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Abstract

An inversion of a tournament T is obtained by reversing the direction of all edges with both
endpoints in some set of vertices. Let invg(7) be the minimum length of a sequence of inversions
using sets of size at most k that result in the transitive tournament. Let invy(n) be the maximum
of invg(T) taken over n-vertex tournaments. It is well-known that inve(n) = (1+o0(1))n?/4 and
it was recently proved by Alon et al. that inv(n) := inv,,(n) = n(1+0(1)). In these two extreme
cases (k = 2 and k = n), random tournaments are extremal objects. It is proved that invg(n) is
not attained by random tournaments when k > ko and conjectured that invs(n) is (only) attained
by (quasi) random tournaments. It is further proved that (1 + o(1))invs(n)/n? € [{,0.0992)
and (1+o(1))invg(n)/n? € [Qk(li—l) + Ok, th%/% — €x] where ¢, > 0 for all k > 3 and d > 0 for
all k > k.
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1 Introduction

In this paper we mainly consider oriented graphs, which are digraphs without loops, digons, or
parallel edges. In particular, we consider tournaments, which are oriented complete graphs. For
an oriented graph D and a set X C V(D), the inversion of X in D is the oriented graph obtained
from D by reversing the direction of the edges with both endpoints in X; synonymously, we view
an inversion as an operation on D and say that we invert X in D. Notice that inverting a sequence
X1,...,X; results in the same oriented graph for any permutation of that sequence. If inverting
a sequence Xi,...,X; results in an acyclic digraph, we say that {Xi,..., X} forms a decycling
set of D. The inversion number of D, denoted inv(D), is the minimum size of a decycling set.
If each element of a decycling set has size at most k, we say that the set is k-decycling and let
invg (D) denote the minimum size of a k-decycling set. We observe that inv(D) = inv, (D) where
|[V(D)| = n, and that invy(D) is the size of a minimum feedback edge set of D. The extremal
parameters of interest are inv(n) = inv,(n) and invg(n) which, respectively, are the maximum of
inv(D) and invg (D) taken over all oriented graphs with n vertices. When studying these extremal
parameters, we may and will restrict to the class of n-vertex tournaments, as adding edges to D
cannot decrease invg (D).

The parameter inva(n) is asymptotically well-understood. It is straightforward that any digraph
can be made acyclic by inverting (equivalently, removing) at most half of its edges. Spencer
[17] proved that inve(n) < 3(3) — Q(n%?2). A probabilistic construction of Spencer [18], later
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simplified with an improved constant by de la Vega [9], shows that inva(n) > 1 (%) — O(n%/2), hence
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invo(n) = (1+ o(1))n?/4 and the growth rate below the n2/4 threshold is ©(n®?). In fact, it was
shown by Chung and Graham [7] that an n-vertex tournament 7" has invo(T) = (1 + o(1))n?/4 if
and only if it is quasi-random !.

The study of inv(D) was initiated by Belkhechine [5] and followed by several papers that
considered its computational and extremal aspects [4, 6, 19]. It is not difficult to show that inv(n) <
n(l+o(1)) [2, 4, 6] but obtaining an asymptotically matching lower bound is more involved and
was only recently independently resolved by Alon et al. and by Aubian et al. [2, 3] who proved that
inv(n) > n — /2nlog(n) 2 for large n, thus establishing that inv(n) = n(1 + 0,(1)). Moreover,
their proof shows that a random n-vertex tournament 7" almost surely has inv(7") = n(1 + o(1)).

As the extreme cases (k = 2 and k = n) are solved up to low order terms, and as random
tournaments are extremal objects in both of these cases, one wonders what happens for other k.
Mainly, what is the asymptotic behavior of invg(n)? Is it always the case that random tournaments
are extremal objects?

Fix k > 3. It is readily seen that invy(n) > (1 + o(1))n?/2k(k — 1). Indeed, as the minimum
feedback edge set of a tournament T has size invy(7'), and since each element in a k-decycling set
of T' changes the direction of at most (g) edges, we have that invg(T") > inve(7T)/ (g) and the claim
holds by recalling that inve(n) = (1 4 0,(1))n?/4. In fact, it is not difficult to prove that random

tournaments attain this bound whp 2, as the following proposition shows.
Proposition 1.1. For a random n-vertex tournament T, inv(T) = (1 + o(1))n?/2k(k — 1) whp.

We conjecture that this bound is asymptotically tight for £ = 3 and is attained only by quasi-
random (hence also by random) tournaments.

Conjecture 1.2. invs(n) = (1 + o(1))

n?
2
TL2

(1+0(1))%5 if and only if it is quasi-random.

Moreover, an n-vertex tournament T has invs(T) =

Note that Conjecture 1.2 actually consists of two distinct assertions and a proof of each one does
not necessarily imply the other. Determining the asymptotic behavior of invs(n) seems challenging.
Our first main result gives an upper bound which is not far from the conjectured value.

Theorem 1.3. invg(n) < 225 (1 + o(1))n? .
Since invg(n) > (1 + 0(1))?—;, we have that (1 + o(1))invs(n)/n? € [35,0.0992).

As for larger fixed k, we are able to show that starting from some given kg, the lower bound
(14 0(1))n?/2k(k — 1) is, perhaps surprisingly, not tight. This is a consequence of the proof of our
second main result, which gives upper and lower bounds for invg(n).

Theorem 1.4. For all k > 3 there exists € > 0 such that invg(n) < (m —ex) (1 + o(1))n?.
On the other hand, there exists ko such that for all k > ko there exists 6 > 0 such that invg(n) >

(grg=ny + 0k) (1 + o(1))n?.
Note that whenever k > kg in Theorem 1.4, we have §; > 0, so together with Proposition 1.1

this implies that for k& > ko, tournaments that attain invy(n) are far from random. On the other
hand, notice that Conjecture 1.2 asserts that we cannot have kg = 3 in Theorem 1.4.

