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Abstract

We prove the intersection conjecture for designs: For any complete graph Kr there is a finite set

of positive integers M(r) such that for every n > n0(r), if Kn has a Kr-decomposition (namely

a 2-(n, r, 1) design exists) then there are two Kr-decompositions of Kn having exactly q copies

of Kr in common for every q belonging to the set {0, 1, . . . ,
(
n
2

)
/
(
r
2

)
}\{

(
n
2

)
/
(
r
2

)
−m | m ∈M(r)}.

In fact, this result is a special case of a much more general result, which determines the existence

of k distinct Kr-decompositions of Kn which have q elements in common, and all other elements

of any two of the decompositions share at most one edge in common.

1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple edges. For the

standard graph-theoretic and design-theoretic notations the reader is referred to [7] and [11] re-

spectively. An H-decomposition of a graph G is a set L of edge-disjoint H-subgraphs of G, such that

each edge of G appears in some element of L. Thus, L contains e(G)/e(H) elements, where e(X)

denotes the number of edges of a graph X. It is straightforward to see that a necessary condition

for the existence of an H-decomposition is that e(H) divides e(G). Another obvious requirement is

that gcd(H) divides gcd(G) where the gcd of a graph is the greatest common divisor of the degrees

of its vertices.

In general, it is NP-Complete to determine whether a given graph G has an H-decomposition

for every fixed graph H containing more than two edges in some connected component. This has

been proved by Dor and Tarsi [13]. However, a seminal result of Wilson [28], is that the existence

of the two necessary conditions mentioned above is also sufficient to guarantee an H-decomposition

of Kn for every n > n0(H), and this result holds for every fixed nonempty graph H. In terms of

design-theory, Wilson’s Theorem states that the necessary conditions are sufficient for the existence
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of a 2− (v, r, 1)-design, provided that v is sufficiently large (in fact, it is sufficient for the existence

of a 2− (v, r, λ)-design).

In order to present our result in the exact context we shall switch momentarily to the language

of design-theory. Since the appearance of the seminal work of Wilson, the notion of repeated blocks

in a t− (v, r, λ) design became a central issue in design theory. We refer the reader to [27] and [11]

which are major comprehensive sources for design theory and the emergence of the repeated-block

issue. For research papers on this subject see [2, 3, 14, 20]. One major problem that has been

developed from the study of designs with non-repeated blocks is the intersection problem. This

problem asks for the existence of a 2− (v, r, 2) design in which exactly q ≥ 0 blocks are used twice.

Extensions of this problem to 2 − (v, r, λ) designs in which exactly q ≥ 0 blocks are used λ times

while any other block is used at most once were considered as well. In fact, this line of research has

been extended to include small graphs and simple structured trees instead of just complete graphs

as the blocks of the design. We refer the reader to [3, 4, 5, 6, 8, 12, 14, 17, 18, 20, 23] for various

papers on the intersection problem, and to [19] as one of the first papers where the problem was

raised explicitly. These works also have an obvious connection to the famous works of Lu [21, 22]

and Teirlinck [24, 25, 26] on the existence of large Steiner triple systems where, clearly, q = 0 in

the above notation.

The intersection conjecture for design states that for every r, there exists a set of constantly

many integers M(r), such that for every integer 0 ≤ q ≤
(n
2

)
/
(r
2

)
for which

(n
2

)
/
(r
2

)
− q /∈ M(r),

there exist two distinct 2− (v, r, 1) designs which have exactly q blocks in common, whenever there

exists a 2− (v, r, 1)-design. Note that one cannot have M(r) = ∅, since, clearly, 1 ∈M(r). This is

because two decompositions cannot differ only in one block.

In this paper, this conjecture is solved in the asymptotic sense, namely, in the form which is

analog to Wilson’s Theorem:

Theorem 1.1 Let r ≥ 3 be an integer. There exists N = N(r) and a fixed set of positive integers

M(r), such that for every n > N , there exist two distinct 2− (v, r, 1)-designs with exactly 0 ≤ q ≤(n
2

)
/
(r
2

)
blocks in common if and only if there exists a 2− (v, r, 1)-design and

(n
2

)
/
(r
2

)
− q /∈M(r).

