera, Pashanasangi, and Seshadhri [6].

3

Graphs other than cliques can, in some cases, be detected, and sometimes counted, even faster.
Alon, Yuster, and Zwick [2] proved that for any fixed k ≥ 3, detecting if a graph has a cycle of
length k in a directed or undirected graph can be done in Õ(nω) time1. Yuster and Zwick [33]
showed that even length cycles in undirected graphs can be detected in O(n2) time. Alon, Yuster,
and Zwick [3] showed that the number of copies of a given cycle of length at most 7 can be computed
in Õ(nω) time and Vassilevska Williams et al. [29] showed that at the same time one can detect
any induced undirected pattern on four vertices other than K4 and its complement. Plehn and
Voigt [27] proved that if the given k-vertex pattern has treewidth t, then it can be detected in
O(nt+1) time. Vassilevska Williams and Williams [30] showed that the number of copies of a given
k-vertex graph with an independent set of size s can be computed in O(nk−s+3) without relying
on fast matrix multiplication; note that this is faster than exhaustive search. Using the framework
of graph motif parameters, Curticapean, Dell, and Marx [11] showed how to count an undirected
pattern on r edges in n0.174r+o(r) time. Kowaluk, Lingas, and Lundell [22] described a general
method for counting and detecting small graphs based on linear equations. In particular, their
method shows that the detection problem of a given k-vertex graph with an independent set of
size s can be solved in O(nω(⌈(k−s)/2⌉,1,⌊(k−s)/2⌋)). A counting version with the same runtime was
obtained by Floderus et al. [16]. Their method generalizes ideas appearing in the aforementioned
papers [3, 21] for using linear equations to compute subgraph counts. Our result showing that
c(4) ≤ ω as well as a part of the result proving c(5) ≤ ω + 1 are also based on the linear equations
method.

Finally, we mention a recent result obtained by Dalirrooyfard, Vuong, and Vassilevska Williams
[13] concerning several lower-bounds for pattern detection. In particular, they prove that if the
fixed pattern contains Kk as a subgraph, then the time required to detect it is at least the time
required to detect a Kk. Likewise, if the chromatic number of the pattern is k, then (assuming
Hadwiger’s conjecture), the time required to detect it is at least the time required to detect a Kk.
This result has been further refined by Dalirrooyfard and Vassilevska Williams [14] to apply to even
less restrictive graph parameters of the pattern.

2 Reductions

In this section we prove Theorem 1.1. The first part of the theorem is proved by the following
lemma.

Lemma 2.1. For a tournament T on k vertices it holds that d(T) ≤ d∗(k).

Proof. We first present a randomized algorithm for T -DETECT and then show how to derandomize
it. Suppose G is an n-vertex tournament. Consider a random partition of V (G) into k parts
V1, . . . , Vk (each vertex chooses its part uniformly and independent of other vertices). Assume
that V (T) = [k] and construct an undirected graph G∗ on vertex set V (G) where for each edge
(u, v) ∈ E(G) such that u ∈ Vi, v ∈ Vj and (i, j) ∈ E(T), we have that uv ∈ E(G∗). Observe
that each Vi is an independent set in G∗ and that G∗ contains a Kk only if G contains T . On the
other hand, if G contains T as a copy on vertices v1, . . . , vk where (vi, vj) ∈ E(G) if and only if
(i, j) ∈ E(T), then with probability at least 1/kk, it holds that vi ∈ Vi for i = 1, . . . , k. Hence,

1Õ(.) notation is used to suppress sub-polynomial factors.

4

with probability at least 1/kk, G∗ contains a copy of Kk. By running a detection algorithm for
Kk on G∗ we thereby obtain a randomized algorithm for T -DETECT having the same complexity
as Kk-DETECT. The algorithm never falsely detects a T if there isn’t one, and detects T with
probability at least 1/kk if one exists.

To derandomize the algorithm, we need to exhibit a set of partitions of V (G) such that for any
ordered set of k distinct vertices v1, . . . , vk, at least one of these partitions has vi in it’s i’th part for
i = 1, . . . , k. Such a set of partitions, of size O(log n), can easily be deterministically constructed
in O(n log n) time, using a sequence of (k log k)n random variables that are almost (k log k)-wise
independent [1, 25]; see also [2] for an identical derandomization scenario as the one in this lemma.
We therefore obtain a deterministic algorithm for T -DETECT running in nd∗(k)+on(1) time. In
particular, d(T) ≤ d∗(k).

The second part of Theorem 1.1 requires several lemmas and the following definition.

Definition 2.2 (signature). We say that a subset of vertices R of a tournament T is a signature if
the following holds: Suppose T ∗ is a tournament on the same vertex set as T that is obtained from
T by changing the orientation of at least one edge with both endpoints not in R but not changing
the orientation of any edge with an endpoint in R, then T ∗ is not isomorphic to T . Let sig(T) be
the smallest size of a signature of T (vacuously, the entire vertex set of T is a signature).

Notice that both sig(T3) = sig(C3) = 1. In the case of T3, take as signature the vertex that is
neither a source nor a sink, and in the case of C3, any vertex can be taken as signature. It is easy
to check that sig(T) > 1 for any tournament with at least four vertices. It is also not difficult to
check that sig(Tk) ≤ ⌊k/2⌋ — indeed consider the vertex labeling of Tk with the labels [k] where
(i, j) ∈ E(Tk) whenever i < j and take as signature the even labeled vertices. However, more
can be said in general. Let Gk denote the symmetric probability space of k-vertex tournaments on
vertex set [k]; i.e. the orientation of each possible edge is determined by a fair coin flip, and all

(
k
2

)
choices are independent.

Lemma 2.3. Let T ∼ Gk. Then Pr[sig(T) = O(log k)] = 1− ok(1).

