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Abstract

An inversion of a tournament T is obtained by reversing the direction of all edges with both
endpoints in some set of vertices. Let invk(T ) be the minimum length of a sequence of inversions
using sets of size at most k that result in the transitive tournament. Let invk(n) be the maximum
of invk(T ) taken over n-vertex tournaments. It is well-known that inv2(n) = (1+o(1))n2/4 and
it was recently proved by Alon et al. that inv(n) := invn(n) = n(1+o(1)). In these two extreme
cases (k = 2 and k = n), random tournaments are extremal objects. It is proved that invk(n) is
not attained by random tournaments when k ≥ k0 and conjectured that inv3(n) is (only) attained
by (quasi) random tournaments. It is further proved that (1 + o(1))inv3(n)/n

2 ∈ [ 1
12 , 0.0992)

and (1 + o(1))invk(n)/n
2 ∈ [ 1

2k(k−1) + δk,
1

2⌊k2/2⌋ − ϵk] where ϵk > 0 for all k ≥ 3 and δk > 0 for

all k ≥ k0.
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1 Introduction

In this paper we mainly consider oriented graphs, which are digraphs without loops, digons, or
parallel edges. In particular, we consider tournaments, which are oriented complete graphs. For
an oriented graph D and a set X ⊆ V (D), the inversion of X in D is the oriented graph obtained
from D by reversing the direction of the edges with both endpoints in X; synonymously, we view
an inversion as an operation on D and say that we invert X in D. Notice that inverting a sequence
X1, . . . , Xt results in the same oriented graph for any permutation of that sequence. If inverting
a sequence X1, . . . , Xt results in an acyclic digraph, we say that {X1, . . . , Xt} forms a decycling
set of D. The inversion number of D, denoted inv(D), is the minimum size of a decycling set.
If each element of a decycling set has size at most k, we say that the set is k-decycling and let
invk(D) denote the minimum size of a k-decycling set. We observe that inv(D) = invn(D) where
|V (D)| = n, and that inv2(D) is the size of a minimum feedback edge set of D. The extremal
parameters of interest are inv(n) = invn(n) and invk(n) which, respectively, are the maximum of
inv(D) and invk(D) taken over all oriented graphs with n vertices. When studying these extremal
parameters, we may and will restrict to the class of n-vertex tournaments, as adding edges to D
cannot decrease invk(D).

The parameter inv2(n) is asymptotically well-understood. It is straightforward that any digraph
can be made acyclic by inverting (equivalently, removing) at most half of its edges. Spencer
[17] proved that inv2(n) ≤ 1

2

(
n
2

)
− Ω(n3/2). A probabilistic construction of Spencer [18], later

simplified with an improved constant by de la Vega [9], shows that inv2(n) ≥ 1
2

(
n
2

)
−O(n3/2), hence
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inv2(n) = (1 + o(1))n2/4 and the growth rate below the n2/4 threshold is Θ(n3/2). In fact, it was
shown by Chung and Graham [7] that an n-vertex tournament T has inv2(T ) = (1 + o(1))n2/4 if
and only if it is quasi-random 1.

The study of inv(D) was initiated by Belkhechine [5] and followed by several papers that
considered its computational and extremal aspects [4, 6, 19]. It is not difficult to show that inv(n) ≤
n(1 + o(1)) [2, 4, 6] but obtaining an asymptotically matching lower bound is more involved and
was only recently independently resolved by Alon et al. and by Aubian et al. [2, 3] who proved that
inv(n) ≥ n −

√
2n log(n) 2 for large n, thus establishing that inv(n) = n(1 + on(1)). Moreover,

their proof shows that a random n-vertex tournament T almost surely has inv(T ) = n(1 + o(1)).
As the extreme cases (k = 2 and k = n) are solved up to low order terms, and as random

tournaments are extremal objects in both of these cases, one wonders what happens for other k.
Mainly, what is the asymptotic behavior of invk(n)? Is it always the case that random tournaments
are extremal objects?

Fix k ≥ 3. It is readily seen that invk(n) ≥ (1 + o(1))n2/2k(k − 1). Indeed, as the minimum
feedback edge set of a tournament T has size inv2(T ), and since each element in a k-decycling set
of T changes the direction of at most

(
k
2

)
edges, we have that invk(T ) ≥ inv2(T )/

(
k
2

)
and the claim

holds by recalling that inv2(n) = (1 + on(1))n
2/4. In fact, it is not difficult to prove that random

tournaments attain this bound whp 3, as the following proposition shows.

Proposition 1.1. For a random n-vertex tournament T , invk(T ) = (1 + o(1))n2/2k(k − 1) whp.

We conjecture that this bound is asymptotically tight for k = 3 and is attained only by quasi-
random (hence also by random) tournaments.

Conjecture 1.2. inv3(n) = (1 + o(1))n
2

12 . Moreover, an n-vertex tournament T has inv3(T ) =

(1 + o(1))n
2

12 if and only if it is quasi-random.

Note that Conjecture 1.2 actually consists of two distinct assertions and a proof of each one does
not necessarily imply the other. Determining the asymptotic behavior of inv3(n) seems challenging.
Our first main result gives an upper bound which is not far from the conjectured value.

Theorem 1.3. inv3(n) ≤ 257
2592(1 + o(1))n2 .

Since inv3(n) ≥ (1 + o(1))n
2

12 , we have that (1 + o(1))inv3(n)/n
2 ∈ [ 112 , 0.0992).

As for larger fixed k, we are able to show that starting from some given k0, the lower bound
(1+ o(1))n2/2k(k− 1) is, perhaps surprisingly, not tight. This is a consequence of the proof of our
second main result, which gives upper and lower bounds for invk(n).

Theorem 1.4. For all k ≥ 3 there exists ϵk > 0 such that invk(n) ≤ ( 1
2⌊k2/2⌋ − ϵk)(1 + o(1))n2.

On the other hand, there exists k0 such that for all k ≥ k0 there exists δk > 0 such that invk(n) ≥
( 1
2k(k−1) + δk)(1 + o(1))n2.

Note that whenever k ≥ k0 in Theorem 1.4, we have δk > 0, so together with Proposition 1.1
this implies that for k ≥ k0, tournaments that attain invk(n) are far from random. On the other
hand, notice that Conjecture 1.2 asserts that we cannot have k0 = 3 in Theorem 1.4.

