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Abstract

Let G be a graph with no three independent vertices. How many edges of G can be packed
with edge-disjoint copies of Kk? More specifically, let fk(n, m) be the largest integer t such that
for any graph with n vertices, m edges, and independence number 2, at least t edges can be
packed with edge-disjoint copies of Kk. Turán’s Theorem together with Wilson’s Theorem assert
that fk(n, m) = (1−o(1))n2

4 if m ≈ n2

4 . A conjecture of Erdős states that f3(n, m) ≥ (1−o(1))n2

4
for all plausible m. For any ε > 0, this conjecture was still open even if m ≤ n2( 1

4 + ε).
Generally, fk(n, m) may be significantly smaller than n2

4 . Already for k = 7 it is easy to show
that f7(n, m) ≤ 21

90n2 for m ≈ 0.3n2. Nevertheless, we prove the following result. For every
k ≥ 3 there exists γ > 0 so that if m ≤ n2( 1

4 + γ) then fk(n, m) ≥ (1− o(1))n2

4 . In the special
case k = 3 we obtain the reasonable bound γ ≥ 10−4. In particular, the above conjecture of
Erdős holds whenever G has less than 0.2501n2 edges.

1 Introduction

All graphs considered here are finite, undirected and simple. For standard graph-theoretic termi-
nology see [1]. Let g(n) be the largest integer t so that in any 2-coloring of the edges of Kn, at
least t edges can be packed with edge-disjoint monochromatic triangles. Similarly, let f(n) be the
largest integer t so that in any n-vertex graph with independence number 2, at least t edges can be
packed with edge-disjoint triangles. Clearly, g(n) ≤ f(n). On the other hand, f(n) ≤ n2/4− o(n2)
as can be seen by taking two vertex-disjoint cliques of sizes dn/2e and bn/2c. This led Erdős to
conjecture (see, e.g., Problem 14 in [3])

g(n) =
n2

4
− o(n2).

This conjecture, studied recently in [2, 5], as well as the corresponding conjecture that f(n) =
n2

4 − o(n2) (the latter raised explicitly in [5]), are still open. The best lower bound for g(n), as well
as for f(n), is due to Keevash and Sudakov [5]. By examining the fractional version of the problem
on small cases (with the assistance of a computer), together with a clever blow-up idea and a result
of Haxell and Rödl, they obtain g(n) ≥ n2/4.3 + o(n2). All the extremal values in the small cases
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they examine also hold for graphs with independence number 2, and no lower bound for f(n) is
known to beat their lower bound for g(n).

Generalizing the definition of f(n), let fk(n, m) be the largest integer t so that in every graph
with n vertices, m edges, and independence number 2, at least t edges can be packed with edge-
disjoint Kk. Notice that the plausible values of m are at least n2/4 − n/2 as Turán’s Theorem
guarantees that graphs with less edges have three independent vertices. Also note that f(n) =
minm f3(n, m) and the conjecture of Erdős states that f3(n, m) ≥ (1−o(1))n2

4 . The simple example
of two vertex-disjoint cliques shows that fk(n, m) ≤ (1 − o(1))n2

4 if m = n2(1
4 + o(1)). Wilson’s

Theorem [7] guarantees that large cliques almost completely decompose into copies of Kk and we
therefore have that fk(n, m) = (1 − o(1))n2

4 if m = n2(1
4 + o(1)) (namely, in graphs with density

close to 1/2).
However, unlike the case of triangles, the analogue of the conjecture of Erdős does not hold for

arbitrary large k. Namely, it is not true that fk(n, m) ≥ (1 − o(1))n2

4 . The following proposition
shows that already for k = 7 we have f7(n, m) ≤ 21

90n2 for m = 0.3n2(1 + o(1)).

Proposition 1.1

fk

(
5n,

5n(3n− 1)
2

)
≤

5
(n
2

)(k
2

)
dk

2 (k
2 − 1)e

.

In particular, fk(n, 0.3n2(1 + o(1)) ≤ n2(k
2)

10d k
2
( k
2
−1)e .

It is therefore interesting to ask whether the analogue of the conjecture of Erdős is true for
graphs whose density is greater than 1/2 (that is, m/n2 is larger than 1/4). The main result of
this paper gives an affirmative answer.

Theorem 1.2 For every integer k ≥ 3 there exists γ > 0 so that fk(n, m) ≥ (1 − o(1))n2

4 for
m ≤ n2(1

4 + γ).

Although we make no particular effort to optimize γ (and Proposition 1.1 shows that we cannot
hope to have γ too large, at least when k ≥ 7) we do make some effort in the case k = 3. In this
case we can show that γ ≥ 10−4. In fact, we also prove, in the other end of the density scale, that
3n2/8 edges already guarantee n2/12− o(n2) edge-disjoint triangles.