Proof. Let r = ⌈12 log2 k⌉. We prove that with high probability [r] is a signature of T . To this end,
we need to establish some properties that hold with high probability.

Let H be the r-vertex sub-tournament of T induced by [r]. Let f denote a bijection between [r]
and a subset of r vertices of T and notice that there are fewer than kr possible choices for f . We say
that f is an isomorphism of H whenever it holds that (i, j) ∈ E(H) if an only if (f(i), f(j)) ∈ E(T).
Let (P1) denote the event that no f other than the identity is an isomorphism of H.

For a vertex v ∈ [k] \ [r], let v⃗ be the vector in {0, 1}r where v⃗i = 1 if and only if (i, v) ∈ E(T)
(equivalently, v⃗i = 0 if and only if (v, i) ∈ E(T)). Let (P2) be the event that all k − r vectors (one
for each v ∈ [k] \ [r]) are distinct.

We will prove that (P1) and (P2) each hold with high probability. Once we establish that,
the lemma follows since if (P1) and (P2) both hold, then [r] is a signature. Indeed, suppose that
we have changed the orientation of some edges with both endpoints in [k] \ [r] to obtain some
tournament T ∗ that is isomorphic to T . In particular, suppose that the edge (v, v′) with both
v, v′ ∈ [k] \ [r] changed its orientation. Let g be an isomorphism from T to T ∗. Since g restricted
to [r] is an isomorphism of H, we have by (P1) that we must have g(i) = i for all i ∈ [r]. But

5

given this, we now have by (P2) that we must have g(v) = v for all v ∈ [k] \ [r], so g is the identity.
As we assume that g is an isomorphism, we have that (g(v), g(v′)) = (v, v′) has not changed its
orientation, a contradiction. Thus, [r] is a signature.

It remains to prove that (P1) and (P2) each hold with high probability. Consider first (P2).
For distinct v, v′ ∈ [k] \ [r], the probability that v⃗ = v⃗′ is precisely 2−r ≤ 1/k12. As there are less
than k2 such pairs to consider, it follows that (P2) holds with probability at least 1− 1/k10.

To prove (P1), we partition the possible f according to their number of stationary points,
where notice that if f is not the identity, it has at most r− 1 stationary points. Fix 1 ≤ p ≤ r and
observe that there are fewer than

(
r
p

)
kp < rpkp possible f with precisely p non-stationary points.

Considering such an f , let P ⊆ [r] be its set of non-stationary points, where |P | = p. Consider first
the case 1 ≤ p ≤ 11. Fix some v ∈ P and let R∗ = [r] \ {v, f(v)}. For f to be an isomorphism of
H we need that for each u ∈ R∗, it holds that (v, u) ∈ E(H) if and only if (f(v), f(u)) ∈ E(T). As
these involve |R∗| pairs of distinct edges (i.e. all 2|R∗| involved edges are distinct), the probability
that f is an isomorphism is at most 1/2|R

∗| ≤ 4/2r ≤ 4/k12. Using the union bound for all possible
such f (with 1 ≤ p ≤ 11), we obtain that with probability at least 1− 11r11k11 · 4/k12 = 1− ok(1),
all such f are not an isomorphism. Consider next the case of some fixed p with 12 ≤ p ≤ r. Fix
some q = ⌊p/4⌋ vertices of P , say v1, . . . , vq, such that {v1, . . . , vq} ∩ {f(v1, . . . , f(vq)} = ∅. Let
R∗ = [r] \ {v1, . . . , vq, f(v1), . . . , f(vq)} and observe that |R∗| ≥ r− 2q. For f to be an isomorphism
of H we need that for each 1 ≤ i ≤ q and for each u ∈ R∗, it holds that (vi, u) ∈ E(H) if and only
if (f(vi), f(u)) ∈ E(T). As these involve q|R∗| pairs of distinct edges (i.e. all 2q|R∗| involved edges
are distinct), the probability that f is an isomorphism is at most

1

2q|R∗| ≤
1

2q(r−2q)
≤ 1

2q(r−p/2)
≤ 1

2qr/2
≤ 1

k6q
=

1

k6⌊p/4⌋
.

Using the union bound for all possible such f (with precisely p non-stationary points), we obtain
that with probability at least

1− rpkp · 1

k6⌊p/4⌋
= 1− o(k−1)

all such f are not an isomorphism. As there are less than r = o(k) cases of p to consider, we
obtain from the union bound that with probability 1 − ok(1), no f other than the identity is an
isomorphism of H.

Lemma 2.4. Let T be a fixed tournament on k vertices. Let G be a tournament on n vertices
given as input together with a partition of its vertex set into k parts. Then, the number of copies of
T in G having precisely one vertex in each part can be computed in asymptotically the same time
(up to a constant factor) as that of T -COUNT in G.

Proof. Our proof uses inclusion-exclusion and is very similar to the proofs appearing in [12, 18].
Suppose the given partition of V (G) is V1, . . . , Vk. For a non-empty subset S ⊆ [k], let GS denote
the sub-tournament of G on vertex set ∪i∈SVi. Let f(GS) denote the number of copies of T in GS

and let M denote the number of copies of T in G with precisely one vertex in each part. By the
inclusion-exclusion principle we have

M =
∑
S⊆[k]

(−1)k−|S|f(GS) .

6

As each f(GS) is computed by solving T -COUNT in a graph with at most n vertices and as the
last equation involves only a constant number of terms, the lemma follows.

Lemma 2.5. Let T be a tournament with k vertices and with sig(T) = r. Then, given an undirected
n-vertex graph G, we can decide if G has a copy of Kk−r in time Õ(nc(T)).