1More formally, when discussing quasi-randomness we need to consider infinite sequences of tournaments; see [7].
2Whenever the base of a logarithm is not specified, it is assumed to be 2.
3Throughout this paper, whp means “with probability tending to one as n tends to infinity”.
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Problem 1.5. Find the smallest k0 for which the lower bound statement in Theorem 1.4 holds.

The rest of this paper proceeds as follows: In Section 2 we introduce some definitions and collect
some known tools that are needed for the proofs. We consider the case k = 3 in Section 1.3 where
we prove Theorem 1.3. In Section 4 we consider larger k and prove Theorem 1.4.

2 Preliminaries

This section presents several definitions and tools required for the proofs of our main results.

2.1 Hypergraph coloring

Recall that a k-uniform hypergraph is a collection of k-sets (the edges) of some n-set (the vertices).
The degree d(x) of a vertex x in a hypergraph is the number of edges containing x and the co-degree
d(x, y) of a pair of distinct vertices x, y is the number of edges containing both. A matching in a
hypergraph is a set of pairwise disjoint edges. The chromatic index of a hypergraph H, denoted
χ′(H), is the smallest integer q such that the set of edges of H can be partitioned into q matchings.
The following result of Pippenger and Spencer [16] gives sufficient conditions on H which guarantee
that χ′(H) is close to the maximum degree of H.

Lemma 2.1 ([16]). For an integer k ≥ 3 and a real γ > 0 there exists a real β = β(k, γ) so that
the following holds: If a k-uniform hypergraph H has the following properties for some t:
(i) (1− β)t < d(x) < (1 + β)t holds for all vertices,
(ii) d(x, y) < βt for all distinct x and y,
then χ′(H) ≤ (1 + γ)t.

2.2 Digraphs, permutations, and random graphs

The edge-set of every digraph D is the disjoint union of the edge sets of two directed acyclic
subgraphs. Indeed, consider some permutation π of V (D) (here a permutation is a bijective function
π : V (D) → [|V (D)|]). Let DL(π) be the spanning subgraph of D where (i, j) ∈ E(DL(π))
if and only if (i, j) ∈ E(D) and π(i) < π(j). Let DR(π) be the spanning subgraph of D where
(i, j) ∈ E(DR(π)) if and only if (i, j) ∈ E(D) and π(i) > π(j). Since E(DR(π))∪E(DL(π)) = E(D),
we can cover the edges of D using just two directed acyclic subgraphs of D. When referring to
DL(π) and DR(π) it it convenient to view them as undirected simple graphs, but recalling that they
correspond to edges of T going from left to right in the case of DL(π) or from right to left in the
case of DR(π).

An n-vertex random tournament is the probability space T (n) of tournaments on vertex set [n],
obtained by orienting the edges of Kn at random (i.e., each direction is decided with a fair coin flip)
and all

(
n
2

)
choices are independent. By definition, for each given permutation π of [n], if T ∼ T (n)

then each of TL(π) and TR(π) is distributed as the binomial random graph G(n, 12).

Proof of Proposition 1.1. Fix a permutation π of [n]. Let T ∼ T (n) and notice that since TL(π) ∼
G(n, 12), it has (1 + o(1))n2/4 edges, whp. By the result of Frankl and Rödl [11] Theorem 1.1,
applied to the hypergraph obtained from G(n, 12) where the vertices of the hypergraph are the
edges of G(n, 12) and the edges of the hypergraph are the copies of Kk, G(n, 12) can be almost
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entirely packed with pairwise edge-disjoint copies of Kk, whp. Equivalently, this means that whp
we can find a collection C of ((1 + o(1))n2/4)/

(
k
2

)
sets of vertices, each of size either k or 2, such

that (i) any pair of sets in C intersect in at most one vertex; (ii) each edge of TL(π) is contained
in precisely one set of C; (iii) each edge of TR(π) is not contained in any set of C. Therefore, C
forms a decycling set of T .

2.3 Fractional packing

For an undirected graph G, let
(
G
k

)
denote the set of all Kk copies of G (namely, subgraphs of G

that are isomorphic to Kk). A function ϕ from
(
G
k

)
to [0, 1] is a fractional Kk-packing of G if for

each edge of G, the sum of the values of ϕ taken over all Kk-copies that contain that edge is at
most 1. The value of ϕ is

|ϕ| =
∑

H∈(Gk)

ϕ(H)

and ν∗k(G) is the maximum of |ϕ| taken over all fractional Kk-packings of G. A Kk-packing of G
is a fractional Kk-packing whose image is included in {0, 1}. Equivalently, it is a set of pairwise
edge-disjoint copies of Kk. Letting νk(G) denote the maximum value of a Kk-packing of G, we
have ν∗k(G) ≥ νk(G). An important result of Haxell and Rödl [13] (see also [20]) shows that the
converse inequality holds up to an additive error term which is negligible for dense graphs.

Lemma 2.2 ([13]). For every ε > 0 and for every positive integer k ≥ 3 there exists N = N(k, ε)
such that for any graph G with n > N vertices, ν∗k(G)− νk(G) ≤ εn2.

3 Triangle inversions

In this section we prove Theorem 1.3. We begin with a lemma that will be useful to “finish
off” decycling a tournament which already has a relatively small feedback edge set, using triangle
inversions.

Lemma 3.1. Let G be a directed graph whose underlying undirected graph has a (not necessarily
induced) 4-cycle on vertices a, b, c, d. Then, there are two sets of vertices X,Y of three vertices
each, such that inverting {X,Y } reverses the direction of the edges of this 4-cycle in G without
affecting the direction of any other edge of G.

Proof. Assume that the edges of the 4-cycle are ab, bc, cd, ad. Then take X = {a, b, c}, Y = {a, c, d},
and observe that inverting {X,Y } reverses the direction of the edges of the 4-cycle without affecting
the direction of any other edge of G.

Corollary 3.2. Let T ∗ be an n-vertex tournament and suppose that |E(T ∗
L(π))| ≤ αn2. Then,

inv3(T
∗) ≤ αn2/2 + o(n2).