Theorem 1.3 Every graph with n vertices, less than 0.2501n2 edges and independence number 2
has n2/12 − o(n2) edge-disjoint triangles. Every graph with n vertices, more than 0.375n2 edges
and independence number 2 has n2/12− o(n2) edge-disjoint triangles.

Theorem 1.3 shows that the conjecture of Erdős for f(n) holds when the density of the graph is at
most 0.5002 or at least 0.75.

The proof of Theorem 1.2 is presented in Section 2. The proof of Theorem 1.3 requires a few
additional ideas and is presented in Section 3. Two important ingredients in these proofs, both
interesting on their own right, are Lemma 3.1 on packing induced paths of length two in bipartite
graphs and Theorem 2.8 on packing edge-disjoint Kk in dense graphs. The final section contains
some concluding remarks and the proof of Proposition 1.1.
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2 Proof of the main result

We start with a sequence of three lemmas that can be viewed as a tailor-made sharpened version
of the stability theorem of Simonovits [6] in the case of triangle-free graphs.

Lemma 2.1 Every graph with m edges and n vertices has an edge so that the sum of the degrees
of its endpoints is at least 4m/n.

Proof: Let G = (V,E) be a graph with m edges and n vertices. For e = (x, y) ∈ E, let
w(e) = d(x) + d(y), where d(v) is the degree of v. Clearly,

∑
e∈E

w(e) =
∑
v∈V

d(v)2 ≥ n

(
2m

n

)2

.

It follows that for some e ∈ E, w(e) ≥ (n/m)(2m/n)2 = 4m/n.

Lemma 2.2 Let G = (V,E) be a triangle-free graph with n vertices and 1
4n2(1− ρ2) edges. Then

(i) at most ρn vertices have degree less than (1− ρ)(n/2),
(ii) there exists a set of vertices U with |U | ≤ 2 + ρ2n, such that G− U is a bipartite graph.

Proof: (i) Assuming otherwise, let X be a set of ρn vertices, each x ∈ X having d(x) < (1−ρ)(n/2)
(we ignore floors and ceilings here and anywhere else in this paper, where it does not affect the
asymptotic nature of our results, and assume n is sufficiently large, whenever necessary). Consider
the induced subgraph G′ = G[V \X]. Now,

e(G′) > n2(
1
4
− 1

4
ρ2)− ρ(

1
2
− ρ

2
)n2 ≥ 1

4
n2(1− ρ)2 =

1
4
v(G′)2.

Hence, by Turán’s Theorem, G′ contains a triangle, a contradiction.
(ii) Let (x, y) be an edge as in Lemma 2.1. Then, d(x) + d(y) ≥ n(1 − ρ2). Let U ′ ⊂ V be
the set of vertices that are not connected to both x and y. Consider W = V − U ′ − {x, y}.
Clearly, W = Wx ∪ Wy where each vertex of Wx (Wy) is connected to x (to y) and not to y (to
x). Hence |W | = d(x) + d(y) − 2 ≥ n(1 − ρ2) − 2, so |U ′| ≤ nρ2. Put U = U ′ ∪ {x, y}. Now,
W = V − U = Wx ∪Wy induces a bipartite graph.

Lemma 2.3 Let G = (V,E) be a triangle-free graph with 1
4n2(1 − ρ2) edges. Then, there exists a

partition V = V1 ∪ V2 such that |Vi| ≥ n/2− n(ρ2 + ρ/2 + 2/n) and the number of edges with both
endpoints in the same part is at most (ρ3 + 1.5ρ4)n2.

Proof: By Lemma 2.2 there exist two disjoint independent sets V ′
1 and V ′

2 and |V ′
1 | + |V ′

2 | ≥
n(1−ρ2)−2. Furthermore, |V ′

i | ≤ n/2+ρn/2, as if not, all vertices of V ′
i would have degree less than

n/2−ρn/2 in G, contradicting the previous lemma. Thus, we also have |V ′
i | ≥ n/2−n(ρ2+ρ/2+2/n).

Consider U = V − (V ′
1 ∪ V ′

2). We claim that no vertex of U has more than 3 + ρn + ρ2n neighbors
in each of V ′

1 and V ′
2 . Indeed, if u ∈ U is such a vertex and Xi ⊂ V ′

i are 3 + ρn + ρ2n neighbors of
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u in V ′
i then there are no edges between X1 and X2. Let z ∈ X1 be a vertex with degree at least

(1− ρ)(n/2) in G. On the other hand, the degree of z in G is at most

n− |V ′
1 | − |X2| ≤ n−

(
n

2
− n(ρ2 +

ρ

2
+

2
n

)
)
− (3 + ρn + ρ2n) = (1− ρ)

n

2
− 1

a contradiction. We may therefore place u in one of V ′
1 or V ′

2 , wherever it has less than 3+ρn+ρ2n
neighbors. After doing so for all u ∈ U we obtain a partition of V to Vi ⊃ V ′

i for i = 1, 2 and no
more than

(ρ2n + 2)(3 + ρn + ρ2n) +
1
4
|U |2 < (ρ3 + 1.5ρ4)n2

edges with both endpoints in the same part.