Theorem 1.1 is a corollary of a much more general theorem which solves a generalized version of

the intersection problem. The generalization is twofold. We require k distinct 2 − (v, r, 1)-designs

(instead of just two distinct 2 − (v, r, 1)-designs) which share q blocks in common, and we also

require that any other two distinct blocks in any two of the designs share at most one edge in

common (thus, they are almost edge-disjoint). This generalized problem is solved in the following

theorem. We state it in the language of graph theory, since this is the language used in the proof.
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Theorem 1.2 Let r ≥ 3 and k ≥ 2 be integers. There exists N = N(r, k) and a fixed set of positive

integers M(r, k), such that for every n > N :

there exist k distinct Kr-decompositions of Kn which have 0 ≤ q ≤
(n
2

)
/
(r
2

)
copies of Kr in common,

and any other two distinct copies of Kr in any two of the decompositions share at most one edge if

and only if Kn has a Kr-decomposition and
(n
2

)
/
(r
2

)
− q /∈M(r, k).

By taking k = 2 we can show that theorem 1.1 is an immediate corollary of Theorem 1.2 (see

the final section for details). In fact, we are able to characterize the sets M(r, k) of Theorem 1.2

and M(r) of Theorem 1.1 precisely, as will be shown in the proof of Theorem 1.2. The proof of

Theorem 1.2 is based on two major ingredients. The first is Gustavsson’s Theorem [15] which gives

necessary and sufficient conditions for the existence of H-decompositions in very dense and large

(although not necessarily complete) graphs G. The second is the recent proof of the authors [10]

of the existence of k distinct orthogonal Kr-decompositions of Kn (n sufficiently large), where a k-

orthogonal Kr-decomposition is a set of k distinct Kr-decompositions of Kn where any two copies in

any two decompositions share at most one edge. Other ingredients used in the proof are Dirichlet’s

theorem for primes in arithmetic progressions and the Theorem of Hajnal and Szememrédi. The

proof is presented in the following section.

2 Proof of the main result

We shall first present the basic tools which are used in the proof of Theorem 1.1. The first is due to

Gustavsson [15], which can be viewed as an extension of Wilson’s Theorem to H-decompositions of

graphs which are not necessarily complete, although they must still be very dense (this requirement

is not surprising, recalling the NP-Completeness result of Dor and Tarsi).

Lemma 2.1 (Gustavsson [15]) Let H be a fixed nonempty graph. There exists a positive integer

n0 = n0(H), and a small positive constant γ = γ(H), such that if G is a graph with n > n0 vertices,

and δ(G) ≥ (1− γ)n, and G satisfies the necessary conditions for an H-decomposition, then G has

an H-decomposition.

We note here that the constant γ(H) used in Gustavsson’s proof is very small. In fact, even for the

case where H is a triangle, Gustavsson’s proof uses γ = 10−24. Thus, the graph G is very dense.

A k-orthogonal Kr-decomposition of Kn, is a set of k distinct Kr-decompositions of Kn, such

that any two copies of Kr in any two of the decompositions share at most one edge. The next tool

that we use is the recent proof of the authors [10] which state that a k-orthogonal Kr-decomposition

of Kn exists whenever a Kr-decomposition of Kn exists, provided that n is sufficiently large:
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Lemma 2.2 (Caro and Yuster [10]) Let r ≥ 3 and k ≥ 2 be integers. There exists n1 = n1(r, k)

such that for every n > n1, there exists a k orthogonal Kr-decomposition of Kn if and only if

n ≡ 1, r mod r(r − 1).

We note here that the proof of Lemma 2.2 is based mostly on probabilistic arguments.

A well-known theorem in Number Theory is Dirichlet’s Theorem, which states that if gcd(a, d) =

1 then there are infinitely many primes of the form a + kd where k ranges over the integers. We

use this to prove the following lemma:

Lemma 2.3 Let r ≥ 3 be an integer. There exist infinitely many primes p which satisfy p ≡
1 mod r(r − 1) and gcd(

(p
2

)
,
(p+r−1

2

)
) =

(r
2

)
.