Proof. By Lemma 3.1 we can repeatedly invert pairs of three-sets of vertices each, until we obtain a
tournament T ∗∗ for which T ∗∗

L (π) has no four-cycle. The number of inversions performed starting at
T ∗ and arriving at T ∗∗ is therefore precisely (|E(T ∗

L(π))|−|E(T ∗∗
L (π))|)/2. By the Kovári-Sós-Turán

Theorem, we have |E(T ∗∗
L (π))| ≤ (n3/2 + n)/2, hence the corollary.
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A high level approach to proving Theorem 1.3 follows.
Suppose that T is a given n-vertex tournament. We prove that a randomly chosen permutation

π has the following two properties whp: (i) TL(π) has roughly n2/4 edges; (ii) TL(π) has many
(say, roughly βn2) pairwise edge-disjoint triangles. Once we show these properties, we can reverse
the claimed set of pairwise edge-disjoint triangles to obtain a tournament T ∗ for which T ∗

L(π) has
roughly αn2 edges where α = 1

4 − 3β. We then apply Corollary 3.2 to reverse the edges of T ∗
L(π)

and obtain a decycling set of T of order roughly βn2 + αn2/2 = (18 −
β
2 )n

2.
Proving that a random permutation satisfies (i) is a standard argument, but proving (ii) for a

reasonable value of β requires careful analysis, detailed later. The main difficulty stems from the
fact that we do not know much about the structure of TL(π).

For the rest of this section we fix a tournament T on vertex set [n]. We start by proving (i)
above.

Lemma 3.3. Let π be a randomly chosen permutation of [n]. Whp, |E(TL(π))| = (1 + o(1))n2/4.

Proof. Let X(i, j) denote the indicator random variable for the event that ij ∈ E(TL(π)). We
observe that X(i, j) ∼ Bernoulli(12) and that |E(TL(π))| is the sum of X(i, j) taken over all edges
(i, j) ∈ E(T ), so its expected value is

(
n
2

)
/2 = (1 + o(1))n2/4. To show that |E(TL(π))| is concen-

trated, we upper-bound its variance. Notice that if {i, j} ∩ {i′, j′} = ∅, then X(i, j) and X(i′, j′)
are independent and notice that there are fewer than n3 ordered pairs ({i, j}, {i′, j′}) for which
{i, j} ∩ {i′, j′} ≠ ∅. Hence, Var[|E(TL(π))|] ≤ E[|E(TL(π))|] + n3 = o(E[|E(TL(π))|]2). The lemma
now follows from Chebyshev’s inequality.

We now turn to our second task, i.e., showing that TL(π) has many pairwise edge-disjoint
triangles, whp. Let us first see a way to obtain some nontrivial bound for this quantity. In a
recent paper, Gruslys and Letzter [12], improving an earlier result of Keevash and Sudakov [14],
and thereby confirming a conjecture of Erdős, proved that in any two-coloring of the edges of Kn,
there are at least (1− o(1))n2/12 pairwise edge-disjoint monochromatic triangles. Observing that
coloring the edges of TL(π) red and coloring the edges of TR(π) = TL(π

reverse) blue corresponds to
a two-coloring of the edges of Kn, we have by Lemma 3.3 and by the result in [12] that there exists
a permutation π such that |E(TL(π))| = (1 + o(1))n2/4 and TL(π) has at least (1 + o(1))n2/24
pairwise edge-disjoint triangles. Notice that in this argument, we are only using a weaker form
of the result in [12]: that in any two-coloring of the edges of Kn, there are many pairwise edge-
disjoint monochromatic triangles all of the same color. In fact, it was conjectured by Jacobson
(see [10]) that there are always at least (1+ o(1))n2/20 such triangles (there are examples showing
that, if true, the constant 1

20 is optimal), but this is still open, although it was proved in [12]
that the correct constant for this question must be strictly larger than 1

24 . Notice, however, that
even applying the latter form of the question (i.e., Jacobson’s conjectured value) may be stronger
than what we need. Indeed, we will show that this is provably the case; we will show that whp a
random permutation gives that TL(π) has (1+o(1))βn2 edge-disjoint triangles, where the obtained
constant β is significantly larger than (the proven) 1

24 and (the conjectured) 1
20 constants of the

aforementioned monochromatic triangles questions.
We require some further notation and definitions. Let q ≥ 4 be an integer parameter to be set

later (it will be small, but not too small). Let Tq be the set of all tournaments on q vertices. For
a tournament Q ∈ Tq and a permutation σ of V (Q), recall from Subsection 2.3 that ν∗3(QL(σ)) is
the maximum value of a fractional triangle packing of QL(σ).
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Definition 3.4. Let P be a family of permutations of V (Q). Let avgP (Q) be the average of
ν∗3(QL(σ)) where σ is taken over all permutations in P . Let avg(Q) := avgSq

(Q) where Sq is the
family of all possible q! permutations.

It is possible that for some families, avgP (Q) is larger than the overall average avg(Q) while for
other families, it is smaller. It will be beneficial to assign to each tournament Q ∈ Tq, a family P
for which avgP (Q) is as large as possible, under some restrictions whose necessity will be apparent
later (for instance, to make computations feasible, we would like |P | to be small). To formalize
these restrictions, we need the following definition.

Definition 3.5. Let P be a family of permutations of a set X with |X| = q. We call P orthogonal
if for any ordered pair u, v of elements of X and any two positions 1 ≤ i < j ≤ q, there is exactly
one σ ∈ P such that σ(u) = i and σ(v) = j.

We note that the definition implies that the size of an orthogonal family is q(q − 1) (namely,
much smaller than q!). For a prime power q, a construction of an orthogonal family of permutations
can be obtained from certain constructions of q−1 mutually orthogonal Latin squares (aka MOLS).
For example, for q = 9, such a family is shown in Table 1 and is obtained from the (columns of
the) 8 pairwise orthogonal Latin squares of order 9 given in [8], Page 164. An obvious but useful
observation is that if P is an orthogonal family of permutations of X, and σ∗ is any permutation
of [q], the family {σ∗σ : σ ∈ P} of permutations of X is also orthogonal. In particular, by double
counting, this means that if there is an orthogonal family of permutations of V (Q) for a tournament
Q, then there is some such orthogonal family P for which avgP (Q) ≥ avg(Q).

012345678 120453786 201534867 345678012 453786120 534867201
678012345 786120453 867201534 021687354 102768435 210876543
354021687 435102768 543210876 687354021 768435102 876543210
036471825 147582603 258360714 360714258 471825036 582603147
603147582 714258360 825036471 048723561 156804372 237615480
372156804 480237615 561048723 615480237 723561048 804372156
057138246 138246057 246057138 381462570 462570381 570381462
624705813 705813624 813624705 063852417 174630528 285741306
306285741 417063852 528174630 630528174 741306285 852417063
075264183 183075264 264183075 318507426 426318507 507426318
642831750 750642831 831750642 084516732 165327840 273408651
327840165 408651273 516732084 651273408 732084516 840165327

Table 1: An orthogonal family of permutations of X = {0, . . . , 8}.