!More formally, when discussing quasi-randomness we need to consider infinite sequences of tournaments; see [7].
ZWhenever the base of a logarithm is not specified, it is assumed to be 2.
3Throughout this paper, whp means “with probability tending to one as n tends to infinity”.



Problem 1.5. Find the smallest ko for which the lower bound statement in Theorem 1.4 holds.

The rest of this paper proceeds as follows: In Section 2 we introduce some definitions and collect
some known tools that are needed for the proofs. We consider the case k = 3 in Section 1.3 where
we prove Theorem 1.3. In Section 4 we consider larger k and prove Theorem 1.4.

2 Preliminaries

This section presents several definitions and tools required for the proofs of our main results.

2.1 Hypergraph coloring

Recall that a k-uniform hypergraph is a collection of k-sets (the edges) of some n-set (the vertices).
The degree d(x) of a vertex x in a hypergraph is the number of edges containing x and the co-degree
d(x,y) of a pair of distinct vertices z,y is the number of edges containing both. A matching in a
hypergraph is a set of pairwise disjoint edges. The chromatic index of a hypergraph H, denoted
X'(H), is the smallest integer ¢ such that the set of edges of H can be partitioned into ¢ matchings.
The following result of Pippenger and Spencer [16] gives sufficient conditions on H which guarantee
that x/(H) is close to the maximum degree of H.

Lemma 2.1 ([16]). For an integer k > 3 and a real vy > 0 there ezists a real f = B(k,~y) so that
the following holds: If a k-uniform hypergraph H has the following properties for some t:

(1) (1 =)t <d(xz) < (1+ p)t holds for all vertices,

(11) d(z,y) < Bt for all distinct x and y,

then x'(H) < (14 ~)t. O

2.2 Digraphs, permutations, and random graphs

The edge-set of every digraph D is the disjoint union of the edge sets of two directed acyclic
subgraphs. Indeed, consider some permutation 7 of V(D) (here a permutation is a bijective function
m : V(D) — [[V(D)|]). Let Dr(m) be the spanning subgraph of D where (i,5) € E(Dp(w))
if and only if (4,j) € E(D) and 7(i) < w(j). Let Dgr(mw) be the spanning subgraph of D where
(1,7) € E(Dg(m)) if and only if (¢, j) € E(D) and 7 (i) > w(j). Since E(Dg(7))UE(Dr (7)) = E(D),
we can cover the edges of D using just two directed acyclic subgraphs of D. When referring to
Dy (m) and Dg(m) it it convenient to view them as undirected simple graphs, but recalling that they
correspond to edges of T' going from left to right in the case of Dy (m) or from right to left in the
case of Dr(m).

An n-vertex random tournament is the probability space T'(n) of tournaments on vertex set [n],
obtained by orienting the edges of K, at random (i.e., each direction is decided with a fair coin flip)
and all (}) choices are independent. By definition, for each given permutation 7 of [n], if T ~ T'(n)
then each of T, (m) and Tr(w) is distributed as the binomial random graph G(n, 3).

Proof of Proposition 1.1. Fix a permutation 7 of [n]. Let T'~ T'(n) and notice that since T (m) ~

G(n, 1), it has (1 + o(1))n?/4 edges, whp. By the result of Frankl and Rédl [11] Theorem 1.1,
applied to the hypergraph obtained from G(n, %) where the vertices of the hypergraph are the

edges of G(n, %) and the edges of the hypergraph are the copies of Kj, G(n, %) can be almost



entirely packed with pairwise edge-disjoint copies of Kj, whp. Equivalently, this means that whp
we can find a collection C of ((1 + 0(1))n2/4)/(§) sets of vertices, each of size either k or 2, such
that (i) any pair of sets in C' intersect in at most one vertex; (ii) each edge of 77 () is contained
in precisely one set of C; (iii) each edge of Tr(7) is not contained in any set of C. Therefore, C'
forms a decycling set of T'. O

2.3 Fractional packing

For an undirected graph G, let (g) denote the set of all K copies of G (namely, subgraphs of G
that are isomorphic to Kj). A function ¢ from (f) to [0,1] is a fractional Ki-packing of G if for
each edge of GG, the sum of the values of ¢ taken over all Kj-copies that contain that edge is at
most 1. The value of ¢ is

6l = > o(H)

He({)

and v(G) is the maximum of |¢| taken over all fractional Kj-packings of G. A Kj-packing of G
is a fractional Kj-packing whose image is included in {0,1}. Equivalently, it is a set of pairwise
edge-disjoint copies of K. Letting vx(G) denote the maximum value of a Kj-packing of G, we
have v} (G) > v,(G). An important result of Haxell and Rodl [13] (see also [20]) shows that the
converse inequality holds up to an additive error term which is negligible for dense graphs.

Lemma 2.2 ([13]). For every € > 0 and for every positive integer k > 3 there exists N = N (k,¢)
such that for any graph G with n > N wvertices, vji(G) — v (G) < en?. O

3 Triangle inversions

In this section we prove Theorem 1.3. We begin with a lemma that will be useful to “finish
off” decycling a tournament which already has a relatively small feedback edge set, using triangle
inversions.

Lemma 3.1. Let G be a directed graph whose underlying undirected graph has a (not necessarily
induced) 4-cycle on vertices a,b,c,d. Then, there are two sets of vertices X,Y of three vertices
each, such that inverting {X,Y} reverses the direction of the edges of this 4-cycle in G without
affecting the direction of any other edge of G.

Proof. Assume that the edges of the 4-cycle are ab, be, cd, ad. Then take X = {a,b,c}, Y = {a,c,d},
and observe that inverting { X, Y} reverses the direction of the edges of the 4-cycle without affecting
the direction of any other edge of G. O

Corollary 3.2. Let T* be an n-vertez tournament and suppose that |E(T;(w))| < an®. Then,
invg(T*) < an?/2 + o(n?).