Proof: Let p be a prime satisfying p ≡ 1 mod r(r − 1). According to Dirichlet’s Theorem there

are infinitely many values suitable for p. Thus, p = br(r − 1) + 1 for some positive integer b. Now(p
2

)
= (br(r − 1) + 1)br(r − 1)/2 = bp[r(r − 1)/2]. On the other hand,

(p+r−1
2

)
= (br(r − 1) +

r)(br(r − 1) + (r − 1))/2 = [b(r − 1) + 1][br + 1][r(r − 1)/2]. Since p is prime we have that bp and

(b(r − 1) + 1)(br + 1) are relatively prime. Thus, gcd(
(p
2

)
,
(p+r−1

2

)
) =

(r
2

)
. 2

Finally, we shall require the Theorem of Hajnal and Szemerédi which gives sufficient conditions

guaranteeing that a graph G has a Kr-factor (i.e. n/r vertex-disjoint copies of Kr):

Lemma 2.4 (Hajnal and Szemerédi [16]) Let G be a graph with n vertices, Let r be a positive

integer which divides n, and assume that δ(G) ≥ (1− 1/r)n. Then G has a Kr-factor.

Corollary 2.5 If r divides n then Kn has dn/r2e edge-disjoint Kr-factors.

Proof: By deleting t edge-disjoint Kr-factors from Kn we obtain a regular graph of degree n −
1 − t(r − 1), so as long as n − 1 − t(r − 1) ≥ n(1 − 1/r) we can delete another Kr-factor. Since

t = bn/r2c satisfies n− 1− t(r − 1) ≥ n(1− 1/r) the corollary follows. 2

We are now ready to proceed with the proof of Theorem 1.2:

Proof of Theorem 1.2: Let r ≥ 3 and k ≥ 2 be fixed positive integers. Let p > n1(r, k) (n1 is

defined in Lemma 2.2) be a prime which satisfies p ≡ 1 mod r(r − 1) and gcd(
(p
2

)
,
(p+r−1

2

)
) =

(r
2

)
.

According to Lemma 2.3, p exists. Now define the graph Hp = Kp ∪ Kp+r−1 (i.e. Hp is the

vertex-disjoint union of two complete graphs of order p and p + r − 1). Hp has the following

properties:

1. gcd(Hp) = gcd(p− 1, p− 1 + r − 1) = r − 1.

2. gcd(e(Kp), e(Kp+r−1)) =
(r
2

)
.
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3. Both Kp and Kp+r−1 have a k-orthogonal Kr-decomposition, and thus, in particular, Hp has

a k orthogonal Kr-decomposition. This follows from Lemma 2.2.

Let ε = min{1/r2, γ(Hp)/2, 1/(3p)} where γ is defined in Lemma 2.1. The next lemma shows that

if m is large enough and m ≡ 1, r mod r(r − 1) then Km has k distinct Kr-decompositions with

exactly q elements in common, where q is bounded by a small fraction (namely ε) of the overall

number of copies of Kr.

Lemma 2.6 Let

m > max{n0(Hp) ,
8r

ε
, p3 + p ,

2p

ε
}

satisfy m ≡ 1, r mod r(r − 1) (n0 is defined in Lemma 2.1). Let 0 ≤ q ≤ ε
(m
2

)
/
(r
2

)
be an integer.

Then, there exist k distinct Kr-decompositions of Km which have exactly q elements in common,

and any other two distinct copies of Kr in any two of the decompositions share at most one edge.

Proof: Let m′ ≤ m be the largest integer which is a multiple of r. Note that m′ > m − r. We

first show that dqr/m′e ≤ qdm′/r2e. Clearly, it suffices to show that q ≤ m′2/r3, and this follows

from the fact that q ≤ ε
(m
2

)
/
(r
2

)
, m′ > m − r, r ≥ 3 and m ≥ 8r/ε. Thus, according to Corollary

2.5, any set of m′ vertices of Km contains dqr/m′e edge-disjoint Kr-factors, and thus the overall

number of copies of Kr in all these factors is m′/rdqr/m′e ≥ q. It follows that we can delete from

Km a set Q of q edge-disjoint copies of Kr such that the resulting graph G has

δ(G) ≥ m− 1− (r − 1)d qr
m′
e ≥ m− r − qr(r − 1)

m′
≥ m− r − m(m− 1)ε

m− r
≥ m(1− 1.5ε)

where the last inequality follows from m ≥ 8r/ε. Obviously, e(G) =
(m
2

)
− q

(r
2

)
. Let e(G) ≡

a mod e(Hp) where 0 ≤ a < e(Hp) − 1. Since e(G), a and e(Hp) are all multiples of
(r
2