Hereafter we assume that q is such that a family of orthogonal permutations of sets of size q
exists (e.g., if q = 9 this holds by Table 1). Let ζ ≥ 0 be a real value to be computed later. Suppose
that for each Q ∈ Tq we can find an orthogonal family of permutations P = P (Q) (note: distinct
Q may be assigned distinct P ) such that avgP (Q)(Q) ≥ ζ. We will show how to lower-bound the
number of pairwise edge-disjoint triangles in TL(π) in terms of ζ and n. To this end, we need to
define a certain hypergraph, which depends on T , on π, and on the assignments P (Q) for each
Q ∈ Tq. We next formalize the definition of this hypergraph (Definition 3.8).
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Definition 3.6. For each q-subset X of vertices of T , consider the sub-tournament T [X] ∈ Tq it
induces. We say that X is successful if σ = π|X ∈ P (T [X]). Otherwise, it is unsuccessful.

Observation 3.7. Since π is a random permutation, so is its restriction σ = π|X , hence the
probability that X is successful is precisely P (T [X])/q! = 1/(q − 2)!.

Definition 3.8. Let H(T, π) be the hypergraph whose vertex set is E(T ) and each edge of H(T, π)
corresponds to the edges of T [X] where X is a successful q-subset (so the number of edges of H(T, π)
is the number of successful q-subsets).

Notice that H(T, π) is
(
q
2

)
-uniform. The following lemma establishes some important properties of

H(T, π) that hold whp. Its proof relies crucially on the orthogonality property of P (T [X]).

Lemma 3.9. Let π be a randomly chosen permutation of [n]. Whp, H(T, π) has an induced
subhypergraph H ′ with at least

(
n
2

)
− 3n1.9 vertices such that:

(i) The degree of each vertex of H ′ is (1 + o(1))
(n−2
q−2)

(q−2)! ;

(ii) The co-degree of each pair of vertices of H ′ is at most nq−3.

Proof. We start with the second assertion, which is not probabilistic. Consider two vertices of
H(T, π), i.e., two edges of T , say (u, v) and (w, z). The total number of q-subsets of vertices of T
that contain both of these edges is

(
n−4
q−4

)
if {u, v}∩{w, z} = ∅ and is

(
n−3
q−3

)
if {u, v}∩{w, z} ≠ ∅. In

any case, we see that the number of q-sets of vertices containing both (u, v) and (w, z) is less than
nq−3 and in particular, the co-degree of (u, v) and (w, z) in H(T, π), which only counts successful
q-sets, is less than nq−3.

For the first assertion, fix a vertex of H(T, π), i.e., an edge e = (u, v) of T . Let d(e) be the
random variable corresponding to the degree of e in H(T, π). Let X be the q-sets of vertices of
T that contain both u and v and observe that |X | =

(
n−2
q−2

)
. For X ∈ X , consider the indicator

random variable d(X) for the event that X is successful. We have that d(e) =
∑

X∈X d(X). By
Observation 3.7, we have that d(X) ∼ Bernoulli( 1

(q−2)!) so we obtain that

E[d(e)] =

(
n−2
q−2

)
(q − 2)!

≤ nq−2 .

We show that d(e) is concentrated by considering its variance. To this end, fix two elements of X ,
say X and Y , and consider Cov(d(X), d(Y )). Notice that as each of X and Y contain both u and v,
we have that |X ∩ Y | ≥ 2. Now, if |X ∩ Y | ≥ 3 we shall use the trivial bound Cov(d(X), d(Y )) ≤ 1
(recall that d(X) and d(Y ) are indicators). So, suppose that |X ∩ Y | = 2, i.e., they to not have
common elements other than u and v. Now, suppose that we are given d(X), i.e., we are told
whether X is successful or not. Moreover, suppose that we are revealed all the values of π on
V (T ) \ (Y \ {u, v}) (notice that this data reveals all the values of π on X, so in particular, it
reveals d(X)). So, we know π(u) and π(v), we know the positions in π occupied by Y \ {u, v}
but we do not know the internal ordering of the elements of Y \ {u, v} within these positions. As
the family P (T [Y ]) is orthogonal, there is precisely one possible ordering of Y \ {u, v} for which
π|Y ∈ P (T [Y ]), i.e., for which Y is successful. Thus, the probability that Y is successful, given
d(X), is precisely 1/(q− 2)!, i.e., the same a priori probability, so d(X) and d(Y ) are independent.
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In particular, Cov(d(X), d(Y )) = 0. We now have

Var[d(e)] =
∑
X∈X

Var[d(X)] + 2
∑

X,Y ∈X
X ̸=Y

Cov(d(X), d(Y ))

≤ E[d(e)] + 2

q−1∑
t=2

∑
X,Y ∈X
|X∩Y |=t

Cov(d(X), d(Y ))

= E[d(e)] + 2

q−1∑
t=3

∑
X,Y ∈X
|X∩Y |=t

Cov(d(X), d(Y ))

≤ E[d(e)] + 2

q−1∑
t=3

n2q−2−t

≤ E[d(e)] + 2qn2q−5

≤ 3qn2q−5

where in the last step we have used that q ≥ 3 and in the third step we have used that the number
of unordered pairs X,Y ∈ X with |X ∩ Y | = t is smaller than ntnq−1−tnq−1−t. We may now apply
Chebyshev’s inequality and obtain that

Pr
[
|d(e)− E[d(e)] | ≥ nq−2.1

]
≤ 3qn2q−5

n2q−4.2
= Θ(n−0.8) .