Proof. By Lemma 3.1 we can repeatedly invert pairs of three-sets of vertices each, until we obtain a
tournament 7** for which 77 *(m) has no four-cycle. The number of inversions performed starting at
T* and arriving at 7™ is therefore precisely (|E(T}(7))|—|E(T}*(7))|)/2. By the Kovari-Sés-Turdn
Theorem, we have |E(T;*(m))| < (n3/2 4 n) /2, hence the corollary. O



A high level approach to proving Theorem 1.3 follows.

Suppose that T is a given n-vertex tournament. We prove that a randomly chosen permutation
7 has the following two properties whp: (i) Tp(7) has roughly n?/4 edges; (ii) Ty (7) has many
(say, roughly Bn?) pairwise edge-disjoint triangles. Once we show these properties, we can reverse
the claimed set of pairwise edge-disjoint triangles to obtain a tournament 7™ for which 77 (7) has
roughly an? edges where o = % — 35. We then apply Corollary 3.2 to reverse the edges of T} (7)
and obtain a decycling set of T' of order roughly An? + an?/2 = (% — g)n2

Proving that a random permutation satisfies (i) is a standard argument, but proving (ii) for a
reasonable value of § requires careful analysis, detailed later. The main difficulty stems from the
fact that we do not know much about the structure of 77 (7).

For the rest of this section we fix a tournament 7' on vertex set [n]. We start by proving (i)

above.
Lemma 3.3. Let 7 be a randomly chosen permutation of [n]. Whp, |E(Ty(r))| = (1 + o(1))n? /4.

Proof. Let X (i,7) denote the indicator random variable for the event that ij € E(Tr(w)). We
observe that X (i, j) ~ Bernoulli(3) and that |E(T;(7))| is the sum of X (4, ) taken over all edges
(i,7) € E(T), so its expected value is (3)/2 = (14 o(1))n?/4. To show that |E(Ty(r))| is concen-
trated, we upper-bound its variance. Notice that if {i,j} N {i,j'} = 0, then X (7,7) and X (¢, ;')
are independent and notice that there are fewer than n?® ordered pairs ({i,j}, {i’,5'}) for which
{i,jyn{i’,5'} # 0. Hence, Var[|E(TL(7))|] < E[|E(TL(n))|] +n3 = o(E[|E(TL(7))[]?). The lemma
now follows from Chebyshev’s inequality. O

We now turn to our second task, i.e., showing that 77 (w) has many pairwise edge-disjoint
triangles, whp. Let us first see a way to obtain some nontrivial bound for this quantity. In a
recent paper, Gruslys and Letzter [12], improving an earlier result of Keevash and Sudakov [14],
and thereby confirming a conjecture of Erdés, proved that in any two-coloring of the edges of K,
there are at least (1 — o(1))n?/12 pairwise edge-disjoint monochromatic triangles. Observing that
coloring the edges of T (7) red and coloring the edges of Tr(m) = T (7"¢V**¢) blue corresponds to
a two-coloring of the edges of K, we have by Lemma 3.3 and by the result in [12] that there exists
a permutation 7 such that |E(TL())] = (1 + o(1))n?/4 and Ty (m) has at least (1 + o(1))n?/24
pairwise edge-disjoint triangles. Notice that in this argument, we are only using a weaker form
of the result in [12]: that in any two-coloring of the edges of K, there are many pairwise edge-
disjoint monochromatic triangles all of the same color. In fact, it was conjectured by Jacobson
(see [10]) that there are always at least (1 4+ o(1))n?/20 such triangles (there are examples showing
that, if true, the constant % is optimal), but this is still open, although it was proved in [12]
that the correct constant for this question must be strictly larger than i. Notice, however, that
even applying the latter form of the question (i.e., Jacobson’s conjectured value) may be stronger
than what we need. Indeed, we will show that this is provably the case; we will show that whp a
random permutation gives that T, (7) has (1+o0(1))3n? edge-disjoint triangles, where the obtained
constant 3 is significantly larger than (the proven) 2—14 and (the conjectured) % constants of the
aforementioned monochromatic triangles questions.

We require some further notation and definitions. Let ¢ > 4 be an integer parameter to be set
later (it will be small, but not too small). Let 7, be the set of all tournaments on ¢ vertices. For
a tournament @) € 7, and a permutation o of V(Q), recall from Subsection 2.3 that v3(Qr(0)) is
the maximum value of a fractional triangle packing of Qr (o).



Definition 3.4. Let P be a family of permutations of V(Q). Let avgp(Q) be the average of
v3(Qr(0)) where o is taken over all permutations in P. Let avg(Q) := avgg, (Q) where Sy is the
family of all possible q! permutations.

It is possible that for some families, avgp(Q) is larger than the overall average avg(Q) while for
other families, it is smaller. It will be beneficial to assign to each tournament @) € 7, a family P
for which avgp(Q) is as large as possible, under some restrictions whose necessity will be apparent
later (for instance, to make computations feasible, we would like |P| to be small). To formalize
these restrictions, we need the following definition.

Definition 3.5. Let P be a family of permutations of a set X with |X| = q. We call P orthogonal
if for any ordered pair u,v of elements of X and any two positions 1 < i < j < q, there is ezxactly
one o € P such that o(u) =i and o(v) = j.