)
and since

gcd(
(p
2

)
, e(Hp)) = gcd(

(p
2

)
,
(p+r−1

2

)
) =

(r
2

)
there exists 0 ≤ t < e(Hp)/

(r
2

)
such that e(G) − t

(p
2

)
≡

0 mod e(Hp). We claim that we can delete from G a set of t vertex-disjoint copies of Kp. Let

m′′ ≤ m be the largest integer which is a multiple of p. Note that m′′ > m − p ≥ p3. Since

t < e(Hp)/
(r
2

)
< p2 it suffices to show that any set of m′′ vertices of G has a Kp-factor. Since any

set of m′′ vertices of G induces a subgraph whose minimum degree is at least δ(G)−p, we only need

to show, by lemma 2.4, that δ(G)−p ≥ m′′(1−1/p). Since m′′ ≤ m and since δ(G) ≤ m(1−1.5ε) it

suffices to show that 1.5mε ≤ m/p− p, and this follows from the fact that ε ≤ 1/(3p) and m ≥ 2p2.

Let G′ be the graph obtained from G after deleting a set T of t vertex-disjoint copies of Kp. Clearly,

since m ≥ 2p/ε, we have

δ(G′) ≥ δ(G)− p+ 1 > m(1− 1.5ε)− p ≥ m(1− 2ε) ≥ m(1− γ(Hp)).
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Also note that e(G′) ≡ 0 mod e(Hp) and that gcd(G′) is a multiple of r − 1, since we have only

deleted from Km copies of Kr and copies of Kp, each having degree which is a multiple of r − 1.

Thus, according to Lemma 2.1, G′ has an Hp-decomposition. Denote this decomposition by L.

Each member of L is a copy of Hp.

We now use the sets Q, T and L to define the k desired Kr-decompositions. Each member C ∈ T∪L
is either a Kp or an Hp. In any case, C has a k-orthogonal Kr-decomposition. Denote by C1, . . . , Ck

a set of k-orthogonal Kr decompositions of C. Now define k distinct Kr decompositions of Km,

denoted S1, . . . Sk, as follows:

Si = Q ∪ {Ci | C ∈ T ∪ L}.

Note that Si is indeed a Kr decomposition, since Q contains edge-disjoint members of Kr and

for each C ∈ T ∪ L we have that Ci is, by definition, a Kr-decomposition of C, and obviously,

C is edge-disjoint with any member of Q, and any two distinct members C and C ′ of T ∪ L are

edge-disjoint. Now note that Q is a set of q copies of Kr which are common to all the Si’s. Any

Kr copy X of Si not belonging to Q belongs to some Ci. X has at most one common edge with

any member of Sj belonging to Cj since Ci and Cj are orthogonal. X is completely edge-disjoint

from any member of Sj belonging to C ′j if C ′ 6= C, since C and C ′ are two distinct members in the

Hp decomposition of G′. Thus, {S1, . . . , Sk} satisfy the statement of the lemma. 2

Lemma 2.6 is still far from what we want since the lemma only gives us that if n is sufficiently

large and n = 1, r mod r(r − 1) and q is in the range 0, . . . , ε
(n
2

)
/
(r
2

)
, then Theorem 1.2 holds.

However, we want the theorem to hold for any q in the complete range from 0 to
(n
2

)
/
(r
2

)
(except

for finitely many values). Our next goal is, therefore, to extend the range for q significantly.

Lemma 2.7 There exist positive integers N ′ = N ′(r, k) and Q′ = Q′(r, k) such that for every

n > N ′(r, k) which satisfies n = 1, r mod r(r − 1) and for every 0 ≤ q ≤
(n
2

)
/
(r
2

)
− Q′(r, k), there

exist k distinct Kr-decompositions of Kn which have exactly q elements in common, and any other

two distinct copies of Kr in any two of the decompositions share at most one edge.

Proof: Let m ≡ 1 mod r(r − 1) be a prime which satisfies gcd(
(m
2

)
,
(m+r−1

2

)
) =

(r
2

)
, and also

satisfies the conditions of Lemma 2.6. According to Lemma 2.3, m exists. Define the graph

Hm = Km ∪ Km+r−1. Note that Hm has similar properties to those of the graph Hp defined

previously. Namely:

1. gcd(Hm) = gcd(m− 1,m− 1 + r − 1) = r − 1.

