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Abstract

One of the main questions that arise when studying random and quasi-random structures
is which properties P are such that any object that satisfies P “behaves” like a truly random
one. In the context of graphs, Chung, Graham, and Wilson [9] call a graph p-quasi-random
if it satisfies a long list of the properties that hold in G(n, p) with high probability, like edge
distribution, spectral gap, cut size, and more.

Our main result here is that the following holds for any fixed graph H: if the distribution
of induced copies of H in a graph G is close (in a well defined way) to the distribution we would
expect to have in G(n, p), then G is either p-quasi-random or p-quasi-random, where p is the
unique non-trivial solution of the polynomial equation xδ(1−x)1−δ = pδ(1−p)1−δ, with δ being
the edge density of H. We thus infer that having the correct distribution of induced copies of
any single graph H, is enough to guarantee that a graph has the properties of a random one.
The proof techniques we develop here, which combine probabilistic, algebraic and combinatorial
tools, may be of independent interest to the study of quasi-random structures.

1 Introduction

1.1 Background and basic definitions

Quasi-random (or pseudo-random) structures are those that possess the properties we expect ran-
dom objects to have with high probability. The study of quasi-random structures is one of the most
interesting borderlines between discrete mathematics and theoretical computer science, as they re-
late the problem of how to deterministically construct a random-like object with the question of
when can we consider a single event to be a random one. Although quasi-random structures have
been implicitly studied for many decades, they were first explicitly studied in the context of graphs
by Thomason [27, 28] and then followed by Chung, Graham, and Wilson [9]. Following the results
on quasi-random graphs, quasi-random properties were also studied in various other contexts such
as set systems [5], tournaments [6], and hypergraphs [7]. There are also some very recent results on
quasi-random groups [11] and generalized quasi-random graphs [16]. We briefly mention that the
study of quasi-random structures lies at the core of the recent proofs of Szemerédi’s Theorem [24]
that were recently obtained independently by Gowers [12, 13] and by Rödl et. al. [19, 17] and then
also by Tao [26]. For more mathematical background on quasi-randomness the reader is referred
to the recent papers of Gowers [11, 12, 13] and to the survey of Krivelevich and Sudakov [15].
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Besides being intriguing questions on their own, results on quasi-random objects also have
applications in theoretical computer science. The main point is that while the classical definitions
of what it means for an object to be quasi-random are hard to verify, some other properties,
which can be proved to be equivalent, are much easier to verify. The archetypal example of this
phenomena is probably the spectral gap property of expanders. Expanders are sparse graphs that
behave like random sparse graphs in many aspects (see [14] for more details), and are one of
the most widely used structures in theoretical computer science. However, verifying that a graph
satisfies the classical definition of being an expander, that is, that any cut has many edges, requires
exponential time. A very useful fact is that being an expander is equivalent to the fact that
the second eigenvalue of the adjacency matrix of the graph is significantly smaller than the first
eigenvalue (see also Property P3 in Theorem 1). As eigenvalues can be computed in polynomial
time, this gives an efficient way to verify that a sparse graph is an expander. Another example,
this time on dense graphs, is that a natural notion of quasi-randomness for a dense graphs is that
all subsets of vertices should contain the “correct” number of edges as in G(n, p). This property
takes exponential time to verify, but fortunately (see Theorem 1), it turns out that this property
is equivalent to the property of having the “correct” number of edges and copies of the cycle of
length four in the entire graph! As this property takes only polynomial time to verify, this gives an
efficient algorithm for checking if a dense graph is quasi-random. This easily verifiable condition
was a key (implicit) ingredient in the work of Alon et al. [1] who gave the first polynomial time
algorithm for Szemerédi’s Regularity Lemma [25], whose original proof was non-constructive.