Proof. Assume that V (T) = [k] where the first r vertices are a signature. We present a randomized
algorithm for Kk−r-DETECT. Derandomization is achieved in the same way as explained in the
proof of Lemma 2.1, incurring only a logarithmic factor cost. Consider a random partition of V (G)
into k − r parts Vr+1, . . . , Vk (each vertex chooses its part uniformly and independent of other
vertices). Also define new r additional singleton sets V1, . . . , Vr. Construct a tournament G∗ on
n+ r = O(n) vertices as follows. Its vertex set is ∪k

i=1Vi. Its edge set is defined as follows. An edge
between two vertices in the same part is oriented arbitrarily. Suppose now that u ∈ Vi and w ∈ Vj

where i ̸= j and that (i, j) ∈ E(T). If i ≤ r or j ≤ r then orient the edge as (u,w). Otherwise (i.e.
if u > r and v > r) then: if uw is an edge of G then orient the edge as (u,w) else orient the edge
as (w, u). This completely defines the tournament G∗.

Suppose now that G∗ has a copy of T where that copy has precisely one vertex in each of
V1, . . . , Vk. By construction of G∗ and by the definition of signature, vertex i of T in such a copy
must belong to Vi and therefore G has a copy of Kk−r with each vertex in precisely one of the sets
Vr+1, . . . , Vk. Similarly, if G has no copy of Kk−r, then it also has no such copy with precisely one
vertex in each of Vr+1, . . . , Vk and so G∗ has no copy of T with one vertex in each of V1, . . . , Vk.
By Lemma 2.4, we can determine if G∗ has a copy of T with one vertex in each part in time
Õ(nc(T)). As in the proof of Lemma 2.1, observe that if G has a Kk−r then with probability at
least 1/(k − r)k−r it holds that each vertex of some such copy belongs to each one of Vr+1, . . . , Vk.
We therefore obtain a randomized algorithm for Kk−r-DETECT running in time Õ(nc(T)).

Proof of Theorem 1.1. By Lemma 2.1, d(T) ≤ d∗(k) for every tournament T on k vertices. Thus,
d(k) ≤ d∗(k) and part (1) of the theorem follows. By Lemma 2.3, almost all tournaments T on
k vertices have sig(T) = O(log k). Now, if T is a tournament with sig(T) = r = O(log k), then
by Lemma 2.5 it follows that c(T) ≥ d∗(k − r) = d∗(k − O(log k)). Thus, part (2) of the theorem
follows.

For completion, we end this section by showing that the method of Nešetřil and Poljak [26] and
Eisenbrand and Grandoni [15] for counting induced k-vertex graphs in undirected graphs can be
used for counting tournaments in a similar way.

Proposition 2.6. c(k) ≤ ω(⌊k/3⌋, ⌈(k − 1)/3⌉, ⌈k/3⌉).

Proof. For simplicity, assume that k is a multiple of 3. The cases of the other two moduli can
be proved analogously. Let T be a labeled tournament on vertex set [k]. Let A1 = {1, . . . , k/3},
A2 = {k/3 + 1, . . . , 2k/3} and A3 = {2k/3 + 1, . . . , k}. For X ⊆ {1, 2, 3} with X ̸= ∅, let TX be
the labeled sub-tournament of T induced on ∪i∈XAi. Let G be a tournament on n vertices whose
vertices are labeled with [n]. For i = 1, 2, 3, let Si be the set of all labeled subgraphs of G that are
isomorphic to T{i}. Construct a 0/1 matrix Q1 whose rows are indexed by S1 and columns indexed
by S2. We set Q1[H,J] = 1 if and only if the labeled sub-tournament of G on V (H)∪V (J) induces
an isomorphic copy of T{1,2}. Similarly, construct a 0/1 matrix Q2 whose rows are indexed by S2

and columns indexed by S3. We set Q2[H,J] = 1 if and only if the labeled sub-tournament of G on

7

V (H)∪ V (J) induces an isomorphic copy of T{2,3}. Observe that Q1 and Q2 can be constructed in

O(n2k/3) time by exhaustive search and that each have O(nk/3) rows and O(nk/3) columns. Now,
consider the product Q3 = Q1Q2 which, by definition of the matrix multiplication exponent, can
be computed in O(nω(k/3,k/3,k/3)) time. Consider an entry Q3[H,J] for which Q3[H,J] > 0. If it
holds that the labeled sub-tournament of G on V (H)∪ V (J) induces an isomorphic copy of T{1,3},
then Q3[H,J] precisely counts the number of labeled sub-tournaments in G which are isomorphic
to T = T{1,2,3} and in which the vertices of V (H) ∪ V (J) correspond to a particular labeled copy
of T{1,3}. Furthermore, each such labeled copy is counted precisely once in this way. We can
therefore count the number of label-isomorphic copies of T in G, and dividing by the order of the
automorphism group of T we obtain the solution to T -COUNT in O(nω(k/3,k/3,k/3)) time. As this
holds for any given T , the proposition follows.

3 Finding and counting four-vertex tournaments

There are four distinct tournaments on four vertices. These are T4, D, DT and X4 where D is
the tournament with a directed triangle and an additional source vertex, DT is its transpose, i.e.,
the tournament with a directed triangle and an additional sink vertex, and X4 is the strongly
connected tournament on four vertices (i.e., the tournament which has a directed four-cycle). In
this section we consider T -DETECT and T -COUNT for each of them. As DT is the transpose
of D, it immediately follows that D-DETECT and DT -DETECT are computationally equivalent
and that D-COUNT and DT -COUNT are computationally equivalent. Another trivial observation,
mentioned in the introduction, is that Tk-DETECT can be solved in constant time for any fixed k,
in particular d(T4) = 0.

Starting with the detection problem, given the above, we need to establish the complexities of
X4-DETECT and D-DETECT. The first is fairly simple.

Lemma 3.1. d(X4) = 2.