Lemma 2.3 guarantees that in the complement Gc of a dense triangle-free graph G there are
many edge-disjoint Kk, each of them having all k vertices in the same part of an appropriate
partition. However, this is not enough, since we must compensate for the loss due to a non-
negligible number of at most (ρ3 + 1.5ρ4)n2 non-edges of Gc with both endpoints in the same part
(and, possibly, some unpackable edges of Gc inside each part as well). The only way to do this is
to pack sufficiently many edges of Gc with endpoints in both V1 and V2 into edge-disjoint Kk of
Gc. An important step in this direction is established in the following lemma.

Lemma 2.4 Let G = (V1 ∪V2, E) be a bipartite graph with n vertices and ηn2 edges. Let G′ be the
graph obtained from G by adding all possible edges inside the vertex classes. Then, for n sufficiently
large, there exists a set L of edge-disjoint Kk of G′ so that |L| ≥ 1

40k4 η4/3n2. Furthermore, each
element of L intersects both vertex classes.

Proof: Let L be a maximum set of edge-disjoint copies of Kk in G′, so that each H ∈ L intersects
both vertex classes. If |L| ≥ 1

40k4 η4/3n2 then we are done. Otherwise, let M ⊂ E be the edges
not belonging to elements of L. Let GM = (V1 ∪ V2,M). For v ∈ V1 ∪ V2 let tv be the degree of
v in GM . We claim that tv ≤ η2/3n for all v ∈ V1 ∪ V2. Indeed, assume otherwise and let v be
with tv > η2/3n. Without loss of generality, assume v ∈ V1 and let Tv ⊂ V2 be the neighbors of v
in GM . The Ktv induced by Tv in G′ has at least tv

2/(2(k − 2)) − tv edges belonging to elements
of L. Otherwise, this Ktv would have had t2v

2 − t2v
2(k−2) edges not belonging to elements of L, but

then Turán’s Theorem guarantees a Kk−1 inside this Ktv , having no edge in elements of L. This
Kk−1, together with v, contradicts the maximality of L. Now, if tv

2/(2(k − 2)) − tv edges belong
to elements of L then, in particular,

1
40k4

η4/3n2 ≥ |L| ≥ tv
2/(2(k − 2))− tv(k−1

2

) .

This implies, in particular, that tv ≤ η2/3n.
Let G′

M be the graph obtained from GM by adding all the edges inside the vertex classes. In
particular, G′

M is a spanning subgraph of G′. We shall produce the desired set L already in G′
M .

Notice that |M | ≥ ηn2 −
(k
2

)
|L| > ηn2/2. Let W ⊂ V be those vertices with tv ≥ ηn/2. Hence,∑

v∈W

tv = 2|M | −
∑

v∈V −W

tv ≥ ηn2 − n
ηn

2
≥ η

2
n2.
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For v ∈ W , we randomly choose sv = b 1
5k4 η1/3tvc vertex-disjoint (k − 1)-subsets of Tv. Let

Sv = {S1
v , . . . , Ssv

v } be the set of chosen subsets. An edge of Tv has probability precisely

pv =
sv
(k−1

2

)(tv
2

) ≤ 1
5k4

η1/3tv
k2

tv(tv − 1)
=

1
5k2

η1/3 1
tv − 1

≤ 1
2k2η2/3n

of belonging to some element of Sv. We say that Si
v is bad if some edge with both endpoints in Si

v

also has both endpoints in some other Sj
u. Consider an edge (x, y) with x, y ∈ Si

v. What is the
probability that x, y ∈ Sj

u for some other vertex u ∈ W? This probability is 0 if u is not a common
neighbor of x, y and is precisely pu if u is a common neighbor of x, y. Since the number of neighbors
of, say, x, in the opposite vertex class is tx ≤ η2/3n, the probability that Si

v is bad is at most(
k − 1

2

)
η2/3n

1
2k2η2/3n

≤ 1
4
.

It follows that in ∪v∈W Sv the expected number of good subsets is at least

3
4

∑
v∈W

sv ≥
1
2
· 1
5k4

η1/3
∑
v∈W

tv ≥
1

20k4
η4/3n2.

In particular, there exists a choice of such subsets with this quantity. Let, therefore, L′ be a family
of good subsets with |L′| ≥ 1

20k4 η4/3n2 and let S′
v ⊂ L′ be those subsets belonging to Tv for v ∈ W .

In particular,
∑

v∈W |S′
v| = |L′| and hence, without loss of generality,

∑
v∈W∩V1

|S′
v| ≥

|L′|
2

≥ 1
40k4

η4/3n2.

For each v ∈ W ∩ V1 and for each (k − 1)-subset S′i
v ∈ S′

v, notice that v ∪ S′i
v is a copy of Kk in

G′
M , and notice that all these copies are edge-disjoint. Hence, the result follows.