Given the above discussion, one of the most natural questions that arise when studying quasi-
random objects, is which properties “guarantee” that an object behaves like a truly-random one.
Our main result in this paper establishes that for any single graph H, if the distribution of the
induced copies of H in a graph G is “close”, in some precise sense, to the one we expect to have
in G(n, p), then G is quasi-random. Previous studies [22, 23] of the effect of induced subgraph on
quasi-randomness that used a slightly weaker notion of “closeness”, indicated that in some cases
the distribution of induced copies of a single graph H is not enough to guarantee that a graph
is quasi-random. Therefore, the notion of closeness that we use here is essentially optimal if one
wants to be able to deal with any H.

Before stating our main result we first discuss some previous ones, which will put ours in the
right context. The cornerstone result on properties guaranteeing that a graph is quasi-random is
that of Chung, Graham, and Wilson [9], stated below, but before stating it we need to introduce
some notation. We will denote by e(G) the number of edges of a graph G. A labeled copy of a
graph H in a graph G is an injective mapping φ, from the vertices of H to the vertices of G,
that maps edges to edges, that is (i, j) ∈ E(H) ⇒ (φ(i), φ(j)) ∈ E(G). So the expected number
of labeled copies of a graph H in G(n, p), is pe(H)nh + o(nh) where h is the number of vertices
of H 1. A labeled induced copy of a graph H in a graph G is an injective mapping φ, from the
vertices of H to the vertices of G, that maps edges to edges, and non edges to non edges, that is

1Note that this is not the expected number of (unlabeled) copies of H in G, which is just the number of labeled

copies of H divided by the number of automorphisms of H. Therefore, all the result we mention here also hold when

considering (unlabeled) copies. We work with labeled copies (induced or not) because we do not need to refer to the

automorphisms of H, and because it is easier to count labeled copies than copies.
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(i, j) ∈ E(H) ⇔ (φ(i), φ(j)) ∈ E(G). So the expected number of induced labeled copies of a graph
H in G(n, p), is δH(p)nh + o(nh), where here and throughout the paper we will use δH(p) to denote
pe(H)(1− p)(

h
2)−e(H). For a set of vertices U ⊆ V we denote by H[U ] the number of labeled copies

of H in U , and by H∗[U ] the number of induced labeled copies of H in U . The following is (part
of) the main result of [9]:

Theorem 1 (Chung, Graham, and Wilson [9]) Fix any 1 < p < 1. For any n-vertex graph
G the following properties are equivalent:

P1: For any subset of vertices U ⊆ V (G) we have e(U) = 1
2p|U |2 + o(n2).

P2: For any subset of vertices U ⊆ V (G) of size 1
2n we have e(U) = 1

2p|U |2 + o(n2).

P3: Let λi(G) denote the ith largest (in absolute value) eigenvalue of G. Then e(G) = 1
2pn2+o(n2),

λ1(G) = pn + o(n) and λ2(G) = o(n).

P4(t): For an even integer t ≥ 4, let Ct denote the cycle of length t. Then e(G) = 1
2pn2 + o(n2) and

Ct[G] = ptnt + o(nt).

P5: Fix an α ∈ (0, 1
2). For any U ⊆ V (G) of size αn we have e(U, V \U) = pα(1− α)n2 + o(n2).

The meaning of the fact that, for example, P2 implies P1 is that for any δ > 0 there is an
ε = ε(δ) such that if G has the property that all U ⊆ V (G) of size n/2 satisfy e(U) = 1

2p|U |2± εn2,
then e(U) = 1

2p|U |2 ± δn2 for all U ⊆ V (G) 2. This will also be the meaning of other implications
between other graph properties later on in the paper. Here and throughout the paper, x = y± ε is
shorthand for y − ε ≤ x ≤ y + ε.

Note, that each of the items in Theorem 1 is a property we would expect G(n, p) to satisfy with
high probability. We will thus say that G is p-quasi-random if it satisfies property P1, that is if for
some small δ all U ⊆ V (G) satisfy e(U) = 1

2p|U |2 ± δn2. If one wishes to be more precise then we
can in fact say that such a graph is (p, δ)-quasi-random. We will sometimes omit the p and just say
that a graph is quasi-random. In the rest of the paper the meaning of a statement “If G satisfies P2

then G is quasi-random” is that P2 implies P1 in the sense of Theorem 1 discussed in the previous
paragraph. We will also say that a graph property P is quasi-random if any graph that satisfies P
must be quasi-random. So the meaning of the statement “P2 is quasi-random” is that P2 implies
P1. Therefore, all the properties in Theorem 1 are quasi-random.