Proof. We recall an easy graph-theoretic observation: every undirected graph with at least n + 1
edges has a path of length 3. Suppose we have yet to examine at least n + 1 edges of the input
tournament G and that we have still not found a copy of X4 (note that this is certainly possible;
e.g., if the examined edges do not contain a directed cycle). Then, by the observation above, there
are four vertices a, b, c, d such that none of the edges on pairs ab, bc, cd, have been examined. No
matter how the other three (possibly examined) edges on the pairs ac, ad, bd are oriented, it is
immediate to check that it is possible to orient the edges ab, bc, cd so that {a, b, c, d} induce a copy
of X4. Thus, we might need to examine at least

(
n
2

)
− n edges to determine whether G contain a

copy of X4, implying that d(X4) ≥ 2.
For the upper bound, compute the strongly connected components of the input tournament in

O(n2) time. If each such component is a singleton or a directed triangle, then the tournament does
not have an X4. Otherwise, suppose some strongly connected component has t ≥ 4 vertices. It is
well-known that every strongly-connected tournament with t ≥ 3 vertices is pancyclic [19], i.e., it
has a directed cycle of every possible length from 3 to t. In particular, as t ≥ 4, it has a directed
cycle of length 4. The four vertices of such a cycle induce X4.

For the proof that d(D) = 2 we will need a characterization of D-free tournaments. Such a
characterization was obtained by Liu in his thesis [23]: a strongly regular tournament is D-free

8

if and only if it is a transitive blowup of the carousel tournament (for every odd n, the carousel
tournament is the unique regular tournament on n vertices in which the out-neighborhood of each
vertex induces a transitive tournament). However, we shall use a different characterization of
Gishboliner [17] whose proof is a bit simpler; it should be noted that both characterizations lead
to algorithms implying d(D) = 2. Suppose a tournament G is not transitive and let {a, b, c}
induce a directed triangle in G with (a, b), (b, c), (c, a) ∈ E(G). For S ⊆ {a, b, c} let NS = {x ∈
V (G) \ {a, b, c} : {d ∈ {a, b, c} : (x, d) ∈ E(G)} = S}. So, for example N∅ are all the vertices
that are dominated by each of a, b, c. For two disjoint sets of vertices of G, we say that a triple
of vertices is bad in them if the triple induces a T3, where the source and the sink of the T3 are
in one of the sets and the remaining vertex of the T3 is in the other set. For two disjoint sets of
vertices X,Y of G, we use X → Y to denote that all possible edges go from X to Y . Gishboliner’s
characterization, which we prove for completeness, is the following:

Lemma 3.2. G is D-free if an only if all the following hold:
(1) N{a,b,c} = ∅.
(2) For every S ⊆ {a, b, c} with S ̸= ∅, {a, b, c}, we have NS → N∅.
(3) For every S ⊆ {a, b, c} with S ̸= {a, b, c}, NS induces a transitive tournament.
(4) N{a} → N{b} → N{c} → N{a}.
(5) N{a,b} → N{b,c} → N{c,a} → N{a,b}.
(6) N{a} → N{a,b} → N{b}, N{b} → N{b,c} → N{c}, N{c} → N{c,a} → N{a}.
(7) Each of the pairs {N{a}, N{b,c}}, {N{b}, N{a,c}}, {N{c}, N{a,b}} have no bad triple.

Proof. We show the necessity of each of the items.
(1) If x ∈ N{a,b,c} then {x, a, b, c} induce a copy of D.
(2) Assume that there are x ∈ NS , y ∈ N∅ and (y, x) ∈ E(G). Since S consists only of one or two
vertices of {a, b, c}, we can take d, e ∈ {a, b, c} such that d /∈ S, e ∈ S and (d, e) ∈ E(G). Then
{d, x, e, y} is a copy of D.
(3) Assume that x, y, z ∈ NS induce a directed triangle. Take d ∈ {a, b, c} \ S and note that
{d, x, y, z} induce a copy of D.
(4) We prove that N{a} → N{b}. The proof of the other cases is symmetrical. Assume that there
are x ∈ N{a} and y ∈ N{b} such that (y, x) ∈ E(G). Then {c, x, a, y} induce a copy of D.
(5) We prove that N{a,b} → N{b,c}. The proof of the other cases is symmetrical. Assume that there
are x ∈ N{a,b} and y ∈ N{b,c} such that (y, x) ∈ E(G). Then {y, b, c, x} induce a copy of D.
(6) We prove that N{a} → N{a,b} → N{b}. The proof of the other cases is symmetrical. First
assume that there are x ∈ N{a} and y ∈ N{a,b} such that (y, x) ∈ E(G). Then {y, a, b, x} induce
a copy of D. Now assume that there are x ∈ N{a,b} and y ∈ N{b} such that (y, x) ∈ E(G). Then
{c, a, y, x} induce a copy of D.
(7) We prove for the pair {N{a}, N{b,c}}. The proof of the other cases is symmetrical. Assume
first that there are x1, x2 ∈ N{a} and y ∈ N{b,c} such that (x1, x2) ∈ E(G), (x1, y) ∈ E(G) and
(y, x2) ∈ E(G). Then {x1, x2, a, y} induce a copy ofD. Analogously, assume that there are x ∈ N{a}
and y1, y2 ∈ N{b,c} such that (y1, y2) ∈ E(G), (y1, x) ∈ E(G) and (x, y2) ∈ E(G). Then {y1, y2, b, x}
induce a copy of D.