A function f from the set Fk(G) of copies of Kk in a graph G = (V,E) to [0, 1] is a fractional
Kk-packing of G if

∑
e∈H∈Fk(G) f(H) ≤ 1 for each e ∈ E. The value of f is |f | =

∑
H∈Fk(G) f(H).

The fractional Kk-packing number, denoted ν∗k(G), is the maximum possible value of a fractional
Kk-packing. Clearly, ν∗k(G) ≥ νk(G) where νk(G) is the maximum possible number of edge-disjoint
copies of Kk in G. However, a result of Haxell and Rödl [4] shows that they do not differ by a lot
(see also [9] for a shorter and more general proof).

Lemma 2.5 [Haxell and Rödl [4]] Let G be a graph with n vertices. Then, ν∗k(G) ≤ νk(G)+o(n2).

Yuster [8] proved that if a graph has sufficiently large minimum degree, then it has a fractional
Kk-decomposition, namely, a fractional Kk-packing of value 2|E|/(k(k − 1)). The exact statement
of his result follows.

Lemma 2.6 [Yuster [8]] Let k ≥ 3 be an integer. For n sufficiently large, every graph with n
vertices and minimum degree at least n(1− 1/9k10) has a fractional Kk-decomposition.

Corollary 2.7 Let k ≥ 3 be an integer. For r sufficiently large, if G is obtained from Kr by
deleting at most r − k edges sharing an endpoint then G has a fractional Kk-decomposition.
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Proof: Let v be the vertex in common to all the deleted edges. The degree of v in G is at least
k−1 and the degree of each other vertex of G is at least r−2. Partition the neighbors of v into parts
P1, . . . , Pt where k−1 ≤ |Pi| ≤ 2k−3. Each v∪Pi induces a complete graph with at least k vertices
and at most 2k − 2 vertices, and, in particular, v ∪ Pi has a trivial fractional Kk-decomposition.
Deleting all these t complete graphs we obtain a graph with r − 1 vertices (v is now isolated and
can be ignored) and minimum degree at least (r− 2)− (2k− 4) = r− 2k +2. By Lemma 2.6, if r is
sufficiently large, this remaining graph has a fractional Kk-decomposition, and hence so does G.

Theorem 2.8 For a positive integer k, there exists ε0 > 0 so that for all ε < ε0 the following holds.
If G is a graph with n vertices and at least n2(1

2 − ε) edges then G has a packing with edge-disjoint
copies of Kk so that at most (2k − 3)ε6/5n2 + o(n2) edges are unpacked.

Proof: Let r0 = r0(k) be a sufficiently large integer to be chosen later, and let ε0 = r−5
0 . Given

ε < ε0 let r = ε−1/5 (we may and will assume that r is an integer). We may also assume that
n ≡ 1 mod r is sufficiently large as this does not affect the asymptotic nature of the result. Thus,
by Wilson’s Theorem [7], G has a decomposition L into n(n− 1)/(r(r − 1)) induced r-graphs. Let
π be a permutation of V (G) = {1, . . . , n} and let Lπ be the decomposition obtained by taking
each element of L with vertices {v1, . . . , vr} and mapping it to the subgraph of G induced by
{π(v1), . . . , π(vr)}. Now choose π uniformly at random. Let T be the set of non-edges of G and
notice that |T | ≤ εn2. For t1, t2 ∈ T sharing no endpoint, the probability that they are in the same
element of Lπ is precisely (n−4

r−4

)(n−2
r−2

) <
r2

n2
.

Thus, the expected number of elements of Lπ having two elements of T sharing no endpoint is less
than

r2

n2

(
|T |
2

)
<

r2

n2
ε2n4 < ε2r2n2.

It follows that there exists an L where less than ε2r2n2 elements of L have two independent non-
edges. Let, therefore, L = L1 ∪ L2 ∪ L3 ∪ L4 where L1 consists of all induced r-graphs with two
or more independent non-edges, L2 consists of all induced r-graphs isomorphic to Kr \ K3, L3

consists of all induced r-graphs with one vertex with degree at most k − 2 and all other vertices
with degree at least r − 2, and L4 consists of all induced r-graphs with one vertex with degree
at least k − 1 and all other vertices with degree at least r − 2. Since |L1| < ε2r2n2, the overall
number of edges in the elements of L1 is less than ε2r4n2. The total number of elements in L3 is
at most |T |/(r − k + 1) < 2εn2/r. Each element of L3 contains a Kr−1 and has a trivial fractional
Kk-packing of value (r − 1)(r − 2)/(k(k − 1)). By Corollary 2.7, if r0 is sufficiently large, all the
elements in L4 have a fractional Kk-decomposition. By Lemma 2.6, if r0 is sufficiently large, all
the elements in L2 have a fractional Kk-decomposition. It follows that

ν∗k(G) ≥ |E| − ε2r4n2 − 2(k − 2)εn2/r(k
2

) .
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By Lemma 2.5, νk(G) ≥ ν∗k(G) − o(n2). Recalling that ε = r−5, the number of edges not packed
by an optimal Kk-packing is

|E| −
(

k

2

)
νk(G) ≤ ε2r4n2 + 2(k − 2)εn2/r + o(n2) ≤ (2k − 3)ε6/5n2 + o(n2)

as required.