Given Theorem 1 one may stipulate that any property that holds with high probability in G(n, p)
is quasi-random. That however, is far from true. For example, it is easy to see that having the
“correct” vertex degrees is not a quasi-random property (consider Kn/2,n/2). Note also that in P5

we require α < 1
2 , because when α = 1

2 the property is not quasi-random (see [8] and [22]). A more
relevant family of non quasi-random properties are those requiring the graph to have the correct
number of copies of a fixed graph H. Note that P4(t) guarantees that for any even t, if a graph
has the correct number of edges and the correct number of copies of Ct then it is quasi-random.
As observed in [9] this is not true for all graphs, in fact this is not true for any non-bipartite H.

2An equivalent, more cumbersome, way to state Theorem 1 would have been to replace all the o(.) terms by

ε1, . . . , ε5 and say that there are some functions fi,j that relate εi and εj .
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1.2 Quasi-randomness and the distribution of copies of a single graph

As throughout the paper we work with labeled copies and labeled induced copies of H, we henceforth
just call them copies and induced copies. To understand the context of our main result that deals
with induced copies of a fixed graph H, it is instructive to review what is known about the effect
of the distribution of a fixed graph H on quasi-randomness. By Theorem 1 we know that for some
graphs H the property of having the correct number of copies of H in G, along with the right
number of edges, is enough to guarantee that G is quasi-random. Furthermore, this is not true for
all graphs H. However, the intuition is that something along these lines should be true for any
H, that is that for any H, if the copies of H in a graph G have the “properties” we would expect
them to have in G(n, p), then G should be p-quasi-random. Simonovits and Sós [22] observed that
the counter examples showing that for some graphs H, having just the correct number of copies
of H (and the correct number of edges) is not enough to guarantee quasi-randomness, all have the
property that some of the induced subgraphs of these counter examples have significantly more/less
copies of H than we would expect to find in G(n, p). For example, in order to show that having the
correct number of edges and triangles as in G(n, 1/2) does not guarantee that G is 1

2 -quasi-random,
one can take a complete graph on αn vertices and a complete bipartite graph on (1−α)n vertices,
for an appropriate α.

The main insight of Simonovits and Sós [22] was that quasi-randomness is a hereditary property,
in the sense that we expect a sub-structure of a random-like object to be random-like as well. Thus,
perhaps it will suffice to require that the subgraphs of G should also have the correct number of
copies of H. To state the main result of [22] let us introduce the following variant of property P1

of Theorem 1.

Definition 1.1 (H[U1, . . . , Uh]) For a graph H on h vertices, and pairwise disjoint vertex sets
U1, . . . , Uh, we denote by H[U1, . . . , Uh] the number of h-tuples v1 ∈ U1, . . . , vh ∈ Uh that span a
labeled copy of H.

Definition 1.2 (PH) For a fixed graph H on h vertices, we say that a graph G satisfies PH if all
pairwise disjoint h-tuples U1, . . . , Uh ⊆ V (G) of equal (arbitrary) size m satisfy

H[U1, . . . , Uh] = pe(H)h!mh + o(nh) .

Note that the above restriction is that the value of H[U1, . . . , Uh] should be close to what it
should be in G(n, p) for all h-tuples of equal-size. Observe also that the above condition does not
impose any restriction on the number of edges of G, while in property P1 there is. Note also, that
the error in the above definition involves n rather than m = |U1| = · · · = |Uh| so when m = o(n) the
condition vacuously holds. As opposed to P4, which is not quasi-random for all graphs, Simonovits
and Sós [22] showed that PH is quasi-random for any graph H.

Theorem 2 (Simonovits and Sós [22]) The following holds for any graph H: if a graph G

satisfies PH then it is p-quasi-random.