As T has fewer than n2 edges, we obtain from the last inequality and from Markov’s inequality
that whp, all but O(n1.2) < n1.5 vertices e of H(T, π) have |d(e) − E[d(e)]| ≤ nq−2.1. Consider
then the set F of at most n1.5 vertices e of H(T, π) which violate the last inequality. For a vertex
v ∈ V (T ) we say that v is dangerous if v is an endpoint of at least n0.6 elements of F . So, there
are fewer than 2n0.9 dangerous vertices. Remove from H(T, π) all elements of F and also remove
all vertices e of H(T, π) such that e is an endpoint of a dangerous vertex of T . Let H ′ be the
induced subhypergraph of H(T, π) obtained after the removal. As we remove at most |F | + 2n1.9

vertices from H(T, π), we have that H ′ contains at least
(
n
2

)
− 3n1.9 vertices. Clearly, the co-degree

of any two vertices in H ′ is not larger than it is in H. By how much might a degree of a vertex
e = (u, v) in H ′ decrease? It might belong to a successful q-subset which contains a dangerous
vertex of T , but there are only at most 2n0.9nq−3 = 2nq−2.1 such q-subsets. As u and v are non-
dangerous, there may additionally be at most 2n0.6 vertices (x, y) of H(T, π) where (x, y) ∈ F and
|{x, y} ∩ {u, v}| = 1. But then these may cause a further reduction of at most 2n0.6nq−3 < nq−2.1

(where the inequality holds for all n ≥ 11) in the degree of e. Additionally, it may be that (u, v)
belongs to q-subsets which contain an element (x, y) of F such that {x, y} ∩ {u, v} = ∅. But then
these may cause a further reduction of at most n1.5nq−4 < nq−2.1 in the degree of e. It now follows
that all the vertices of H ′ have degree E[d(e)]± 5nq−2.1, which is E[d(e)](1 + o(1)).

We use Lemma 3.9 to lower-bound the number of pairwise edge-disjoint triangles in TL(π) in
terms of ζ and n.
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Lemma 3.10. Let q ≥ 4 and suppose that ζ ≥ 0 is such that for each Q ∈ Tq it holds that

avgP (Q)(Q) ≥ ζ. Then whp it holds that TL(π) has at least (1 − o(1)) ζn2

q(q−1) pairwise edge-disjoint
triangles.

Proof. Let π be a randomly chosen permutation of [n]. Define the following random variable for
each q-subset X of vertices of T :

X∗ =

{
avgP (T [X])(T [X]) if X is successful,

0 otherwise .

Let R denote the sum of X∗ taken over all q-subsets of vertices T . Notice that by its definition,
avgP (T [X])(T [X]) is the expected value of ν∗3(T [X]L(π|X)) taken over all permutations of the or-
thogonal family P (T [X]), so R is the expected sum of ν∗3(T [X]L(π|X)) taken over all successful
q-subsets of vertices. By Observation 3.7 and by our assumption that avgP (T [X])(T [X]) ≥ ζ we
have that

E[R] =
∑
X

E[X∗] =
∑
X

avgP (T [X])(T [X])

(q − 2)!
≥

(
n

q

)
ζ

(q − 2)!
.

We next show that R is concentrated by considering its variance. To this end, notice that R is
a sum of

(
n
q

)
= Θ(nq) nonnegative random variables, each bounded from above by the constant

q(q − 1)/6. Indeed, a fractional triangle packing of a graph on q vertices cannot be more than 1
3

of the number of its edges, so avgP (T [X])(T [X]) ≤ q(q − 1)/6. To show that Var[R] = o(E[R]2) it

is therefore enough to show that the number of pairs X,Y such that Cov(X∗, Y ∗) ̸= 0 is o(n2q).
Indeed, observe that the permutations π|X and π|Y are independent whenever X and Y are disjoint
sets of vertices. As each X is not disjoint with at most q

(
n−1
q−1

)
possible Y , we have that the number

of pairs X,Y such that Cov(X∗, Y ∗) ̸= 0 is only O(n2q−1), as required. As we have shown that
Var[R] = o(E[R]2), it follows from Chebyshev’s inequality that R − E[R] is o(E[R]) whp and in
particular, R ≥ (1− o(1))

(
n
q

) ζ
(q−2)! whp.

By Lemma 3.9 and from the previous paragraph we have that whp, π is such that: (a) R ≥
(1 − o(1))

(
n
q

) ζ
(q−2)! ; (b) H(T, π) has an induced subhypergraph H ′ on at least

(
n
2

)
− 3n1.9 vertices

satisfying both items of Lemma 3.9. For the remainder of the proof we assume that π is such that
(a) and (b) hold.

Notice that H ′ satisfies the conditions of Lemma 2.1 with k =
(
q
2

)
, t =

(
n−2
q−2

)
/(q − 2)! and

γ = o(1). Indeed, H ′ has
(
n
2

)
(1− o(1)) vertices and by Lemma 3.9, the degree of every vertex of H ′

is (1+o(1))
(
n−2
q−2

)
/(q−2)! while the co-degree of every pair of vertices of H ′ is much smaller, only at

most nq−3. So by Lemma 2.1, χ′(H ′) ≤ (1 + o(1))
(
n−2
q−2

)
/(q − 2)!. By the definition of H(T, π) and

H ′, this means that there is a subset W ⊆ E(T ) of at least
(
n
2

)
−3n1.9 edges, such that the family of

all successful q-sets whose edges are entirely contained in W can be partitioned into χ′(H ′) parts,
say M1, . . . ,Mχ′(H′) where for each Mi, all q-subsets contained in it are pairwise edge-disjoint.

For 1 ≤ i ≤ χ′(H ′) let Ri denote the contribution to R of the q-subsets in Mi and let R0 denote

the contribution to R of the q-subsets that contain an edge in E(T ) \W . Hence, R =
∑χ′(H′)

i=0 Ri.
We first observe that R0 is negligible. As there are only at most 3n1.9 edges not in W , there are
at most 3n1.9nq−2 q-subsets that contribute to R0, and recall that they each contribute at most
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q(q − 1)/6, so in total R0 = o(nq). Since R ≥ (1− o(1))
(
n
q

) ζ
(q−2)! we may assume w.l.o.g. that

R1 ≥
1

χ′(H ′)
(1− o(1))

(
n

q

)
ζ

(q − 2)!
≥ (1− o(1))

(
n

q

)
ζ(

n−2
q−2

) = (1− o(1))
ζn2

q(q − 1)
.

Recalling that the q-sets in M1 are pairwise edge disjoint, we have that TL(π) has fractional triangle

packing of size ν∗3(TL(π)) ≥ (1− o(1)) ζn2

q(q−1) . By Lemma 2.2 we therefore obtain that ν3(TL(π)) ≥
(1− o(1)) ζn2

q(q−1) as well.

Corollary 3.11. Let q ≥ 4 and suppose that for each Q ∈ Tq we can find an orthogonal family of

permutations P = P (Q) such that avgP (Q)(Q) ≥ ζ. Then, inv3(n) ≤ (1 + o(1)n2
(
1
8 −

ζ
2q(q−1)

)
.