2. gcd(e(Km), e(Km+r−1)) =
(r
2

)
.
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3. Since m > p > n1(r, k), both Km and Km+r−1 have a k-orthogonal Kr-decomposition, and

thus, in particular, Hm has a k orthogonal Kr-decomposition. This follows from Lemma 2.2.

4. Km satisfies the statement of Lemma 2.6.

We now define the values N ′ and Q′ :

N ′ = max{md3
ε
e+m3 , d m

γ(Hm)
e}.

Q′ =

(m
2

)(r
2

) (m2 + d3
ε
e).

Recall that p is a function of r and k, ε is a function of r and p, and m is a function of r, p and

ε. Thus, indeed, N ′ = N ′(r, k) and Q′ = Q′(r, k). Let n > N ′ satisfy n = 1, r mod r(r − 1). Let

0 ≤ b ≤ e(Hm)− 1 satisfy

b ≡
(
n

2

)
−
(
m

2

)
d3
ε
e mod e(Hm).

Since e(Hm),
(n
2

)
and

(m
2

)
are all multiples of

(r
2

)
, so is b. Furthermore, gcd(

(m
2

)
, e(Hm)) =

gcd(
(m
2

)
,
(m+r−1

2

)
) =

(r
2

)
. Thus, there exists 0 ≤ t < e(Hm)/

(r
2

)
such that(

n

2

)
−
(
m

2

)
(t+ d3

ε
e) ≡ 0 mod e(Hm).

Our first task is to designate in Kn a set of t + d3ε e vertex-disjoint copies of Km. Such a set

clearly exists since t < e(Hm) < m2 and since n > m(m2 + d3ε e). Given such a set, let A be a

set of t copies of Km and let B be a set of d3ε e copies of Km, where any two distinct elements

of A ∪ B are vertex-disjoint. Consider the graph G obtained by deleting from Kn the elements

of A ∪ B. G has e(G) =
(n
2

)
−
(m
2

)
(t + d3ε e) edges. gcd(G) = gcd(n − 1, n − m) is divisible by

r − 1. Also, δ(G) = n − m > n(1 − γ(Hm)) since n > m/γ(Hm). It follows from Lemma 2.1

that G has an Hm-decomposition. Denote such a decomposition by L. Now let q be an integer

satisfying 0 ≤ q ≤
(n
2

)
/
(r
2

)
− Q′. We shall use the sets A, B and L to define the k desired Kr-

decompositions of Kn. Let q ≡ x mod e(Hm)/
(r
2

)
, where 0 ≤ x ≤ e(Hm)/

(r
2

)
− 1 is an integer.

Thus q = z · (e(Hm)/
(r
2

)
) + x, where z is an integer. Now let x ≡ w mod bε

(m
2

)
/
(r
2

)
c, where

0 ≤ w ≤ bε
(m
2

)
/
(r
2

)
c − 1 is an integer. Thus, x = y · bε

(m
2

)
/
(r
2

)
c+ w where y is an integer. Since

d3
ε
e ≥ e(Hm)

ε
(m
2

) + 1 ≥ x

ε
(m
2

)
/
(r
2

) + 1 ≥ y + 1

we may define B′ ⊂ B to be a set of y Km-elements of B, and define F ∈ B \B′ to be another fixed

Km element of B. Since

e(G)

e(Hm)
=

(n
2

)
−
(m
2

)
(t+ d3ε e)

e(Hm)
≥
(n
2

)
−
(m
2

)
(m2 + d3ε e)

e(Hm)
=

(n
2

)
/
(r
2

)
−Q′

e(Hm)/
(r
2

) ≥ q

e(Hm)/
(r
2

) ≥ z
7



we may define L′ ⊂ L to be a set of z Hm-elements of L. Having defined the sets A, B B′, L L′

and the Km-graph F we perform the following process for each element in these sets (and for F ):

1. Let X ∈ A∪ (L\L′)∪B \ (B′∪{F}). Since X is either a Km or an Hm, it has a k orthogonal

Kr-decomposition. Let, therefore, {X1, . . . , Xk} denote a k orthogonal Kr-decomposition of

X (namely, Xi is a Kr-decomposition of X, and for i 6= j, any copy in Xi shares at most one

edge with any copy in Xj).