Observe that PH requires, via Definition1.1, all h-tuples of vertex sets to have the correct
number of copies of H with one vertex in each set. A more “natural” requirement, that was
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actually used in [22], is that all subsets of vertices U ⊆ V (G) should contain the correct number of
copies of H, that is, that H[U ] ≈ pe(H)|U |h for all U ⊆ V (G). However, it is not difficult to show
that these two conditions are in fact equivalent (see [20]). We choose to work with Definition 1.1
as it will fit better with the discussion in the next subsection.

1.3 The main result

So we know from Theorem 1 that when we consider the number of subgraphs of H in G, then some
H but not all, are such that having the correct number of copies of H in a graph G (and number
of edges) is enough to guarantee that G is quasi-random. From Theorem 2 we know that for all H,
having the correct number of copies of H in all the subgraphs of G is enough to guarantee that G

is quasi-random. A natural question is what can we learn from the distribution of induced copies
of a graph H? As we shall see, the situation is much more involved.

Recall that for a fixed graph H on h vertices and a fixed 0 < p < 1, we define δH(p) =
pe(H)(1 − p)(

h
2)−e(H). Let us denote by pH the second 3 solution (other than p) of the equation

δH(p) = xe(H)(1− x)(
h
2)−e(H). We call pH the conjugate of p with respect to H. We will sometimes

just write p instead of pH when H is fixed. Note that the expected number of induced copies of H in
a set of vertices U is roughly δH(p)|U |h. But, as it may 4 be the case that p 6= pH we see that for any
H and any p, the distribution of induced copies of H in both G(n, p) and G(n, pH) behaves precisely
the same. Therefore, the best we can hope to deduce from the fact that the distribution of induced
copies of H in G is close to that of G(n, p) is that G is either p-quasi-random or pH -quasi-random.

Let us denote by H∗[U1, . . . , Uh] the natural generalization of H[U1, . . . , Uh] (defined in Defini-
tion 1.1) with respect to induced subgraphs, that is, H∗[U1, . . . , Uh] is the number of h-tuples of
vertices v1 ∈ U1, . . . , vh ∈ Uh with the property that v1, . . . , vh span a labeled induced copy of H.
Note that for an h tuple of vertex sets U1, . . . , Uh in G(n, p) each of size m, the expected value of
H∗[U1, . . . , Uh] is δH(p)h!mh.

So given the above discussion and Theorem 2, it seems reasonable to conjecture that if a
graph G has the correct distribution of induced copies of H, then G is either p-quasi-random or
pH -quasi-random. When we say correct distribution we mean that all pairwise disjoint h-tuples
U1, . . . , Uh ⊆ V (G) of the same size m satisfy H∗[U1, . . . , Uh] ≈ δH(p)h!mh. However, it was
observed in [22, 23] that this is not the case. For example, one can take vertex set V1, V2 of sizes
αn, (1−α)n and put G(αn, p1) on V1, G((1−α1)n, p1) on V2 and connect V1 and V2 with probability
p2 6= p1. Then for appropriate constants, we get a graph with the correct distribution of the 3-vertex
path, yet this graph is not p-quasi-random for any p.

However, as before, the intuition is that having the correct distribution of induced copies of H

should guarantee that G is quasi-random. Our main result in this paper is that indeed it does,
one just needs to refine the notion of “correct distribution”. As we have mentioned before, if
U1, . . . , Uh is an h-tuple of vertices in G(n, p) of the same size m, then we would expect to have
H∗[U1, . . . , Uh] ≈ δH(p)h!mh. But observe, that the reason for that, is that we would actually

3It is not difficult to see that for non-negative integers k, ` the equation xk(1− x)` = q has at most two solutions

in (0, 1).
4The only case where p = pH is when p = e(H)/

�
h
2

�
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expect a slightly stronger condition to hold. Before stating this condition, let us introduce the
following “permuted” version of the quantity H∗[U1, . . . , Uh].