We note that the definition implies that the size of an orthogonal family is ¢(¢ — 1) (namely,
much smaller than ¢!). For a prime power ¢, a construction of an orthogonal family of permutations
can be obtained from certain constructions of ¢ — 1 mutually orthogonal Latin squares (aka MOLS).
For example, for ¢ = 9, such a family is shown in Table 1 and is obtained from the (columns of
the) 8 pairwise orthogonal Latin squares of order 9 given in [8], Page 164. An obvious but useful
observation is that if P is an orthogonal family of permutations of X, and ¢* is any permutation
of [g], the family {o*c : o € P} of permutations of X is also orthogonal. In particular, by double
counting, this means that if there is an orthogonal family of permutations of V' (Q) for a tournament
@, then there is some such orthogonal family P for which avgp(Q) > avg(Q).

012345678
678012345
354021687
036471825
603147582
372156804
057138246
624705813
306285741
075264183
642831750
327840165

120453786
786120453
435102768
147582603
714258360
480237615
138246057
705813624
417063852
183075264
750642831
408651273

201534867
867201534
543210876
258360714
825036471
561048723
246057138
813624705
528174630
264183075
831750642
516732084

345678012
021687354
687354021
360714258
048723561
615480237
381462570
063852417
630528174
318507426
084516732
651273408

453786120
102768435
768435102
471825036
156804372
723561048
462570381
174630528
741306285
426318507
165327840
732084516

534867201
210876543
876543210
582603147
237615480
804372156
570381462
285741306
852417063
507426318
273408651
840165327

Table 1: An orthogonal family of permutations of X = {0,...,8}.

Hereafter we assume that ¢ is such that a family of orthogonal permutations of sets of size ¢
exists (e.g., if ¢ = 9 this holds by Table 1). Let ¢ > 0 be a real value to be computed later. Suppose
that for each @ € 7, we can find an orthogonal family of permutations P = P(Q) (note: distinct
@ may be assigned distinct P) such that avgp)(Q) > ¢. We will show how to lower-bound the
number of pairwise edge-disjoint triangles in 77 (7) in terms of ¢ and n. To this end, we need to
define a certain hypergraph, which depends on 7', on 7, and on the assignments P(Q) for each
Q € T4. We next formalize the definition of this hypergraph (Definition 3.8).



Definition 3.6. For each g-subset X of vertices of T, consider the sub-tournament T[X] € T, it
induces. We say that X is successful if o0 = m|x € P(T[X]). Otherwise, it is unsuccessful.

Observation 3.7. Since 7 is a random permutation, so is its restriction 0 = 7|x, hence the
probability that X is successful is precisely P(T[X])/q! = 1/(q — 2)\.

Definition 3.8. Let H(T, ) be the hypergraph whose vertex set is E(T') and each edge of H(T,)
corresponds to the edges of T[X| where X is a successful q-subset (so the number of edges of H(T, )
is the number of successful q-subsets).

Notice that H(T, ) is (g) -uniform. The following lemma establishes some important properties of

H(T,7) that hold whp. Its proof relies crucially on the orthogonality property of P(T'[X]).

Lemma 3.9. Let m be a randomly chosen permutation of [n]. Whp, H(T,7) has an induced
subhypergraph H' with at least (g) — 3n'? wertices such that:

n—2
(i) The degree of each vertex of H' is (1 + 0(1))((;:;))! ;

(ii) The co-degree of each pair of vertices of H' is at most n9~3.

Proof. We start with the second assertion, which is not probabilistic. Consider two vertices of
H(T,7), i.e., two edges of T, say (u,v) and (w, z). The total number of g-subsets of vertices of T
that contain both of these edges is (Z:i) if {u,v}N{w,z} =0 and is (Z:??:) if {u,v}N{w,z} #0. In
any case, we see that the number of g-sets of vertices containing both (u,v) and (w, z) is less than
n9=3 and in particular, the co-degree of (u,v) and (w, z) in H(T, ), which only counts successful
g-sets, is less than n9=3.

For the first assertion, fix a vertex of H(T,r), i.e., an edge e = (u,v) of T. Let d(e) be the
random variable corresponding to the degree of e in H(T, 7). Let X be the g-sets of vertices of
T that contain both u and v and observe that |X| = (2:3) For X € X, consider the indicator
random variable d(X) for the event that X is successful. We have that d(e) = >y d(X). By
Observation 3.7, we have that d(X) ~ Bernoulli(ﬁ) so we obtain that

iy

We show that d(e) is concentrated by considering its variance. To this end, fix two elements of X,
say X and Y, and consider Cov(d(X),d(Y)). Notice that as each of X and Y contain both u and v,
we have that | X NY| > 2. Now, if |[X NY| > 3 we shall use the trivial bound Cov(d(X),d(Y)) <1
(recall that d(X) and d(Y') are indicators). So, suppose that |[X NY| = 2, i.e., they to not have
common elements other than v and v. Now, suppose that we are given d(X), i.e., we are told
whether X is successful or not. Moreover, suppose that we are revealed all the values of © on
V(T)\ (Y \ {u,v}) (notice that this data reveals all the values of m on X, so in particular, it
reveals d(X)). So, we know 7(u) and m(v), we know the positions in 7 occupied by Y \ {u,v}
but we do not know the internal ordering of the elements of Y \ {u,v} within these positions. As
the family P(T'[Y]) is orthogonal, there is precisely one possible ordering of Y \ {u,v} for which
wly € P(T[Y]), i.e., for which Y is successful. Thus, the probability that Y is successful, given
d(X), is precisely 1/(q — 2)!, i.e., the same a priori probability, so d(X) and d(Y") are independent.