Proof of Theorem 1.2: Fix k ≥ 3, and let γ0 = γ0(k) be a sufficiently small constant to be chosen
later. We will assume, whenever necessary, that n is sufficiently large. For γ < γ0, let G = (V,E)
be a graph with n vertices and m = n2(1

4 + γ) edges and with independence number 2. Hence,
Gc = (V,Ec), the complement of G, is triangle-free. We must prove that νk(G) ≥ (1−o(1)) n2

2k(k−1) .
Let ρ =

√
8γ. Thus,

|Ec| =
(

n

2

)
−m ≥ n2(

1
4
− 2γ) =

1
4
n2(1− ρ2).

By Lemma 2.3 applied to Gc, there exists a partition V = V1∪V2 such that |Vi| ≥ n/2−n(ρ2+ρ/2+
2/n) and the number of edges of Gc with both endpoints in the same part is at most (ρ3 +1.5ρ4)n2.

Let Ei and Ec
i be, respectively, the set of edges of G and Gc inside Vi, for i = 1, 2. Let E12

and Ec
12 be, respectively, the set of edges of G and Gc between V1 and V2. Putting |E12| = ηn2, we

consider two cases.
If η < γ/2 then

|E1|+ |E2| = m− ηn2 > n2(
1
4

+ γ − γ

2
) = n2(

1
4

+
γ

2
).

Consider the graph induced by Ei. It has |Vi| > n/3 vertices and at most |Ec
i | ≤ (ρ3 + 1.5ρ4)n2 <

9(ρ3 + 1.5ρ4)|Vi|2 non-edges. Let ε0 = ε0(k) be the parameter from Theorem 2.8. By choosing
γ0 = γ0(k) sufficiently small we can guarantee that ρ =

√
8γ satisfies 9(ρ3 + 1.5ρ4) < ε0. Thus,

by Theorem 2.8, the graph induced by Ei has a Kk-packing in which at most (2k − 3)(9(ρ3 +
1.5ρ4))6/5n2 + o(n2) edges are unpacked. By considering V1 and V2 together, we obtain a Kk-
packing of G so that at least

|E1|+ |E2| − 2(2k− 3)(9(ρ3 +1.5ρ4))6/5n2− o(n2) ≥ n2(
1
4

+
γ

2
− (4k− 6)(9(ρ3 + 1.5ρ4))6/5)− o(n2)

edges are packed. By setting γ0 = γ0(k) sufficiently small we can make sure that γ
2 −(4k−6)(9(ρ3+

1.5ρ4))6/5 > 0. Thus,
(k
2

)
νk(G) ≥ 1

4n2 − o(n2), as required.
If η ≥ γ/2 = ρ2/16 we apply Lemma 2.4. Let G′ = (V,E1∪Ec

1∪E2∪Ec
2∪E12). By Lemma 2.4,

there exists a set L of edge-disjoint Kk of G′ so that |L| ≥ 1
40k4 η4/3n2. Furthermore, each element

of L intersects both V1 and V2. Not every Kk in L is also a Kk in G, as elements of L may contain
edges of Ec

1 ∪ Ec
2. If L′ ⊂ L is the set of elements of L that are also a Kk in G, then

|L′| ≥ |L| − |Ec
1 ∪ Ec

2| ≥
1

40k4
η4/3n2 − (ρ3 + 1.5ρ4)n2 ≥ n2(

ρ8/3

1613k2
− ρ3 − 1.5ρ4).

Thus, by setting γ0 = γ0(k) sufficiently small we can make sure that |L′| ≥ ρ17/6n2. In fact, we will
assume that |L′| = ρ17/6n2 (otherwise we will take only a subset).
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Let Fi ⊂ Ei consist of all the edges of Ei not belonging to elements of L′. Consider the graph
induced by Fi. It has |Vi| > n/3 vertices and at most (ρ3 + 1.5ρ4)n2 + k2ρ17/6n2 < 9(ρ3 + 1.5ρ4 +
k2ρ17/6)|Vi|2 non-edges. By choosing γ0 = γ0(k) sufficiently small we can guarantee that ρ =

√
8γ

satisfies 9(ρ3 + 1.5ρ4 + k2ρ17/6) < ε0. Thus, by Theorem 2.8, the graph induced by Fi has a Kk-
packing in which at most (2k − 3)(9(ρ3 + 1.5ρ4 + k2ρ17/6))6/5n2 + o(n2) edges are unpacked. By
considering both F1, F2 and L′ we obtain a packing of G with at least

|L′|
(

k

2

)
+ |F1|+ |F2| − (4k − 6)(9(ρ3 + 1.5ρ4 + k2ρ17/6))6/5n2 − o(n2)

packed edges. Notice also that since each element of L′ has vertices in both vertex classes,

|F1|+ |F2| ≥ |E1|+ |E2| − |L′|
(

k − 1
2

)
≥
(
|V1|
2

)
+

(
|V2|
2

)
− (ρ3 + 1.5ρ4)n2 − |L′|

(
k − 1

2

)
≥

n2(
1
4
− ρ3 − 1.5ρ4)− |L′|

(
k − 1

2

)
− o(n2).