Definition 1.3 (H∗
σ[U1, . . . , Uh]) Let H be a graph on h vertices, let U1, . . . , Uh be an h-tuple

of pairwise disjoint vertex sets, and let σ ∈ Sh be permutation [h] → [h]. Then we denote by
H∗

σ[U1, . . . , Uh] the number of h-tuples of vertices v1 ∈ Uσ(1), . . . , vh ∈ Uσ(h) with the property that
vi ∈ Uσ(i) is connected to vj ∈ Uσ(j) if and only if (i, j) ∈ H.

Getting back to our discussion, observe that the reason we expect to have H∗[U1, . . . , Uh] ≈
δH(p)h!mh is simply because we expect to have H∗

σ[U1, . . . , Uh] ≈ δH(p)mh for all h! permutations
in Sh! It is now natural to define the following property:

Definition 1.4 (P∗
H) For a fixed graph H on h vertices, we say that a graph G satisfies P∗

H if for
all pairwise disjoint h-tuples U1, . . . , Uh ⊆ V (G) of equal (arbitrary) size m, and for every σ ∈ Sh

H∗
σ[U1, . . . , Uh] = δH(p)mh + o(nh) .

Our main result is that property P∗
H guarantees that a graph is quasi-random.

Theorem 3 (Main result) The following holds for any graph H: if a graph satisfies P∗
H then it

is either p-quasi-random or pH-quasi-random.

Our main result can be formulated as saying that for any H, if a graph G has the correct
distribution of induced copies of H, then G is quasi-random. We remind the reader that one
cannot hope to strengthen Theorem 3 by showing that G must be p-quasi-random, as G(n, p)
satisfies P∗

H with probability 1. Observe, that our notion of “correct distribution” (that is, the
quantities H∗

σ) is just slightly stronger than the notions that have been considered before (that is,
the quantities H∗), where the latter is known to be too weak to guarantee quasi-randomness.

1.4 Overview of the paper

As we have discussed in the first subsection, the theory of quasi-random graphs has many applica-
tions in theoretical computer science, both in the case of sparse and dense graphs. We think that
the main interest of our result is in the proof techniques and tools that are used in the course of
its proof. Besides several combinatorial arguments and tools (such as the Regularity Lemma [25],
Ramsey’s Theorem and Rödl’s “nibble” Theorem [18]) the main underlying idea of the proof is an
algebraic one. Roughly speaking, what we do is take all the information we know about the graph
G, namely the information on the distribution of induced copies of H, and use it in order define
a large system of polynomial equations. The unknowns in this system of equations represent (in
some way) the distribution of edges of G. The crux of the proof is to show that the unique solution
of this system of equations, is one that forces the edges of the graph to be nicely distributed (in the
sense of property P1 in Theorem 1). The main theorem we need in order to obtain this uniqueness
is a result of Gottlieb [3], in algebraic combinatorics, concerning the rank of set inclusion matrices
(see Theorem 4). This approach to showing that a graph is quasi-random may be applicable for
showing quasi-random properties of other structures.
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In Section 2 we prove Theorem 3 by applying several combinatorial tools as well as a key lemma
(Lemma 2.1) that is proved in Section 3. The proof of Lemma 2.1, which is the most difficult step
in the proof of Theorem 3, contains most of the new ideas we introduce in this paper.

2 Proof of Main Result

In this section we give the proof of Theorem 3, but before getting to the actual proof we will need
some preparation. We first discuss Lemma 2.1 which is the main technical lemma we need for the
proof of Theorem 3, and whose proof appears in the next section. We then discuss some simple
notions related to the Regularity Lemma, and then turn to the proof of Theorem 3. Throughout
this section, let us fix a real 0 < p < 1 and a graph H on h vertices. Recall that we set δH(p) =
pe(H)(1 − p)(

h
2)−e(H) and that we denote by p, the conjugate of p, the second solution in (0, 1) of

the equation δH(p) = xe(H)(1− x)(
h
2)−e(H).