We next prove that if items 1-7 hold, then G is D-free. Let x ∈ V (G) and let S(x) denote the
out-neighbors of x. We need to show that S(x) induces a transitive tournament. There are four
cases.
(1) x ∈ {a, b, c}. By symmetry it is enough to prove for x = a. We have S(a) = {b}∪N{b} ∪N{c} ∪

9

N{b,c} ∪ N∅. We have N{b} → {b}, N{b,c} → {b}, {b} → N{c} and {b} → N∅. By Item 2 we have
N{b} → N∅, N{b,c} → N∅, N{c} → N∅. By Item 4 we have N{b} → N{c} and by Item 6 we have
N{b} → N{b,c} → N{c}. By Item 3 the sets N{b}, N{c}, N{b,c}, N∅ are transitive. So the ordering
N{b} → N{b,c} → {b} → N{c} → N∅ is a transitive ordering of S(a).
(2) x ∈ N∅. Item 2 implies that S(x) ⊂ N∅ which is transitive by Item 3.
(3) x ∈ N{a} ∪N{b} ∪N{c}. By symmetry it is enough to prove for x ∈ N{a}. By items 1,2,4,6 we
have S(x) = {a} ∪N{b} ∪N{a,b} ∪N∅ ∪ Y ∪ Z where Y = N{a} ∩ S(x) and Z = N{b,c} ∩ S(x). All
the sets in this union are transitive. By Item 2 we have N{a,b}, N{b}, Y, Z → N∅. By Item 6 we have
N{a,b} → N{b}. By Item 7 we have Y → Z. By the definition of Y, Z we have Y → {a} → Z. By
items 4,5,6 we have Y → N{b}, N{a,b} and N{b}, N{a,b} → Z. So the ordering Y → N{a,b} → {a} →
N{b} → Z → N∅ is a transitive ordering of S(x).
(4) x ∈ N{a,b} ∪N{b,c} ∪N{c,a}. By symmetry it is enough to prove for x ∈ N{a,b}. By Items 1,2,5,6
we have S(x) = {a, b} ∪N{b} ∪N{b,c} ∪N∅ ∪ Y ∪ Z where Y = N{a,b} ∩ S(x) and Z = N{c} ∩ S(x).
All the sets in this union are transitive. By Item 2 we have N{b}, N{b,c}, Y, Z → N∅. By Item
6 we have N{b} → N{b,c}. By the definition of Y,Z we have Y → {a, b} → Z. By items 4,5,6
we have Y → N{b}, N{b,c} and N{b}, N{b,c} → Z. By Item 7 we have Y → Z. So the ordering
Y → {a} → N{b} → N{b,c} → {b} → Z → N∅ is a transitive ordering of S(x).

Lemma 3.3. d(D) = 2.

Proof. Suppose we have yet to examine at least n + 1 edges of the input tournament G and that
we have still not found a copy of D (note that this is certainly possible; e.g., if the examined edges
do not contain a directed cycle). Then, there are four vertices a, b, c, d such that none of the edges
on pairs ab, bc, cd, have been examined. No matter how the other three (possibly examined) edges
on the pairs ac, ad, bd are oriented, it is immediate to check that it is possible to orient the edges
ab, bc, cd so that {a, b, c, d} induce a copy of D. Thus, we might need to examine at least

(
n
2

)
− n

edges to determine whether G contain a copy of D, implying that d(D) ≥ 2.
For the upper bound, we will use Lemma 3.2. We first check whether G is transitive, and

if not, exhibit a directed triangle on vertices a, b, c with with (a, b), (b, c), (c, a) ∈ E(G). This
is straightforward to do in O(n2) time. Next, for each S ⊆ {a, b, c} we construct each of the
eight sets NS . Again, this is straightforward to do in O(n2) time. Each of the items 1-6 in the
statement of Lemma 3.2 can be easily checked to hold in O(n2) time. The only item for which
it is not obvious is Item 7. For this we proceed as follows. Suppose X and Y are two disjoint
sets of vertices, where both X and Y are transitive. Suppose also that X = {x1, . . . , xp} and
Y = {y1, . . . , yq} where (xi, xj) ∈ E(G) whenever i < j and (yi, yj) ∈ E(G) whenever i < j. We
must therefore determine whether there exist xi, xj , ym with i < j and with (xi, ym) ∈ E(G) and
(ym, xj) ∈ E(G) (symmetrically, we must also determine whether there exist yi, yj , xm with i < j
and with (yi, xm) ∈ E(G) and (xm, yj) ∈ E(G), so we only consider the former case). We show
how to do this in O(pq) ≤ O(n2) time. Let Xi = {x1, . . . , xi}. For each 1 ≤ m ≤ q let αi,m be the
number of in-neighbors of ym in Xi and let βi,m be the number of out-neighbors of ym in X \Xi.
We must therefore decide if there exists some (i,m) for which both αi,m and βi,m are positive.
Computing α1,m and β1,m for all m is done in O(pq) time by scanning all edge between X and Y .
Having computed αi−1,m and βi−1,m, we can compute αi,m and βi,m in O(q) time as follows. If
(xi, ym) ∈ E(G) then αi,m = 1 + αi−1,m and βi,m = βi−1,m. If (ym, xi) ∈ E(G) then αi,m = αi−1,m

10

and βi,m = βi−1,m − 1. Thus, we can determine if Item 7 holds in O(n2) time. By Lemma 3.2, it
follows that we can determine if G has a copy of D in O(n2) time, showing that d(D) ≤ 2.

We now proceed to the counting problem. We will use a method similar to the subgraph-
equation method of [21]. Recall that d+(v) and d−(v) respectively denote the out-degree and
in-degree of v. For two distinct vertices u, v let d+(u, v) denote their common out-degree, that is
the number of vertices w such that (u,w) ∈ E(G) and (v, w) ∈ E(G). Analogously, let d−(u, v)
denote their common in-degree. Finally, let p(u, v) denote the number of paths of length 2 from u
to v, that is the number of vertices w such that (u,w) ∈ E(G) and (w, v) ∈ E(G). Observe that
p(v, u) may differ from p(u, v). Let A+ be the 0/1 adjacency matrix of G with A+(i, j) = 1 if and
only if (i, j) ∈ E(G). Let A− = J − I − A+ be the 0/1 “incoming” adjacency matrix of G with
A−(i, j) = 1 if and only if (j, i) ∈ E(G) (here J denotes the all-one n×n matrix and I denotes the
n× n identity matrix).