In particular, Cov(d(X),d(Y)) = 0. We now have

Varld(e)] = Y Var[d(X)]+2 > Cov(d(X),d(Y))
Xex X),(};eyé\’

qg—1
<E[d(e)] +2)_ Y Cov(d(X),d(Y))
A

=E[d(e)] +2> Y Cov(d(X),d(Y))
=R

q—1
< Eld(e)] +2 Z n2a—2-t
t=3

< E[d(e)] + 2qn?a—°
S 3qn2q—5

where in the last step we have used that ¢ > 3 and in the third step we have used that the number
of unordered pairs X,Y € X with | X NY| =t is smaller than n'n4=!1=tn9=1=t  We may now apply
Chebyshev’s inequality and obtain that

2q—5

Pr[|d(e) — Eld(e)] | > n?™*'] < :31(127;—4.2 =0(n %),

As T has fewer than n? edges, we obtain from the last inequality and from Markov’s inequality
that whp, all but O(n'?) < n'® vertices e of H(T,7) have |d(e) — E[d(e)]| < n?~2!. Consider
then the set F' of at most n'-®> vertices e of H(T, ) which violate the last inequality. For a vertex
v € V(T) we say that v is dangerous if v is an endpoint of at least n%® elements of F. So, there
are fewer than 2n%? dangerous vertices. Remove from H(T,7) all elements of F and also remove
all vertices e of H(T,m) such that e is an endpoint of a dangerous vertex of T. Let H' be the
induced subhypergraph of H (T, ) obtained after the removal. As we remove at most |F| + 2n!'-?
vertices from H (T, 7), we have that H' contains at least (g) —3n!"? vertices. Clearly, the co-degree
of any two vertices in H' is not larger than it is in H. By how much might a degree of a vertex
e = (u,v) in H' decrease? It might belong to a successful g-subset which contains a dangerous
vertex of T, but there are only at most 2n%9n973 = 2n9=2! such ¢-subsets. As u and v are non-
dangerous, there may additionally be at most 2n%¢ vertices (z,y) of H(T, ) where (z,y) € F and
Hz,y} N {u,v}| = 1. But then these may cause a further reduction of at most 2n%6n9=3 < na=21
(where the inequality holds for all n > 11) in the degree of e. Additionally, it may be that (u,v)
belongs to g-subsets which contain an element (z,y) of F such that {x,y} N {u,v} = 0. But then
these may cause a further reduction of at most n!'°n9=% < n9=21 in the degree of e. It now follows
that all the vertices of H' have degree E[d(e)] & 5n9~%!, which is E[d(e)](1 + o(1)). O

We use Lemma 3.9 to lower-bound the number of pairwise edge-disjoint triangles in 77 (7) in
terms of ( and n.



Lemma 3.10. Let ¢ > 4 and suppose that ¢ > 0 is such that for each QQ € 7T, it holds that

avgp(o)(Q) > . Then whp it holds that Tr () has at least (1 — o(1)) (Cq Ty pairwise edge disjoint
triangles.

Proof. Let m be a randomly chosen permutation of [n]. Define the following random variable for
each g-subset X of vertices of T":

o avgp(rix))(T[X]) if X is successful,
o otherwise .

Let R denote the sum of X* taken over all g-subsets of vertices T'. Notice that by its definition,
avg p(rx))(T1X]) is the expected value of v3(T[X]L(7|x)) taken over all permutations of the or-
thogonal family P(T'[X]), so R is the expected sum of v3(T'[X](7|x)) taken over all successful
g-subsets of vertices. By Observation 3.7 and by our assumption that avgp(rx))(T[X]) > ¢ we

have that
_ o wgprx) (TX]) n ¢
=2 BT = 0 oy > (e

We next show that R is concentrated by considering its variance. To this end, notice that R is
a sum of (Z) = ©(nY) nonnegative random variables, each bounded from above by the constant

q(q — 1)/6. Indeed, a fractional triangle packing of a graph on ¢ vertices cannot be more than %
of the number of its edges, so avgp(rx])(T[X]) < ¢(g —1)/6. To show that Var[R] = o(E[R]?) it
is therefore enough to show that the number of pairs X,Y such that Cov(X*,Y*) # 0 is o(n??).
Indeed, observe that the permutations 7|x and 7|y are independent whenever X and Y are disjoint
sets of vertices. As each X is not disjoint with at most q(Zj) possible Y, we have that the number
of pairs X,Y such that Cov(X*,Y*) # 0 is only O(n??"1), as required. As we have shown that
Var[R] = o(E[R]?), it follows from Chebyshev’s inequality that R — E[R] is o(E[R]) whp and in
particular, R > (1 —o(1)) (" )(q 51 Whp.

By Lemma 3 9 and from the previous paragraph we have that whp, 7 is such that: (a) R >
(1-— 0(1))(" i; (b) H(T, ) has an induced subhypergraph H’ on at least (1) — 3n'? vertices
satisfying bot&q 1tems of Lemma 3.9. For the remainder of the proof we assume that 7 is such that
(a) and (b) hold.

Notice that H’ satisfies the conditions of Lemma 2.1 with k = (%), ¢t = (" 2)/(q — 2)! and
v =o(1). Indeed, H' has (3)(1—o(1)) vertices and by Lemma 3.9, the degree of every vertex of H’
is (14+0(1)) (2:22) /(q—2)! while the co-degree of every pair of vertices of H’' is much smaller, only at
most n?73. So by Lemma 2.1, X'(H') < (1 + 0(1))( )/(q — 2)!. By the definition of H(T,7) and
H', this means that there is a subset W C E(T) of at least ( ) n'? edges, such that the family of
all successful g-sets whose edges are entirely contained in W can be partitioned into x'(H’) parts,
say M, ..., Mgy where for each M;, all g-subsets contained in it are pairwise edge-disjoint.

For 1 <i < x/(H’) let R; denote the contribution to R of the g-subsets in M; and let Ry denote
the contribution to R of the g-subsets that contain an edge in E(T') \ W. Hence, R = Y % )

We first observe that Ry is negligible. As there are only at most 3n'? edges not in W, there are
at most 3n'9n972  g-subsets that contribute to Ry, and recall that they each contribute at most



q(¢ —1)/6, so in total Ry = o(n?). Since R > (1 — o(l))(Z)ﬁ we may assume w.l.o.g. that

1 n\ ¢ g
Ry > (1_0(1))<q>(q2)!2(1—0(1))<q>(2_§)_(1 (1))q(q71).