2.1 The Key Lemma

In what follows we will work with weighted complete graphs W on r vertices. We will think of
the vertices of W as the integers [r]. In that case each pair of vertices 1 ≤ i < j ≤ r will have a
weight 0 ≤ w(i, j) ≤ 1. Let us identify the h vertices of H with the integers [h]. Given an injective
mapping φ : [h] → [r], which we think of as a mapping from the vertices of H to the vertices of W ,
we will set

W (φ) =
∏

(i,j)∈E(H)

w(φ(i), φ(j))
∏

(i,j) 6∈E(H)

(1− w(φ(i), φ(j))) .

Another notation that will simplify the presentation is a variant of the H∗
σ[U1, . . . , Uh] notation

that was defined in Section 1. Suppose we have r pairwise disjoint vertex sets U1, . . . , Ur and an
injective mapping φ : [h] → [r]. Then we denote by H∗

φ[U1, . . . , Ur] the number of h-tuples of
vertices v1 ∈ Uφ(1), . . . , vh ∈ Uφ(h) with the property that vi ∈ Uφ(i) is connected to vj ∈ Uφ(j) if an
only if (i, j) is an edge of H.

Suppose we construct an r-partite graph on vertex sets U1, . . . , Ur, each of size m, by connecting
every vertex in Ui with any vertex in Uj independently with probability w(i, j). Then, observe
that for any φ : [h] → [r], we would expect H∗

φ[U1, . . . , Ur] to be close to W (φ)mh. Continuing
this example, suppose that all (i, j) satisfy w(i, j) = p. Then we would expect all φ to satisfy
H∗

φ[U1, . . . , Uh] = δH(p)mh. Observe however, that we would also expect the same to hold if we
were to replace p by p.

The following lemma shows that the converse is also true in the following sense: if we know that
for any injective mapping φ we have the correct fraction of induced copies of H as we would expect
to find if we had w(i, j) = p for all (i, j), then either5 almost all (i, j) satisfy w(i, j) = p or almost
all satisfy w(i, j) = p. Note that for convenience the lemma is stated with respect to quantities in

5Remember that we cannot expect to be able to show that all densities are p as the number of induced copies of

H behaves the same with respect to p and p.
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(0, 1), rather than with respect to the number of edges or number of copies 6. In what follows, we
will always assume wlog that if p 6= p then ε < |p− p|/2. This will guarantee that p± ε 6= p± ε.

Lemma 2.1 (The Key Lemma) For every h there exists a N2.1 = N2.1(h) so that for any r ≥
N2.1 and ε > 0 there exists δ2.1 = δ2.1(ε, h, r) > 0 with the following properties: suppose W is a
weighted graph on r vertices, such that for all φ : [h] → [r] we have W (φ) = δH(p) ± δ2.1. Then
any pair (i, j) satisfies either w(i, j) = p± ε or w(i, j) = p± ε. Furthermore, either at most r − 1
of the pairs (i, j) satisfy w(i, j) = p± ε or at most r − 1 of the pairs (i, j) satisfy w(i, j) = p± ε.

The proof of Lemma 2.1, which is the main lemma we need for the proof of Theorem 3, appears
in Section 3. It is interesting to note that as we show in Section 3, one cannot strengthen the above
lemma by showing that either all densities are close to p or they are all close to p.

2.2 The Regularity Lemma

We now give a brief overview of the Regularity Lemma of Szemerédi, which turns out to be strongly
related to quasi-random graphs. For a pair of nonempty vertex sets (A,B) we denote by d(A,B)
the edge density between A and B, that is d(A,B) = |E(A,B)|/|A||B|. A pair of vertex sets
(A,B) is said to be γ-regular, if for any two subsets A′ ⊆ A and B′ ⊆ B, satisfying |A′| ≥ γ|A|
and |B′| ≥ γ|B|, the inequality |d(A′, B′) − d(A,B)| ≤ γ holds. A partition of the vertex set of a
graph is called an equipartition if all the sets of the partition are of the same size (up to 1). We
call the number of partition classes of an equipartition the order of the equipartition. Finally, an
equipartition V = {V1, . . . , Vk} of the vertex set of a graph is called γ-regular if all but at most
γ
(
k
2

)
of the pairs (Vi, Vj) are γ-regular. The celebrated Regularity Lemma of Szemerédi can be

formulated as follows:

Lemma 2.2 ([25]) For every t and γ > 0 there exists T = T2.2(γ, t), such that any graph of size
at least t has a γ-regular equipartition of order k, where t ≤ k ≤ T .