Hence, the packing above consists of at least

(k − 1)|L′|+ n2(
1
4
− ρ3 − 1.5ρ4)− (4k − 6)(9(ρ3 + 1.5ρ4 + k2ρ17/6))6/5n2 − o(n2) ≥

n2(
1
4

+ (k − 1)ρ17/6 − ρ3 − 1.5ρ4 − (4k − 6)(9(ρ3 + 1.5ρ4 + k2ρ17/6))6/5)− o(n2)

packed edges. By setting γ0 = γ0(k) sufficiently small we can make sure that (k − 1)ρ17/6 − ρ3 −
1.5ρ4 − (4k − 6)(9(ρ3 + 1.5ρ4 + k2ρ17/6))6/5 > 0. Thus,

(k
2

)
νk(G) ≥ 1

4n2 − o(n2), as required.

3 Packing triangles in graphs with independence number 2

The following lemma, that is interesting in its own right, considerably strengthens Lemma 2.4 in
the case k = 3. Recall that P3 denotes a path of length 2.

Lemma 3.1 Let G = (V,E) be a bipartite graph with n vertices. G has a set L of copies of P3,
such that any two elements of L intersect in at most one vertex, and |E| − 2|L| < n.

Proof: By induction on n. The case n = 1 trivially holds. Now let G have n vertices, and consider
a bipartition (A,B). Let v have minimum degree in G, and assume, with no loss of generality, that
v ∈ A. Let d(v) = δ(G) = k. If k = 0 or k = 1 we are done by applying the induction hypothesis
to G− v. Otherwise, let N(v) ⊂ B be v’s neighbors. Let N(v) = {w1, . . . , wk}. For i = 1, ..., k − 1
greedily pick ai ∈ A where (ai, wi) ∈ E and ai /∈ {v, a1, . . . , ai−1}. We can clearly do this since
d(wi) ≥ k. Now consider the set M = {(v, w1, a1), (v, w2, a2), . . . , (v, wk−1, ak−1)} of copies of P3 in
G. The elements of M cover all edges incident with v but at most one. Now delete v from the graph,
and also delete the k− 1 edges (wi, ai) and apply induction. The obtained subgraph of G, denoted
G′, has n−1 vertices and |E|−k−(k−1) edges. By the induction hypothesis we can find a set L′ of
copies of P3 in G′ such that |E|−2k+1−2|L′| < n−1 and such that any two elements of L′ intersect
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in at most one vertex. Now, let L = L′∪M . Clearly, any two elements of L intersect in at most one
vertex and |L| = |L′|+k−1. Therefore, |E|−2|L| = |E|−2(|L′|+k−1) = |E|−2k−2|L′|+2 < n,
as required.

Lemma 3.2 Every graph with n vertices and
(n
2

)
− t edges has a fractional triangle packing whose

value is at least (
(n
2

)
− 7t/3)/3. Furthermore, if the graph has no independent set of size 3 then it

has a fractional triangle packing whose value is at least (
(n
2

)
− 2t)/3.

Proof: We first claim that a graph on 7 vertices and 21− t edges has a fractional triangle packing
whose value is at least (21− 7t/3)/3. This is trivially true for t ≥ 9.

If t = 4, 5 then H has 16 or 17 edges. It is not difficult to check that a graph with 7 vertices
and 16 edges has 4 edge-disjoint triangles. Thus, the claim holds for t = 4, 5.

For t = 6, 7, 8 it follows from the case t = 5 that H has 9− t edge-disjoint triangles. Thus, the
claim holds for t = 6, 7, 8.

If t = 2 there are two cases. If both missing edges share an endpoint, then there are six edge-
disjoint triangles in H. In this case the claim holds. Otherwise, let (a, b) and (c, d) be the two
missing edges and let (x, y, z) be the remaining three vertices. There are three types of edges. Type
I edges consists of the four edges in {a, b, c, d}. Type II edges consists of the 12 edges with a single
endpoint in {x, y, z} and type III edges are the three edges with both endpoints in {x, y, z}. There
are also three types of triangles. Type I triangles contain precisely one edge of type I and two edges
of type II. There are 12 such triangles. Type II triangles contain two edges of type II and one edge
of type III. There are 12 such triangles. Type III triangles contain only edges of type III. There is
one such triangles. Assign to each triangle of type I the value 1/3. Assign to each triangle of type
II the value 1/6. Assign to the triangle of type III the value 1/3. It is easy to verify that this is
a legal fractional triangle packing (in fact, it is a fractional triangle decomposition) of total value
19/3. Hence, the claim holds for t = 2.