Recalling that the ¢-sets in M7 are pairwise edge disjoint, we have that 77 (7) has fractional triangle

packing of size v (T (m)) > (1 — 0(1))q(€1n_21). By Lemma 2.2 we therefore obtain that v3(Tr (7)) >

(1- 0(1))qén_21) as well. O
Corollary 3.11. Let ¢ > 4 and suppose that for each Q € T, we can find an orthogonal family of

permutations P = P(Q) such that avgp(g)(Q) > (. Then, invs(n) < (1 + o(1)n? (% - m).

Proof. By Lemma 3.3 and Lemma 3.10, for every n-vertex tournament 7', a random permutation
2

7 of V(T) satisfies whp: (i) |E(TL(7))| = (14 o(1))n?/4. (i) v3(Ty (7)) > (1 — 0(1))%. Fixing

such a 7 which satisfies both requirements, defining § := (/q(¢ — 1) and using

1
invg(T) < (1+ 0(1))n2(§ — g)
as shown in the paragraph following Corollary 3.2, the present corollary follows. O

Following Corollary 3.11, our remaining task is to find ¢ > 4 and ¢ such that (/q(¢ — 1) is as
large as feasibly computable (note: not all ¢ are possible; if ¢ is not a prime power, we do not
have a construction of an orthogonal family of permutations). Let us be more formal about our
computational task: Suppose that ¢ > 4 is such that an orthogonal family of permutations of sets
of order g exists. For Q € Ty, let ((Q) be the maximum of avgp(g)(Q) where P ranges over all
orthogonal families of permutations of V' (Q). Let (;, be the minimum of {(Q) taken over all Q € 7.
Hence, we would like to compute (, or at least obtain a close lower bound for it, as any such lower
bound ¢ can be applied in Corollary 3.11.

So, suppose we are given a database D, of all tournaments on ¢ vertices, each labeled on [g], i.e.,
for each @ € 7Ty, there is precisely one element of D, that is isomorphic to it. For example, such a
database for all ¢ < 10 is given in https://users.cecs.anu.edu.au/~bdm/data/digraphs.html.
Furthermore, suppose that P, is the set of all orthogonal families of permutations of [¢]. Then, for
each Q) € Dy, for each P € P, and for each o € P, we can easily compute the graph ,(¢) and then
construct a linear program to determine v*(Qr(0)), thus determining avgp)(Q), consequently
determining ((Q), consequently determining (,. The number of operations of this approach is at
least |D,||Pylq(q — 1)Ly where L, is the time to run a single linear program; the latter is non-
negligible as the program may have size ©(¢®) (the number of possible triangles in Q(c)). The
values of |D,| follow the sequence OEIS A000568 [1], so we have, e.g., |Di1| = 903753248 and
|Dg| = 191536. We see that already for ¢ = 11 we need to make at least |P11]99412857280 calls to a
linear program of nontrivial size (as most calls involve linear programs with over 100 variables) which
is overwhelmingly huge (even if the search space were to be trimmed by employing some heuristics,
e.g., as we may settle for a lower bound for (;, we don’t need to examine all of the utterly huge |P11],
rather just a few of its members, but even this is not feasible already for a single member). For ¢ = 9
(recall, for ¢ = 10 we do not know of an orthogonal family), the number of calls to a linear program

10



Algorithm 1 Computing a lower bound for ¢,

Require: tournament database D,; orthogonal family P € P,
¢ + o0
for all Q € D, do
best +— —1
loop + 0
while loop < 1000 and best < ¢ do
loop < loop + 1
7 random permutation of [¢]
P* <« {mo : 0 € P}
sum <+ 0
for all 0 € P* do
L G + Qr(o) > Construct the graph Qp (o)
sum <— sum + LPSolve(G) > Compute v*(Qr (o)) via an LP package
avg < sum/(q(q — 1)) > Compute avgp.(Q))
if avg > best then
. best + avg
if best < ¢ then
(< best
return ¢

(again, not a very small one) is |Py|13790592 which becomes feasible if instead of going over all
|Py|, we only scan a few members of it. Similarly, we can do the same for ¢ = 4,5,7,8. Indeed,
this is what our program does; its pseudocode is given in Algorithm 1 and its code can be obtained
from https://github.com/raphaelyuster/decycling/blob/main/decycling_latin.cpp.

As can be seen from the pseudocode, as well as the code, we start with some fixed orthogonal
family P. For example, if ¢ = 9 we use the one in Table 1. For each ) € D, we generate a constant,
say 1000, orthogonal families of the form P* = {mo : 0 € P} where 7 is a random permutation
of [q] and for each such family we compute avgp.(Q), taking the best (i.e., highest over all 1000
trials) result that we find as a lower bound for {(Q), and setting ¢ to be the minimum of these
lower bounds, taken over all ) € D,. We summarize the result of the program runs in Table 2. As
can be seen, for ¢ = 9 we obtain a value of { = % which implies the constant % for % —

¢
) 2q(¢—1)’
completing the proof of Theorem 1.3. U

4 Larger k

In this section we prove Theorem 1.4. Starting with the lower bound, our aim is to construct an
n-vertex tournament 7' for which invy(7) is large.