Lemma 3.4. c(T) ≤ ω for each tournament T on four vertices.

Proof. Let u, v be a pair of distinct vertices. Consider the (u, v) entry of the following three
integer matrix products: (A+)(A+)T , (A−)(A−)T , (A+)2. The first determines d+(u, v), the second
determines d−(u, v) and the third determines p(u, v). Thus, all of these values, for all pairs of
vertices, can be computed in O(nω) time.

Consider some copy of T4 in G, say on vertices u, v, w, x with (u,w), (u, x), (v, w), (v, x) ∈ E(G)
(the orientation of the edge between u, v and the edge between w, x are not important). Observe

that w and x are in the common out-neighborhood of u, v. Hence,
(
d+(u,v)

2

)
counts this T4 copy

precisely once. Denoting by #T the number of copies of T in G it follows that

#T4 =
∑

(u,v)∈E(G)

(
d+(u, v)

2

)
. (1)

Next, consider four vertices u, v, w, x with (u,w), (v, w), (x, u), (x, v) ∈ E(G). No matter how the
edge between u and v is oriented, we have that if (x,w) ∈ E(G) then these four vertices induce a
T4 and if (w, x) ∈ E(G) then they induce an X. It is also easy to verify that every copy of T4 has
precisely one such pair u, v and every copy of X has one such pair u, v. We therefore have that

#T4 +#X =
∑

(u,v)∈E(G)

d+(u, v) · d−(u, v) . (2)

Next, consider four vertices u, v, w, x with (u, v), (u,w), (v, w), (u, x), (x, v) ∈ E(G). If (x,w) ∈
E(G) then these four vertices induce a T4 and if (w, x) ∈ E(G) then they induce a D. It is also
easy to verify that every copy of T4 has precisely one such ordered pair u, v and every copy of D
has three such ordered pairs u, v (in both T4 and D, u plays the role of the source vertex). We
therefore have that

#T4 + 3#D =
∑

(u,v)∈E(G)

d+(u, v) · p(u, v) . (3)

Finally, we have the obvious equation

#T4 +#X +#D +#DT =

(
n

4

)
. (4)

11

T5 H1

R5

𝐻2
𝑇𝐻1

𝑇 H2 H3

H4 H5 H7H6 H8

Figure 1: The tournaments on 5 vertices.

Equations (1), (2), (3), (4) form a system of linear equations in the variables #T4,#X,#D,#DT

whose coefficient matrix is
1 0 0 0
1 1 0 0
1 0 3 0
1 1 1 1

which is nonsingular. Thus, #T for each tournament T on four vertices can be computed in O(nω)
time. It follows that c(T) ≤ ω.

Proof of Theorem 1.4. By Lemma 3.1 and Lemma 3.3 we have that d(T) = 2 for each tournament
on four vertices other than T4 (for which d(T4) = 0). Thus, d(4) = 2. By Lemma 3.4, c(4) ≤ ω.

4 Counting five-vertex tournaments

Figure 1 lists and names the twelve tournaments on five vertices. Observe that HT
1 and HT

2 are
the transpose of H1 and H2, respectively. The other eight tournaments are isomorphic to their
transpose. The unique regular tournament on five vertices is denoted by R5. Also notice that H4

and H5 (while non-isomorphic) have the same out-degree sequence and H6, H7, H8 also have the
same out-degree sequence.

As in the previous section, for two distinct vertices u, v in a tournament, let d+(u, v) denote
their common out-degree, let d−(u, v) denote their common in-degree and let p(u, v) denote the
number of paths of length 2 from u to v. We can obtain a system of 20 =

(
4
1

)
+
(
4
1

)
·
(
3
1

)
+
(
4
3

)
linear

equations whose right hand side equals a polynomial of degree 3 in p(u, v), p(v, u), d+(u, v) and
d−(u, v), see Table 1. The first column in Table 1 is the equation number. The twelve intermediate
columns correspond to variables, one for each count of a tournament on five vertices. The entries
are coefficients of these variables in the corresponding linear equation (so the inner 20 × 12 cells
correspond to the coefficient matrix of the linear system; to avoid clutter, zero coefficients are not

12

listed). The right column in Table 1 corresponds to the right hand side of the linear equation. For
an entry P in that column, it reads as

∑
(u,v)∈E(G) P .

eq #T5 #H1 #HT
1 #H2 #HT

2 #H3 #H4 #H5 #H6 #H7 #H8 #R5 =
∑

(u,v)∈E(G) of

1 1 1
(
d+(u,v)

3

)
2 1 1

(
d−(u,v)

3

)
3 1 1

(
p(v,u)

3

)
4 1 1

(
p(u,v)

3

)
5 1 1 1 1

(
d+(u,v)

2

)
d−(u, v)

6 1 1 1 1
(
d−(u,v)

2

)
d+(u, v)

7 1 2 3
(
d+(u,v)

2

)
p(u, v)

8 3 1 1 1
(
d+(u,v)

2

)
p(v, u)

9 1 2 3
(
d−(u,v)

2

)
p(u, v)

10 3 1 1 1
(
d−(u,v)

2

)
p(v, u)

11 2 1 1
(
p(u,v)

2

)
p(v, u)

12 1 3 2
(
p(u,v)

2

)
d−(u, v)

13 1 3 2
(
p(u,v)

2

)
d+(u, v)

14 1 2 5
(
p(v,u)

2

)
p(u, v)

15 1 1 1 1
(
p(v,u)

2

)
d−(u, v)

16 1 1 1 1
(
p(v,u)

2

)
d+(u, v)

17 1 3 3 1 3 1 d+(u, v)d−(u, v)p(u, v)

18 1 1 3 3 2 1 5 d+(u, v)d−(u, v)p(v, u)

19 2 1 1 3 2 1 d+(u, v)p(u, v)p(v, u)

20 2 1 1 3 2 1 d−(u, v)p(u, v)p(v, u)

Table 1: Linear equations involving counts of copies of the twelve tournaments on five vertices.