If t = 3 then either there are two missing edges sharing an endpoint, in which case there are at
least five edge-disjoint triangles in G, and the claim holds. Otherwise, there are two independent
missing edges (a, b) and (c, d). Putting back the third missing edge, we have, by the previous case
of t = 2 a fractional triangle decomposition of value 19/3. Hence, without the third missing edge
this corresponds to a fractional triangle packing of value 19/3− 1 = 16/3. Hence, the claim holds
for t = 3.

If t = 1, let (a, b) denote the missing edge. Assign to every triangle that contains a or b the
value 1/4 (there are 20 such triangles). Assign to every triangle that contains neither a nor b the
value 1/6 (there are 10 such triangles). It is easy to verify that this is a legal fractional triangle
packing (in fact, it is a fractional triangle decomposition) of total value 20/3. Hence, the claim
holds for t = 1.

The claim trivially holds for t = 0, as K7 has 7 edge-disjoint triangles.
Now, let G be a graph with n vertices and

(n
2

)
−t edges. Let P be the set of

(n
7

)
induced 7-vertex

subgraphs of G. For H ∈ P with 21− tH edges, let fH be a fractional triangle packing of H with
|fH | ≥ (21− 7tH/3)/3, and set fH(T ) = 0 for T /∈ H. Let

f =
1(n−2
5

) ∑
H∈P

fH .
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Then, clearly, |f | ≥ (
(n
2

)
− 7t/3)/3, as required.

Now, the second part of the lemma can clearly be proved analogously by showing that every
graph with 7 vertices, 21−t edges, and no independent set of size 3, has a fractional triangle packing
whose value is at least (21−2t)/3. Indeed it is shown in [5] that a graph with seven vertices and no
independent set of size 3 always has a fractional triangle packing whose value is at least 2. Thus,
the claim holds for t ≥ 8. Recall from the first part of the lemma that a graph with 7 vertices and
16 edges has 4 edge-disjoint triangles. Thus, the claim holds for t = 5 and also for t = 6 (as in this
case the graph has 3 edge-disjoint triangles). Recall from the previous lemma that a graph with
7 vertices and 18 edges either has 5 edge-disjoint triangles or a fractional triangle packing whose
value is at least 16/3. This proves the case t = 3. In fact it also proves the case t = 4 because if the
graph has four missing edges we can always add one missing edge so that the remaining 3 missing
edges are not all independent. In this case there is a fractional packing of value at least 16/3, and
hence of value 13/3 in the original graph. The case t = 2 holds since, as in the first part of the
lemma, either there are six edge-disjoint triangles, or a fractional triangle decomposition. The case
t = 1 holds because K−

7 has a fractional triangle decomposition and the case t = 0 holds because
K7 has seven vertex-disjoint triangles. The only remaining case is t = 7. It can be easily verified
that a graph with 7 vertices, 14 edges and no independent set of size 3 has a fractional triangle
packing whose value is at least 3.

Proof of Theorem 1.3: For the first part of the theorem, let G = (V,E) be a triangle-free
graph with n vertices and 1

4n2(1 − ρ2) edges, where ρ2/4 < 0.0001. Notice that ρ < 0.02. It will
be convenient to color the edges of G blue and the non-edges by red. We must prove that there
is a set of (1 − o(1))n2/12 red triangles. By Lemma 2.3, there exists a partition V = V1 ∪ V2

such that the number of blue edges inside the parts is at most (ρ3 + 1.5ρ4)n2, and such that
|Vi| ≥ n/2 − n(ρ2 + ρ/2 + 2/n). Let Bi and Ri be, respectively, the set of blue edges and red
edges inside Vi and let bi = |Bi| and ri = |Ri|. Let B12 and R12 be, respectively, the set of blue
edges and red edges with one endpoint in V1 and the other in V2. By Lemma 3.1, the edges of R1,2

can be packed with a set L of paths of length 2, such that any two paths intersect in at most one
vertex, and the number of unpacked edges of R1,2 in at most n (negligible). For P ∈ L let Pc be
the triangle induced by P . Notice that Pc is either a completely red triangle or it has precisely one
blue edge belonging to B1 ∪ B2. Let T = {Pc : Pc is red}. Notice that T is a set of edge-disjoint
red triangles. Let Z ⊂ R1,2 be the red edges not covered by elements of T . Clearly,

|Z| ≤ n + 2(b1 + b2) ≤ n + 2(ρ3 + 1.5ρ4)n2. (1)

Let Fi ⊂ Ri be the set of red edges inside Vi that are covered by the elements of T , and let fi = |Fi|.
Clearly,

f1 + f2 = |T | ≤ 1
2
|R12| =

1
2
(|V1||V2| −

1
4
n2(1− ρ2) + b1 + b2) ≤

1
2

(
n2ρ2

4
+ (ρ3 + 1.5ρ4)n2

)
. (2)

Let Gi be the subgraph induced by the vertex set Vi and the red edges Ri \ Fi. It has ri − fi =(|Vi|
2

)
− (bi + fi) edges. By Lemma 3.2 and Lemma 2.5

ν3(Gi) ≥
1
3

((
|Vi|
2

)
− 7

3
(bi + fi)

)
− o(n2).