Lemma 4.1. For all sufficiently large q, there exists a tournament QQ on q vertices such that:

. . 2
(i) inva(Q) > qz —2¢%?;
(it) For any set R of r vertices for which 1.04" > g, it holds that invo(Q[R]) > 1 (3) -

Proof. Let @Q be a random tournament on ¢ vertices. It suffices to prove that each of the two

11



a| < 5~ 2q(q<*1)
41 % | $=o01111
50 % | 45 =0.1075
7| % | 2 ~0.1021
8 || 2| &4 ~0.1006
9| | ET ~0.0992

Table 2: The values of ( < (, for various choices of ¢ obtained from the program whose pseudocode
is given in Algorithm 1, and the resulting constant from Corollary 3.11.

items in the lemma’s statement holds with probability at least, say, %, as then they both hold with
positive probability, implying @)’s existence. As for the first item, the result of de la Vega [9] states
that with probability 1 — o,4(1) it holds that inve(Q) > %(g) —1.73¢%/2, implying in particular that
for all ¢ sufficiently large, with probability at least % it holds that inve(Q) > % —2¢%/2.

For the second item, fix a subset R C V(Q) with » = |R| where 1.04" > ¢. As @ is a random
tournament, so is its sub-tournament Q[R]. Let 7 be a permutation of R and consider Q[R], (),
which, in turn is the undirected random graph G(r, 1). The expected number of edges of Q[R], ()
is therefore %(;) and the probability of this number being smaller than %(g) (which is precisely half
the expectation) is, by Chernoff’s inequality, at most exp(—% (g)) As there are only r! possible ©
to consider, we have that the probability that inva(Q[R]) < 1(5) is at most rlexp(—1(5)). Now,
for any r, the number of possible subsets R is (3), so the probability that (ii) fails is at most

q

r T T 1
Pr[(ii) fails] < Z ) p1e=s2) < q(qr)re_%@ < 1.05" e 5(2) « 3
r
r=llog; o4 4]
where we have used that 1.04” > ¢, that 1.05¢ /16 < 1 and that ¢ is sufficiently large. ]

Let R be an r-vertex tournament and suppose that n is a multiple of . An n-vertex balanced
blowup of R is obtained by replacing each vertex i € V(R) with a set V; of size n/r (all the V;’s are
pairwise disjoint), and constructing a tournament with vertex set U;cy(g) Vi as follows. For each
edge (i,j) € E(R), all edges are oriented from V; to V; (we call such edges outer), and for each V;,
all edges with both endpoints in V; are oriented arbitrarily (we call such edges inner).

Lemma 4.2. Suppose R is an r-vertex tournament having invo(R) = m and let Z be an n-vertex
balanced blowup of a R. Then for any permutation o of V(Z), the graph Z (o) contains at least
mn?/r? outer edges.

Proof. Consider some permutation o of V(Z) and the corresponding Zr,(0). Recall that V(Z) is
the disjoint union of r sets V; for i € V(R) and let W be a transversal of the V;’s. Then, by
construction, Z[W] is isomorphic to R. So, the subgraph of Z1 (o) induced by W contains at least
inve(R) = m outer edges. By double-counting over all possible transversals, we have that Z (o)
contains at least m(n/r)?/(n/r)"=2 = mn?/r? outer edges. O

Fix a tournament @) on vertex set [q] where ¢ = k?, satisfying both items of Lemma 4.1. Let
T be an n-vertex balanced blowup of @) (we may assume than n is a multiple of ¢ as removing a
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constant number of vertices from a tournament 7 on n vertices only decreases invy(T) by o(n?)
so does not affect the asymptotic claim of Theorem 1.4). We will show that invg(T) is at least as
large as the claimed lower bound in Theorem 1.4.

Proof of Theorem 1.4, lower-bound. Suppose {Xi,...,X;} is a k-decycling set of T" where t =
invg (7). Listing the elements of T in the order they appear in the resulting transitive tourna-
ment corresponds to some permutation 7 of V(T') for which all edges of T () have been reversed.
We will show that we need ¢ to be rather large in order to reverse all edges of T7.(7) for any possible
m. So, fix some such 7 and partition the edges of Tp(7) into two parts Fi, and Eyy; where the
former are the edges of T (7) that are inner edges of T" and the latter are the edges of T7 () that
are outer edges of T'.

We next lower-bound |Eyy|. By Lemma 4.2, using R = Q, r = ¢, m > ¢%/4 — 2¢*/? (which
follows from Lemma 4.1 Part (i)) Z =T and o = 7, we have

2 /2 2 2
n® (q 32y _ N 2n
|Eout‘2qz(42q/>_4k' (1)

Now, consider some X from the aforementioned k-decycling set. We will show that X reverses
at most (g) — Q(k?/log* k) edges of Eoy. Let |X| = z and suppose first that z < k/2. In this
case we can use the trivial fact that X reverses at most (”2’) < k%/4 edges. Assume therefore that
k/2 < x < k. Recall that V(T') consists of ¢ parts Vi,...,V,. Let W; = V;NX for 1 <i < gq.
Suppose next that some W; has size at least k/ log? k. In this case, we see that X induces at least
(|V2V"|) inner edges, implying that X reverses at most (g) — Q(k?/1log* k) edges of Ey. Thus, we
may assume that 0 < |[W;| < k/log2 kforalll <:<gq.

Partition the W; into bunches according to their size. For 1 < j < |logk| we say that W;
is in bunch j if 2971 < |W;| < 27. Letting B; be the union of all the W; in bunch j, we have
Z]Lli%kj |Bj| = x. Let j* = |[logk — 3loglog k]. Consider first the case that Z;;l |Bj| < z/2. In
this case, the last [3loglog k]| bunches contain together at least x/2 vertices of X. But since in
each such bunch it holds that |W;| > 27" ~! = Q(k/log® k), it induces at least Q(k2/log® k) inner
edges. Furthermore, as each |W;| < k/log? k and since /2 > k/4, there are Q(log? k) such W; in
the last [3loglog k] bunches, so together they induce at least Q(log? k - k2/log® k) = Q(k2/ log® k)
inner edges, implying that X reverses at most (g) — Q(k%/log* k) edges of Egy.