While a bit lengthy, the correctness of each equation is easy to verify. Let us consider a
representative example from each r.h.s. “type”, e.g. Equations 1, 7, 18 of Table 1. For Equation
1, we are counting those five-vertex tournaments in G having two vertices u, v that dominate (i.e.
send edges to) three other vertices. Now, these three other vertices may induce a T3, in which case
the tournament counted is T5, or may induce a C3, in which case the tournament counted is H1.

Hence, #T5+#H1 =
∑

(u,v)∈E(G)

(
d+(u,v)

3

)
. In Equation 7 we are counting five-vertex tournaments

in G that have two vertices u, v with (u, v) an edge, two additional vertices dominated by both u
and v, and an additional vertex dominated by u and that dominates v. Namely, tournaments that
contain as a spanning subgraph the directed graph X depicted in the left side of Figure 2. Notice
that X is a spanning subgraph appearing once in T5, twice in H2, and three times in H3. Hence,

13

u

v

u
v

Figure 2: The directed graphs corresponding to the r.h.s. of Equation 7 (left) and 18 (right).

#T5 + 2#H2 + 3#H3 =
∑

(u,v)∈E(G)

(
d+(u,v)

2

)
p(u, v). For Equation 18, we are counting five-vertex

tournaments in G that have two vertices u, v with (u, v) an edge, one additional vertex dominated by
both u and v, one additional vertex dominating both u and v and one additional vertex dominated
by v and that dominates u. Namely, tournaments that contain as a spanning subgraph the directed
graph Y depicted in the right side of Figure 2. Notice that Y is a spanning subgraph appearing
once in each of H2, H

T
2 , H8, twice in H7, three time in each of H3, H6 and five times in R5. Hence,

#H2 +#HT
2 +#H8 + 2#H7 + 3#H3 + 3#H6 + 5#R5 =

∑
(u,v)∈E(G) d

+(u, v)d−(u, v)p(v, u).
As shown in the first paragraph of the proof of Lemma 3.4, the values in the r.h.s. of Table 1

can all be computed in O(nω) time. Unfortunately, however, the 20×12 coefficient matrix, denoted
hereafter by A, only has rank 10, so we cannot guarantee a unique solution. Our approach would be
to show that some submatrix of A has full column rank, while for columns not in that sub-matrix,
we shall count the corresponding tournaments differently. We shall first need the following lemma,
which is applied to the case k = 5.

Lemma 4.1. Let T be a tournament on k vertices having a dominating vertex (a source) or having
a dominated vertex (a sink). Then c(T) ≤ 1 + c(k − 1).

Proof. Assume that T has a dominating vertex, denoted by a (the case of T having a sink vertex
is symmetrical). Let T ∗ be the sub-tournament obtained from T after removing a. For a given
tournament G, and a given vertex v ∈ V (G), let Gv denote the sub-tournament of G induced by
the out-neighbors of v. Observe that T -COUNT for the instance G can be solved by summing for
all v ∈ V (G) the results of T ∗-COUNT for the corresponding instance Gv. Indeed, each copy of T
in G maps a to some vertex v ∈ V (G) and maps the remaining vertices to a unique copy of T ∗ in
Gv. As T

∗ is a tournament on k − 1 vertices, it follows that c(T) ≤ 1 + c(k − 1).

Corollary 4.2. For each T ∈ {T5, H1, H
T
1 , H2, H

T
2 , H3} it holds that c(T) ≤ ω + 1.

Proof. Observe that each of the listed tournaments has a dominating vertex or a dominated vertex.
The corollary now follows from Lemma 4.1 by recalling that c(4) ≤ ω, as shown in Theorem 1.4.

Consider the sub-matrix of A consisting only of the columns not corresponding to those listed
in Corollary 4.2. This is a 20 × 6 matrix but it is still not of full column rank; its rank is only 5.
Fortunately, there is another tournament, in fact it is H8, for which we can compute H8-COUNT
differently.

Lemma 4.3. c(H8) ≤ ω + 1.

14

Proof. We label the vertices of H8 as follows. Let a be the vertex with out-degree 3. Let d be the
vertex with out-degree 1. Let e be the unique in-neighbor of a. Let b be the other out-neighbor of
e and let c be the remaining vertex. Observe that e has precisely two out-neighbors (a and b) and
precisely two in-neighbors (c and d) and that each out-neighbor of e dominates each in-neighbor
of e. It is important to observe that this situation (i.e. of having two out-neighbors and two in-
neighbors and both out-neighbors dominate both in-neighbors) is unique for H8 and its vertex e. It
does not hold in any other tournament on five vertices. Now, suppose G is a given tournament for
which we should solve H8-COUNT. For each vertex v ∈ V (G), let Av be the the set of out-neighbors
of v and let Bv be the set of in-neighbors of v. Construct an undirected bipartite graph with sides
Av, Bv keeping (as undirected edges) only the edges of G going from Av to Bv. Observe that every
undirected four-cycle in G, say on vertices u1, u2 ∈ Av and w1, w2 ∈ Bv uniquely corresponds to
a copy of H8 in G. Indeed, this can be seen by the mapping sending e to v, sending a and b to
u1 and u2 (it does not matter which is mapped to which as reversing the edge (a, b) in H8 is an
automorphism), and sending c and d to w1 and w2 (it does not matter which is mapped to which
as reversing the edge (c, d) in H8 is an automorphism). Now, the number of undirected four-cycles
in a graph with O(n) vertices can be computed in O(nω) time, see [3]. Performing this count for
each v ∈ V (G) and summing the outcomes gives the number of H8 in G in O(nω+1) time.