Proof. By Lemma 3.3 and Lemma 3.10, for every n-vertex tournament T , a random permutation

π of V (T ) satisfies whp: (i) |E(TL(π))| = (1 + o(1))n2/4. (ii) ν3(TL(π)) ≥ (1− o(1)) ζn2

q(q−1) . Fixing

such a π which satisfies both requirements, defining β := ζ/q(q − 1) and using

inv3(T ) ≤ (1 + o(1))n2(
1

8
− β

2
)

as shown in the paragraph following Corollary 3.2, the present corollary follows.

Following Corollary 3.11, our remaining task is to find q ≥ 4 and ζ such that ζ/q(q − 1) is as
large as feasibly computable (note: not all q are possible; if q is not a prime power, we do not
have a construction of an orthogonal family of permutations). Let us be more formal about our
computational task: Suppose that q ≥ 4 is such that an orthogonal family of permutations of sets
of order q exists. For Q ∈ Tq, let ζ(Q) be the maximum of avgP (Q)(Q) where P ranges over all
orthogonal families of permutations of V (Q). Let ζq be the minimum of ζ(Q) taken over all Q ∈ Tq.
Hence, we would like to compute ζq or at least obtain a close lower bound for it, as any such lower
bound ζ can be applied in Corollary 3.11.

So, suppose we are given a database Dq of all tournaments on q vertices, each labeled on [q], i.e.,
for each Q ∈ Tq, there is precisely one element of Dq that is isomorphic to it. For example, such a
database for all q ≤ 10 is given in https://users.cecs.anu.edu.au/~bdm/data/digraphs.html.
Furthermore, suppose that Pq is the set of all orthogonal families of permutations of [q]. Then, for
each Q ∈ Dq, for each P ∈ Pq and for each σ ∈ P , we can easily compute the graph QL(σ) and then
construct a linear program to determine ν∗(QL(σ)), thus determining avgP (Q)(Q), consequently
determining ζ(Q), consequently determining ζq. The number of operations of this approach is at
least |Dq||Pq|q(q − 1)Lq where Lq is the time to run a single linear program; the latter is non-
negligible as the program may have size Θ(q3) (the number of possible triangles in QL(σ)). The
values of |Dq| follow the sequence OEIS A000568 [1], so we have, e.g., |D11| = 903753248 and
|D9| = 191536. We see that already for q = 11 we need to make at least |P11|99412857280 calls to a
linear program of nontrivial size (as most calls involve linear programs with over 100 variables) which
is overwhelmingly huge (even if the search space were to be trimmed by employing some heuristics,
e.g., as we may settle for a lower bound for ζq, we don’t need to examine all of the utterly huge |P11|,
rather just a few of its members, but even this is not feasible already for a single member). For q = 9
(recall, for q = 10 we do not know of an orthogonal family), the number of calls to a linear program

10



Algorithm 1 Computing a lower bound for ζq
Require: tournament database Dq; orthogonal family P ∈ Pq
ζ ←∞
for all Q ∈ Dq do

best← −1
loop← 0
while loop < 1000 and best < ζ do

loop← loop+ 1
π ← random permutation of [q]
P ∗ ← {πσ : σ ∈ P}
sum← 0
for all σ ∈ P ∗ do

G← QL(σ) ▷ Construct the graph QL(σ)
sum← sum+ LPSolve(G) ▷ Compute ν∗(QL(σ)) via an LP package

avg ← sum/(q(q − 1)) ▷ Compute avgP ∗(Q)
if avg > best then

best← avg
if best < ζ then

ζ ← best
return ζ

(again, not a very small one) is |P9|13790592 which becomes feasible if instead of going over all
|P9|, we only scan a few members of it. Similarly, we can do the same for q = 4, 5, 7, 8. Indeed,
this is what our program does; its pseudocode is given in Algorithm 1 and its code can be obtained
from https://github.com/raphaelyuster/decycling/blob/main/decycling_latin.cpp.

As can be seen from the pseudocode, as well as the code, we start with some fixed orthogonal
family P . For example, if q = 9 we use the one in Table 1. For each Q ∈ Dq we generate a constant,
say 1000, orthogonal families of the form P ∗ = {πσ : σ ∈ P} where π is a random permutation
of [q] and for each such family we compute avgP ∗(Q), taking the best (i.e., highest over all 1000
trials) result that we find as a lower bound for ζ(Q), and setting ζ to be the minimum of these
lower bounds, taken over all Q ∈ Dq. We summarize the result of the program runs in Table 2. As

can be seen, for q = 9 we obtain a value of ζ = 67
18 which implies the constant 257

2592 for 1
8 −

ζ
2q(q−1) ,

completing the proof of Theorem 1.3.

4 Larger k

In this section we prove Theorem 1.4. Starting with the lower bound, our aim is to construct an
n-vertex tournament T for which invk(T ) is large.

Lemma 4.1. For all sufficiently large q, there exists a tournament Q on q vertices such that:

(i) inv2(Q) ≥ q2

4 − 2q3/2 ;
(ii) For any set R of r vertices for which 1.04r ≥ q, it holds that inv2(Q[R]) ≥ 1

4

(
r
2

)
.

Proof. Let Q be a random tournament on q vertices. It suffices to prove that each of the two
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q ζ 1
8 −

ζ
2q(q−1)

4 1
3

1
9 ≈ 0.1111

5 7
10

43
400 = 0.1075

7 27
14

5
49 ≈ 0.1021

8 153
56

631
6272 ≈ 0.1006

9 67
18

257
2592 ≈ 0.0992

Table 2: The values of ζ ≤ ζq for various choices of q obtained from the program whose pseudocode
is given in Algorithm 1, and the resulting constant from Corollary 3.11.

items in the lemma’s statement holds with probability at least, say, 2
3 , as then they both hold with

positive probability, implying Q’s existence. As for the first item, the result of de la Vega [9] states
that with probability 1− oq(1) it holds that inv2(Q) ≥ 1

2

(
q
2

)
− 1.73q3/2, implying in particular that

for all q sufficiently large, with probability at least 2
3 it holds that inv2(Q) ≥ q2