10



In particular, there is a packing of Gi with red triangles in which at most (4/3)(bi + fi)+ o(n2) red
edges are uncovered. Recalling that the edges of Z are also unpacked in red triangles, we obtain,
together with T , a set of red edge-disjoint triangles that cover all but at most |Z|+ (4/3)(b1 + f1 +
b2 + f2) + o(n2) red edges. Therefore, together with (1) and (2),

ν3(G) ≥ 1
3

((
n

2

)
− 1

4
n2(1− ρ2)−

(
|Z|+ 4

3
(b1 + f1 + b2 + f2) + o(n2)

))

≥ n2

(
1
12

+
ρ2

12
− 1

3
(2ρ3 + 3ρ4)− 4

9
(ρ3 + 1.5ρ4 +

ρ2

8
+

ρ3

2
+

3ρ4

4
)

)
− o(n2)

= n2
(

1
12

+
1
36

ρ2 − 4
3
ρ3 − 2ρ4

)
− o(n2).

In order to prove that ν3(G) ≥ n2/12−o(n2) it remains to show that 1
36ρ2− 4

3ρ3−2ρ4 ≥ 0. Indeed,
this holds for all ρ ≤ 0.02, as required.

For the second part of the theorem, let G be a graph with n2/2 − αn2 edges. By letting
t = αn2 − o(n2) in Lemma 3.2 we have, together with Lemma 2.5 that

ν3(G) ≥ ν∗3(G)− o(n2) ≥ 1
3

((
n

2

)
− 7

3
t

)
− o(n2) =

(
1
6
− 7

9
α

)
n2 − o(n2).

Similarly, by the second part of Lemma 3.2, if G does not have three independent vertices then
ν3(G) ≥ (1/6− 2α/3)n2 − o(n2). By using α = 1/8 the second part of the theorem follows.

4 Concluding remarks

• Let fk(n) be the minimum possible value of fk(n, m) ranging over all plausible values of
m. Let αk = lim inf fk(n)/n2. Thus, the conjecture of Erdős states that α3 = 1/4, the
example using two vertex-disjoint cliques shows that αk ≤ 1

4 , and Proposition 1.1 shows that

αk ≤
(k
2)

10d k
2
( k
2
−1)e . It would be very interesting to determine αk for all k.

• Proof of Proposition 1.1: We construct a graph G = (V,E) with 5n vertices where V
consists of five vertex-disjoint sets V1, . . . , V5 of size n each. Each Vi induces a complete
graph. Furthermore, E contains all n2 edges between Vi and Vi+1 (indices modulo 5). Thus,
|E| = 5

(n
2

)
+ 5n2 = 5n(3n−1)

2 . Notice that G does not have three independent vertices. Now,
any copy of Kk in G cannot have vertices in three distinct vertex classes. Thus, at least
dk

2 (k
2 − 1)e edges of such a copy have both endpoints in the same vertex class. As there are

only 5
(n
2

)
edges with both endpoints in the same vertex class the proposition follows.

• We have shown that if G has independence number 2 and αn2 + o(n2) edges where α ∈
[0.25, 0.2501] or α ∈ [0.375, 0.5] then ν3(G) ≥ n2/12 − o(n2). Both density intervals can be
slightly extended at the price of complicating the proof. It would be interesting to significantly
extend both intervals so that they eventually intersect, thereby proving the conjecture for
f(n).
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• Lemma 3.2 is based on the analysis of the possible fractional triangle packings of a graph
with seven vertices. One can certainly improve the constant 7/3 appearing in the statement
of the lemma by examining larger constant size graphs. Using a computer we have found out
that a graph with 9 vertices and 36 − t edges has a fractional triangle packing whose value
is at least (36 − 9t/4)/3, thereby showing that the constant 7/3 can be improved to 9/4. It
is plausible to assume that a constant closer to 2 can be obtained by examining larger cases.
Such an improvement, however, would only have a minor effect on the constants in Theorem
1.3.

• Lemma 3.1 shows that the edges of an n-vertex bipartite graph can be packed with paths
of length 2, any two of them intersecting in at most one vertex, so that less than n edges
are unpacked. It is plausible that an even sharper estimate holds. For example, we propose
the following problem, that we verified for small values of n. Is it true that if G ⊂ Kn/2,n/2

then its edges can be packed with paths of length 2, any two of them intersecting in at most
one vertex, so that at most n/2 edges are unpacked? If true, this would be best possible by
considering a perfect matching with n/2 edges.
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