2. Let X ∈ B′. Since X is a Km, and since Km satisfies the statement of Lemma 2.6, there

exists a set {X1, . . . , Xk} of Kr-decompositions of X, which have exactly bε
(m
2

)
/
(r
2

)
c copies

in common, and any other two distinct copies of Kr in any two of the decompositions share

at most one edge.

3. As w ≤ bε
(m
2

)
/
(r
2

)
c−1, the graph F , being a Km, has a set {F1, . . . , Fk} of Kr-decompositions,

which have exactly w copies in common, and any other two distinct copies of Kr in any two

of the decompositions share at most one edge.

4. Let X ∈ L′. We simply let X1 be any Kr-decomposition of X, and put Xi = X1 for

i = 2, . . . , k.

We can now define k distinct Kr-decompositions of Kn, denoted {S1, . . . , Sk} as follows:

Si = {Xi |X ∈ A ∪ B ∪ L}

The fact that each Si is a Kr-decomposition follows from the fact that the elements of A, B and

L decompose Kn, and each of these elements is, in turn, decomposed into Kr. Also, the Si’s have

exactly q elements in common. This is because Xi = Xj for X ∈ L′, because Xi and Xj have exactly

bε
(m
2

)
/
(r
2

)
c elements in common for X ∈ B′, and because any two distinct Kr-decompositions Fi

and Fj of F have exactly w elements in common. Thus, the total number of common elements is

|L′| · e(Hm)(r
2

) + |B′|bε
(m
2

)(r
2

) c+ w = z
e(Hm)(r

2

) + ybε
(m
2

)(r
2

) c+ w = z
e(Hm)(r

2

) + x = q.

Any two distinct copies of Kr in Si and Sj are either edge-disjoint disjoint or share one edge, by

our construction. This completes the proof of the lemma. 2

Lemma 2.7 shows that the statement of Theorem 1.2 holds for any value of q in the range

0, . . . ,
(n
2

)
/
(r
2

)
− Q′(r, k). However, we still need to determine for which values of t in the range

0, . . . , Q′(r, k)− 1 it is possible to satisfy Theorem 1.2 with q =
(n
2

)
/
(r
2

)
− t. Note that although the

range for t is bounded we still need to show that the set of values of t which satisfy Theorem 1.2

8



is independent of n, since it is claimed in the theorem that this set of values is M(r, k) (namely, it

is only a function of r and k). In order to define M(r, k) we need the following definition:

A positive integer s is called (r, k)-irreducible if for every graph G with s
(r
2

)
edges, there is no k

orthogonal Kr-decomposition of G. For example, the number 1 is (r, k)-irreducible for every r ≥ 3

and k ≥ 2. Trivially, if s is (r, k)-irreducible, then it is also (r, k + 1)-irreducible. It is also not

difficult to establish that if s ≤ 3 then s is (r, 2)-irreducible. The following lemma is a corollary of

Lemma 2.7

Lemma 2.8 If s ≥ Q′(r, k) then s is not (r, k)-irreducible.

Proof: Assume s ≥ Q′(r, k). Let q =
(n
2

)
/
(r
2

)
− s. Thus, q satisfies the conditions in Lemma 2.7.

Using the same notations of Lemma 2.7, we know that there exists n sufficiently large such that Kn

has k distinct Kr-decompositions sharing exactly q elements, and any other two distinct elements

in any two of the decompositions share at most one edge. Thus, if G is the graph obtained by

deleting from Kn the q shared copies of Kr, we have that G has s
(r
2

)
edges, and a k orthogonal

Kr-decomposition. Consequently, s is not (r, k)-irreducible. 2

We can now complete theorem 1.2. Define

N(r, k) = max{N ′(r, k),
Q′(r, k)r2

γ(Kr)
}.

and define M(r, k) as the set of all (r, k)-irreducible numbers. Let n > N(r, k) satisfy n ≡ 1, r mod

r(r − 1) (if n does not satisfy this last requirement, then Kn does not have a Kr-decomposition

and there is nothing to prove). Let 0 ≤ q ≤
(n
2

)
/
(r
2

)
, and put s =

(n
2

)
/
(r
2

)
− q. Assume first

that Kn has k distinct Kr-decompositions sharing q elements, and any other two distinct copies

in the decompositions sharing at most one edge. We need to show that s is not (r, k)-irreducible.