4 − 2q3/2.
For the second item, fix a subset R ⊆ V (Q) with r = |R| where 1.04r ≥ q. As Q is a random

tournament, so is its sub-tournament Q[R]. Let π be a permutation of R and consider Q[R]L(π),
which, in turn is the undirected random graph G(r, 12). The expected number of edges of Q[R]L(π)
is therefore 1

2

(
r
2

)
and the probability of this number being smaller than 1

4

(
r
2

)
(which is precisely half

the expectation) is, by Chernoff’s inequality, at most exp(−1
8

(
r
2

)
). As there are only r! possible π

to consider, we have that the probability that inv2(Q[R]) < 1
4

(
r
2

)
is at most r! exp(−1

8

(
r
2

)
). Now,

for any r, the number of possible subsets R is
(
q
r

)
, so the probability that (ii) fails is at most

Pr[(ii) fails] ≤
q∑

r=⌈log1.04 q⌉

(
q

r

)
r!e−

1
8(

r
2) ≤ q(qr)re−

1
8(

r
2) ≤ 1.05r

2
e−

1
8(

r
2) ≪ 1

3

where we have used that 1.04r ≥ q, that 1.05e−1/16 < 1 and that q is sufficiently large.

Let R be an r-vertex tournament and suppose that n is a multiple of r. An n-vertex balanced
blowup of R is obtained by replacing each vertex i ∈ V (R) with a set Vi of size n/r (all the Vi’s are
pairwise disjoint), and constructing a tournament with vertex set ∪i∈V (R)Vi as follows. For each
edge (i, j) ∈ E(R), all edges are oriented from Vi to Vj (we call such edges outer), and for each Vi,
all edges with both endpoints in Vi are oriented arbitrarily (we call such edges inner).

Lemma 4.2. Suppose R is an r-vertex tournament having inv2(R) = m and let Z be an n-vertex
balanced blowup of a R. Then for any permutation σ of V (Z), the graph ZL(σ) contains at least
mn2/r2 outer edges.

Proof. Consider some permutation σ of V (Z) and the corresponding ZL(σ). Recall that V (Z) is
the disjoint union of r sets Vi for i ∈ V (R) and let W be a transversal of the Vi’s. Then, by
construction, Z[W ] is isomorphic to R. So, the subgraph of ZL(σ) induced by W contains at least
inv2(R) = m outer edges. By double-counting over all possible transversals, we have that ZL(σ)
contains at least m(n/r)2/(n/r)r−2 = mn2/r2 outer edges.

Fix a tournament Q on vertex set [q] where q = k2, satisfying both items of Lemma 4.1. Let
T be an n-vertex balanced blowup of Q (we may assume than n is a multiple of q as removing a
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constant number of vertices from a tournament T on n vertices only decreases invk(T ) by o(n2)
so does not affect the asymptotic claim of Theorem 1.4). We will show that invk(T ) is at least as
large as the claimed lower bound in Theorem 1.4.

Proof of Theorem 1.4, lower-bound. Suppose {X1, . . . , Xt} is a k-decycling set of T where t =
invk(T ). Listing the elements of T in the order they appear in the resulting transitive tourna-
ment corresponds to some permutation π of V (T ) for which all edges of TL(π) have been reversed.
We will show that we need t to be rather large in order to reverse all edges of TL(π) for any possible
π. So, fix some such π and partition the edges of TL(π) into two parts Ein and Eout where the
former are the edges of TL(π) that are inner edges of T and the latter are the edges of TL(π) that
are outer edges of T .

We next lower-bound |Eout|. By Lemma 4.2, using R = Q, r = q, m ≥ q2/4 − 2q3/2 (which
follows from Lemma 4.1 Part (i)) Z = T and σ = π, we have

|Eout| ≥
n2

q2

(
q2

4
− 2q3/2

)
=

n2

4
− 2n2

k
. (1)

Now, consider some X from the aforementioned k-decycling set. We will show that X reverses
at most

(
k
2

)
− Ω(k2/ log4 k) edges of Eout. Let |X| = x and suppose first that x ≤ k/2. In this

case we can use the trivial fact that X reverses at most
(
x
2

)
≤ k2/4 edges. Assume therefore that

k/2 ≤ x ≤ k. Recall that V (T ) consists of q parts V1, . . . , Vq. Let Wi = Vi ∩ X for 1 ≤ i ≤ q.
Suppose next that some Wi has size at least k/ log2 k. In this case, we see that X induces at least(|Wi|

2

)
inner edges, implying that X reverses at most

(
k
2

)
− Ω(k2/ log4 k) edges of Eout. Thus, we

may assume that 0 ≤ |Wi| ≤ k/ log2 k for all 1 ≤ i ≤ q.
Partition the Wi into bunches according to their size. For 1 ≤ j ≤ ⌊log k⌋ we say that Wi

is in bunch j if 2j−1 ≤ |Wi| < 2j . Letting Bj be the union of all the Wi in bunch j, we have∑⌊log k⌋
j=1 |Bj | = x. Let j∗ = ⌊log k − 3 log log k⌋. Consider first the case that

∑j∗

j=1 |Bj | ≤ x/2. In
this case, the last ⌈3 log log k⌉ bunches contain together at least x/2 vertices of X. But since in
each such bunch it holds that |Wi| ≥ 2j

∗−1 = Ω(k/ log3 k), it induces at least Ω(k2/ log6 k) inner
edges. Furthermore, as each |Wi| ≤ k/ log2 k and since x/2 ≥ k/4, there are Ω(log2 k) such Wi in
the last ⌈3 log log k⌉ bunches, so together they induce at least Ω(log2 k · k2/ log6 k) = Ω(k2/ log4 k)
inner edges, implying that X reverses at most

(
k
2

)
− Ω(k2/ log4 k) edges of Eout.

We remain with the case that
∑j∗

j=1 |Bj | ≥ x/2, so there is some bunch j with 1 ≤ j ≤ j∗ for
which |Bj | ≥ x/2j∗ ≥ x/2 log k, and we shall focus on that bunch. Notice that since each Wi in
bunch j has size at most 2j , this means that the number of Wi in bunch j is at least

x

2j+1 log k
≥ k

2j+2 log k
≥ k

2j∗+2 log k
≥ log2 k

4
.