We remain with the case that E?=1 |Bj| > x/2, so there is some bunch j with 1 < j < j* for
which |Bj| > z/2j* > x/2logk, and we shall focus on that bunch. Notice that since each W; in
bunch j has size at most 27, this means that the number of W; in bunch j is at least

T - k - k log? k
2t logk = 29t2logk — 20°t2logk — 4

Let R = {i : W; is in bunch j}. Notice that R C [q] = V(Q) and that r = |R| > 2j+2klogk > log:k

by the last inequality. Observe that if i € R then |W;| > 2771 so let W} C W; be chosen such that

|W;| = 2/-1. By Lemma 4.1, item (ii), we have that invo(Q[R]) > 1(}). Notice also that the union

of the W for i € R is an 2! balanced blowup of Q[R]. Hence, by Lemma 4.2, with R = R[Q)],
m > %(g), Z being the subgraph of T[X] induced by the union of the W}, and o = 7"V we

h (3
have that Zp (o) contains at least %(g) 227=2 outer edges. Notice that all of these outer edges do
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not appear in T7(m). It follows that X reverses at most

MY L < (B 1 k 2 s _ (¥ 2 /7.2
T < T o1 7 J = —
<2> 4 <2>2 - <2> 10 <2y+2 1ogk> 2 9 Q(k*/log” k)

edges of Eoyt.
It now follows from (1) and form the fact that each X element in the decycling set reverses at
most (g) — Q(k%/log* k) edges of Eqoyt, that the number of elements of the decycling set must be

n? 2n?

: : 4 Tk
invg(n) > invi(T) > (g) O g k)

The existence of §; > 0 for all k > kg is now guaranteed since for all sufficiently large k&,

_ % N 1
(5) — Q(k?/log* k) ~ 2k(k—1)

=

O

We now turn to proving the upper bound in Theorem 1.4. We start with the following lemma
which is analogous to Lemma 3.1.

Lemma 4.3. Let G be a directed graph and suppose that k > 4 is even and that the underlying
undirected graph of G has a (not necessarily induced) copy of Ky i, or that k > 5 is odd and that the
underlying undirected graph of G has a (not necessarily induced) copy of Kyi1,—1. Let H denote
the corresponding copy. Then, there are four sets of vertices X, Y, Z,W of k vertices each, such that
inverting {X,Y, Z, W} reverses the direction of the edges of H in G without affecting the direction
of any other edge of G.

Proof. Suppose first that k£ is even and that H is a copy of K} . Consider the bipartition of
H, denoting the vertices of one part by vi,...,vr and the other part by ui,...,u. Let A =
{v1,-.vkpet, B = {vgjaq1, -5 vk, C = {ua, .. uppet, D = {ugjoq1, .-, u}. Inverting {AU
C,AUD,BUC, BU D} reverses the direction of the k? edges of H without affecting the direction
of any other edge of G. Suppose next that k is odd and that H is a copy of Kj41 1. Consider
the bipartition of H, denoting the vertices of one part by wvi,...,vpy1 and the other part by
up, ..o up—1. Let A = {v1,.. 004120 B = {Vagn) 24155 V1), C = {ur, . ug—1)2),
D = {ug_1)/241,---,ux}. Inverting {AUC, AU D, BUC, BU D} reverses the direction of the
k? — 1 edges of H without affecting the direction of any other edge of G. O

The next lemma is a simple consequence of Turdn’s Theorem and Ramsey’s Theorem.

Lemma 4.4. For every fized k > 3 there exists v > 0 such that in any 2-coloring of the edges of
K., there are at least (1 — o(1))yxn? pairwise edge-disjoint monochromatic copies of Ky, all of the
same color.

Proof. Let ¢ = R(k) < 4* be the diagonal Ramsey number of k. Consider some 2-coloring of
the edges of K, and remove monochromatic edge-disjoint copies of K} until none are left. We
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must have removed at least n?/q? edges as otherwise by Turdn’s Theorem, there is a K, on the
non-removed edges, so a monochromatic K. The result follows for v, = 1/¢?k? as at least half of
the monochromatic removed K}, are of the same color. ]

Proof of Theorem 1.4, upper-bound. Let T be an n-vertex tournament. Considering some random
permutation 7 of V(T), we have that with high probability, |E(TL(7))| = (1 + o(1))n?/4 and
|E(Tr(m))| = (1 + o(1))n?/4. By Lemma 4.4 one of Ty () or Tg(m) has at least (1 — o(1))yxn?
pairwise edge-disjoint copies of Kj. Without loss of generality, assume this is 77 (7). Removing a
set of (1 — o(1))y,n? edge-disjoint copies of K}, from Tp(7) amounts to inverting this amount of
k-sets of vertices, such that after applying these inversions we obtain a tournament 7™ such that
T#(m) has at most (1 + o(1))n?/4 — (1 — 0(1))(’5)%712 edges. By Lemma 4.3 we can repeatedly
invert quartets of k-sets of vertices each, until we obtain a tournament 7** for which T7*(7) has
no Ky (when k is even) or no Ky 41,1 (when k is odd). The number of inversions performed
starting at T* and arriving at T** is therefore precisely 4(|E(T}(7))| — |E(T3*(7))|)/k? if k is even
and precisely 4(|E (T ()| — |E(T;*(7))])/(k* — 1) if k is odd. By the Kovéri-Sés-Turdn Theorem
[15], we have |E(T3*(r))| = O(n®>~'/*). We therefore obtain that

invy(T) < (1+ o(1))n? [% T (jl - (’;’)%) — (1+o(1))n? k - k}

when £ is even and

4

invy(T) < (1 + o(1))n? [w b (i - (’;)fyk) = (1t o(1n? | 5 - k]

for a suitable €, > 0. As T is an arbitrary n-vertex tournament, we obtain (unifying the even and
odd cases of k) that

invg(n) < (1 + o(1))n? [QU{;/QJ - ek] .
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