Indeed, as in the proof of Lemma 2.8, let G be the graph obtained from Kn by deleting the q

copies of Kr shared by all the decompositions. G has s
(r
2

)
edges and the k decompositions of Kn

induce a k orthogonal Kr-decomposition of G. Thus, s is not (r, k)-irreducible. Now consider the

converse. Assume that s is not (r, k)-irreducible. If s ≥ Q′(r, k) then we are done by Lemma 2.7,

since n ≥ N ′(r, k). If s < Q′(r, k) then let G be a graph with s
(r
2

)
edges with a k orthogonal

Kr-decomposition. Since we can assume G has no isolated vertices, we clearly have that G has less

than sr2 < Q′(r, k)r2 < N(r, k) < n vertices. Thus, G is a subgraph of Kn. Let G∗ be obtained

from Kn by deleting G. G∗ has q
(r
2

)
edges, Furthermore,

δ(G∗) ≥ n− 1− δ(G) ≥ n− s
(
r

2

)
≥ n−Q′(r, k)r2 ≥ n−N(r, k)γ(Kr) > n(1− γ(Kr)).
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Also, r − 1 divides gcd(G∗), since the degrees in both Kn and G are multiples of r − 1. It follows

from Lemma 2.1 that G∗ has a Kr-decomposition, with q elements. Thus, extending each of the k

decompositions of G with the decomposition of G∗ we obtain a set of k Kr-decompositions of Kn

sharing q copies, where any other two distinct copies in any two of the decompositions share at

most one edge. 2

3 Concluding remarks and open problems

1. By modifying the definition of (r, k)-irreducibility, saying that a number s is (r, k)-irreducible

if any graph with s
(r
2

)
edges does not have k distinct Kr-decompositions with no repeated

blocks (instead of demanding that the k decompositions be orthogonal, as in the original

definition) we immediately obtain a weaker version of Theorem 1.2. Namely, we can drop

the requirement that any two distinct copies share at most one edge (Thus, there are q

copies shared by all the k decompositions, and the other copies in all the decompositions are

distinct). Note that the proof remains completely intact. Naturally, M(r, k) will be changed

to reflect the set of (r, k)-irreducible numbers according to the revised definition. Note that

the set M(r) = M(r, 2) referenced in Theorem 1.1 corresponds to this revised definition.

2. The set M(r, k) appearing in the statement of Theorem 1.1 is, in fact, the set of (r, k)-

irreducible numbers. Since the largest element in M(r, k) is constantly bounded as a function

of r and k, we obtain that Theorem 1.2, stated as an existence problem, is solvable in poly-

nomial time. Namely, given n and q, determining whether Kn has k decompositions sharing

q copies of Kr and any two distinct copies of Kr in any two of the decompositions sharing at

most one edge, can be done in polynomial (in n) time. (Note that if n ≤ N(r, k) we can use

brute force to answer the question, since everything is bounded).

3. In view of Theorem 1.1 and Theorem 1.2 it is interesting to determine exactly the sets M(r, k)

(in both the orthogonal or non-orthogonal versions). It is known that M(3, 2) = {1, 2, 3, 5}
(note that for r = 3, the orthogonal and non-orthogonal versions of M(r, k) coincide. This is

no longer true for r = 4 since two K4’s may be distinct but still share a triangle, and thus,

more than one edge). It is thus an intriguing open problem to determine M(r, k) for all r

and k.

4. Extensions of Theorem 1.2 are possible in two ways. The decomposing graph does not have to

be complete. Namely, we may use a fixed graph H instead of Kr (However, the decomposed

graph still needs to be Kn). Another generalization is the packing version of Theorem 1.2.

10



Namely, if n is not of the form 1, r mod r(r − 1) we still have an optimal Kr-packing [9]

(provided that n is sufficiently large), and thus we may extend the theorem to require k

optimal packings sharing q copies instead of k decompositions sharing q copies. This extension

is due to the fact that Lemma 2.2 is also valid in a packing version [10].
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