Let R = {i : Wi is in bunch j}. Notice that R ⊆ [q] = V (Q) and that r = |R| ≥ k
2j+2 log k

≥ log2 k
4

by the last inequality. Observe that if i ∈ R then |Wi| ≥ 2j−1, so let W ∗
i ⊆Wi be chosen such that

|W ∗
i | = 2j−1. By Lemma 4.1, item (ii), we have that inv2(Q[R]) ≥ 1

4

(
r
2

)
. Notice also that the union

of the W ∗
i for i ∈ R is an r2j−1 balanced blowup of Q[R]. Hence, by Lemma 4.2, with R = R[Q],

m ≥ 1
4

(
r
2

)
, Z being the subgraph of T [X] induced by the union of the W ∗

i , and σ = πreverse we
have that ZL(σ) contains at least 1

4

(
r
2

)
22j−2 outer edges. Notice that all of these outer edges do
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not appear in TL(π). It follows that X reverses at most(
k

2

)
− 1

4

(
r

2

)
22j−2 ≤

(
k

2

)
− 1

10

(
k

2j+2 log k

)2

22j−2 =

(
k

2

)
− Ω(k2/ log2 k)

edges of Eout.
It now follows from (1) and form the fact that each X element in the decycling set reverses at

most
(
k
2

)
− Ω(k2/ log4 k) edges of Eout, that the number of elements of the decycling set must be

invk(n) ≥ invk(T ) ≥
n2

4 −
2n2

k(
k
2

)
− Ω(k2/ log4 k)

.

The existence of δk > 0 for all k ≥ k0 is now guaranteed since for all sufficiently large k,

1
4 −

2
k(

k
2

)
− Ω(k2/ log4 k)

>
1

2k(k − 1)
.

We now turn to proving the upper bound in Theorem 1.4. We start with the following lemma
which is analogous to Lemma 3.1.

Lemma 4.3. Let G be a directed graph and suppose that k ≥ 4 is even and that the underlying
undirected graph of G has a (not necessarily induced) copy of Kk,k or that k ≥ 5 is odd and that the
underlying undirected graph of G has a (not necessarily induced) copy of Kk+1,k−1. Let H denote
the corresponding copy. Then, there are four sets of vertices X,Y, Z,W of k vertices each, such that
inverting {X,Y, Z,W} reverses the direction of the edges of H in G without affecting the direction
of any other edge of G.

Proof. Suppose first that k is even and that H is a copy of Kk,k. Consider the bipartition of
H, denoting the vertices of one part by v1, . . . , vk and the other part by u1, . . . , uk. Let A =
{v1, . . . , vk/2}, B = {vk/2+1, . . . , vk}, C = {u1, . . . , uk/2}, D = {uk/2+1, . . . , uk}. Inverting {A ∪
C,A∪D,B ∪C,B ∪D} reverses the direction of the k2 edges of H without affecting the direction
of any other edge of G. Suppose next that k is odd and that H is a copy of Kk+1,k−1. Consider
the bipartition of H, denoting the vertices of one part by v1, . . . , vk+1 and the other part by
u1, . . . , uk−1. Let A = {v1, . . . , v(k+1)/2}, B = {v(k+1)/2+1, . . . , vk+1}, C = {u1, . . . , u(k−1)/2},
D = {u(k−1)/2+1, . . . , uk}. Inverting {A ∪ C,A ∪ D,B ∪ C,B ∪ D} reverses the direction of the
k2 − 1 edges of H without affecting the direction of any other edge of G.

The next lemma is a simple consequence of Turán’s Theorem and Ramsey’s Theorem.

Lemma 4.4. For every fixed k ≥ 3 there exists γk > 0 such that in any 2-coloring of the edges of
Kn, there are at least (1− o(1))γkn

2 pairwise edge-disjoint monochromatic copies of Kk, all of the
same color.

Proof. Let q = R(k) < 4k be the diagonal Ramsey number of k. Consider some 2-coloring of
the edges of Kn, and remove monochromatic edge-disjoint copies of Kk until none are left. We
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must have removed at least n2/q2 edges as otherwise by Turán’s Theorem, there is a Kq on the
non-removed edges, so a monochromatic Kk. The result follows for γk = 1/q2k2 as at least half of
the monochromatic removed Kk are of the same color.

Proof of Theorem 1.4, upper-bound. Let T be an n-vertex tournament. Considering some random
permutation π of V (T ), we have that with high probability, |E(TL(π))| = (1 + o(1))n2/4 and
|E(TR(π))| = (1 + o(1))n2/4. By Lemma 4.4 one of TL(π) or TR(π) has at least (1 − o(1))γkn

2

pairwise edge-disjoint copies of Kk. Without loss of generality, assume this is TL(π). Removing a
set of (1 − o(1))γkn

2 edge-disjoint copies of Kk from TL(π) amounts to inverting this amount of
k-sets of vertices, such that after applying these inversions we obtain a tournament T ∗ such that
T ∗
L(π) has at most (1 + o(1))n2/4 − (1 − o(1))

(
k
2

)
γkn

2 edges. By Lemma 4.3 we can repeatedly
invert quartets of k-sets of vertices each, until we obtain a tournament T ∗∗ for which T ∗∗

L (π) has
no Kk,k (when k is even) or no Kk+1,k−1 (when k is odd). The number of inversions performed
starting at T ∗ and arriving at T ∗∗ is therefore precisely 4(|E(T ∗

L(π))| − |E(T ∗∗
L (π))|)/k2 if k is even

and precisely 4(|E(T ∗
L(π))| − |E(T ∗∗

L (π))|)/(k2 − 1) if k is odd. By the Kovári-Sós-Turán Theorem
[15], we have |E(T ∗∗

L (π))| = O(n2−1/k). We therefore obtain that

invk(T ) ≤ (1 + o(1))n2

[
γk +

4

k2

(
1

4
−
(
k

2

)
γk

)]
= (1 + o(1))n2

[
1

k2
− ϵk

]
when k is even and

invk(T ) ≤ (1 + o(1))n2

[
γk +

4

k2 − 1

(
1

4
−
(
k

2

)
γk

)]
= (1 + o(1))n2

[
1

k2 − 1
− ϵk

]
for a suitable ϵk > 0. As T is an arbitrary n-vertex tournament, we obtain (unifying the even and
odd cases of k) that

invk(n) ≤ (1 + o(1))n2

[
1

2⌊k2/2⌋
− ϵk

]
.
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[13] P. Haxell and V. Rödl. Integer and fractional packings in dense graphs. Combinatorica,
21(1):13–38, 2001.

[14] P. Keevash and B. Sudakov. Packing triangles in a graph and its complement. Journal of
Graph theory, 47(3):203–216, 2004.
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