By Lemma 4.3 and Corollary 4.2, it only remains to show how to solve T -COUNT for T ∈
{H4, H5, H6, H7, R5}, given the counts of T ∈ {T5, H1, H

T
1 , H2, H

T
2 , H3, H8} and given the values

in the r.h.s. of Table 1. This can be done in constant time since the sub-matrix of A on the
columns {H4, H5, H6, H7, R5} has full column rank. Indeed, to see this just observe that its square
sub-matrix on rows 3, 5, 8, 15, 18 being

1 0 1 0 0
1 0 0 0 0
1 1 0 0 0
0 1 0 1 0
0 0 3 2 5

is non-singular.

Acknowledgment

The author thanks Lior Gishboliner for useful comments and two anonymous reviewers for insightful
suggestions.

References

[1] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple constructions of almost k-wise
independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.

[2] N. Alon, R. Yuster, and U. Zwick. Color coding. Journal of the ACM, 42(4):844–856, 1995.

[3] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica,
17(3):209–223, 1997.

15

[4] J. Bang-Jensen and G. Z. Gutin. Digraphs: theory, algorithms and applications. Springer
Science & Business Media, 2008.

[5] S. K. Bera, L. Gishboliner, Y. Levanzov, C. Seshadhri, and A. Shapira. Counting subgraphs
in degenerate graphs. Journal of the ACM, 69(3):1–21, 2022.

[6] S. K. Bera, N. Pashanasangi, and C. Seshadhri. Linear time subgraph counting, graph degen-
eracy, and the chasm at size six. In Proceedings of the 11th Annual Innovations in Theoretical
Computer Science Conference (ITCS). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[7] M. Bressan. Faster subgraph counting in sparse graphs. In Proceedings of the 14th International
Symposium on Parameterized and Exact Computation (IPEC 2019), 2019.

[8] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal on
Computing, 14(1):210–223, 1985.

[9] F. R. K. Chung and R. L. Graham. Quasi-random tournaments. Journal of Graph Theory,
15(2):173–198, 1991.

[10] L. Coregliano and A. Razborov. On the density of transitive tournaments. Journal of Graph
Theory, 85(1):12–21, 2017.

[11] R. Curticapean, H. Dell, and D. Marx. Homomorphisms are a good basis for counting small
subgraphs. In Proceedings of the 49th Annual ACM Symposium on Theory of Computing
(STOC), pages 210–223, 2017.

[12] R. Curticapean and D. Marx. Complexity of counting subgraphs: Only the boundedness
of the vertex-cover number counts. In Proceedings of the 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 130–139. IEEE, 2014.

[13] M. Dalirrooyfard, T. D. Vuong, and V. V. Williams. Graph pattern detection: Hardness for
all induced patterns and faster non-induced cycles. In Proceedings of the 51st Annual ACM
Symposium on Theory of Computing (STOC), pages 1167–1178, 2019.

[14] M. Dalirrooyfard and V. V. Williams. Induced cycles and paths are harder than you think.
In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages
531–542. IEEE, 2022.

[15] F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter clique and dominating
set. Theoretical Computer Science, 326(1-3):57–67, 2004.

[16] P. Floderus, M. Kowaluk, A. Lingas, and E.-M. Lundell. Detecting and counting small pattern
graphs. SIAM Journal on Discrete Mathematics, 29(3):1322–1339, 2015.

[17] L. Gishboliner. Private communication.

[18] L. Gishboliner, Y. Levanzov, A. Shapira, and R. Yuster. Counting homomorphic cycles in
degenerate graphs. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 417–430. SIAM, 2022.

16

[19] F. Harary and L. Moser. The theory of round robin tournaments. The American Mathematical
Monthly, 73(3):231–246, 1966.

[20] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal on Computing,
7:413–423, 1978.

[21] T. Kloks, D. Kratsch, and H. Müller. Finding and counting small induced subgraphs efficiently.
Information Processing Letters, 74(3-4):115–121, 2000.

[22] M. Kowaluk, A. Lingas, and E.-M. Lundell. Counting and detecting small subgraphs via
equations. SIAM Journal on Discrete Mathematics, 27(2):892–909, 2013.

[23] G. Liu. Various theorems on tournaments. arXiv preprint arXiv:1207.0237, 2012.

[24] L. Lovász. Combinatorial problems and exercises,. North-Holland Publishing Co., 2nd edition,
1993.

[25] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications.
SIAM Journal on Computing, 22(4):838–856, 1993.

[26] J. Nešetřil and S. Poljak. On the complexity of the subgraph problem. Commentationes
Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

[27] J. Plehn and B. Voigt. Finding minimally weighted subgraphs. In Proceedings of the 16th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages 18–
29. Springer, 1990.

[28] R. Stearns. The voting problem. The American Mathematical Monthly, 66(9):761–763, 1959.

[29] V. Vassilevska Williams, J. R. Wang, R. R. Williams, and H. Yu. Finding four-node sub-
graphs in triangle time. In Proceedings of the 26th annual ACM-SIAM symposium on discrete
algorithms (SODA), pages 1671–1680. SIAM, 2015.

[30] V. Vassilevska Williams and R. R. Williams. Finding, minimizing, and counting weighted
subgraphs. SIAM Journal on Computing, 42(3):831–854, 2013.

[31] V. Vassilevska Williams and R. R. Williams. Subcubic equivalences between path, matrix, and
triangle problems. Journal of the ACM, 65(5):1–38, 2018.

[32] V. V. Williams, Y. Xu, Z. Xu, and R. Zhou. New bounds for matrix multiplication: from alpha
to omega. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3792–3835. SIAM, 2024.

[33] R. Yuster and U. Zwick. Finding even cycles even faster. SIAM Journal on Discrete Mathe-
matics, 10(2):209–222, 1997.

17