The following lemma of Simonovits and Sós [21] shows that the property of having a regular
partition where most of the pairs are connected by regular pairs of density close to p implies that
the graph is p-quasi-random. For completeness we include a short self contained proof of this lemma
at the end of this section.

Lemma 2.3 (Simonovits and Sós [21]) For every ζ > 0 there is an ε = ε2.3(ζ) and t = t2.3(ζ)
with the following property: suppose an n vertex graph G has an ε-regular partition of order k ≥ t

where all but ε
(
k
2

)
of the pairs are ε-regular with density p ± ε. Then every set of vertices U ⊆ G

spans 1
2p|U |2 ± ζn2 edges.

Another tool we will need for the proof of Theorem 3 is Lemma 2.4 below. This lemma is
equivalent to saying that if we have r pairwise disjoint vertex sets V1, . . . , Vr that are all regular
enough, then for any injective mapping φ : [h] → [r] we have that H∗

φ[V1, . . . , Vr] is close to what it
should be. Such a lemma is well known, and has been proven and used in many papers. See, e.g.,
Lemma 4.2 in [10] for one such proof. We thus omit the proof of Lemma 2.4.

6So w(i, j) should be understood as the density between the pair (Ui, Uj) and W (φ) is H∗
φ[U1, . . . , Ur]/mh.
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Lemma 2.4 For any δ > 0 and h, there exists a γ = γ2.4(δ, h) > 0 such that the following
holds: Let W be a weighted complete graph on r vertices, and suppose V1, . . . , Vr are pairwise
disjoint sets of vertices of size m each, that all pairs (Vi, Vj) are γ-regular and that all pairs satisfy
d(Vi, Vj) = w(i, j). Then, for any injective mapping φ : [h] → [r], we have

H∗
φ[V1, . . . , Vr] = (W (φ)± δ)mh. (1)

2.3 Proof of Theorem 3

For the proof of Theorem 3 we will also need the following two lemmas, whose proof is deferred to
the end of this section.

Lemma 2.5 For every ε there is an r2.5 = r2.5(ε) such that for every r ≥ r2.5 there is N2.5 = N2.5(r)
and γ2.5 = γ2.5(r) with the following property. Assume k ≥ N2.5 and that K is a k vertex graph
with at least (1− γ2.5)

(
k
2

)
edges. Suppose the edges of K are colored red/blue such that at least ε

(
k
2

)
are blue and at least ε

(
k
2

)
are red. Then K has r vertices that span a complete graph Kr with at

least r blue edges and at least r red edges.

Lemma 2.6 For any γ and r, there is an N2.6 = N2.6(γ, r) such that the following holds for any
k ≥ N2.6. If K is a graph on k vertices with at least (1−γ)

(
k
2

)
edges, then K has at least (1−γr2)

(
k
2

)
edges that belong to a copy of Kr.

Proof of Theorem 3: We will say that a γ-regular equipartition of order k is γ-super-regular if
all but γ

(
k
2

)
of the pairs are γ-regular with density p± γ or all but γ

(
k
2

)
of the pairs are γ-regular

with density p ± γ. We need to show that any graph G that satisfies P∗
H must be either p-quasi-

random or p-quasi-random7. Fix any ζ > 0 and recall that by Lemma 2.3 we know that in order
to show that a graph G has the property that every set U ⊆ V (G) satisfies e(U) = 1

2p|U2| ± ζn2 or
that every such set satisfies e(U) = 1

2p|U2|±ζn2, it is enough to show that G has an ε-super-regular
partition of order at least t, where

t = t2.3(ζ) , (2)

and
ε = ε2.3(ζ) . (3)

Let us define the following constants8

r = max(r2.5(ε/2), N2.1(h)) (4)

γ = min(ε, γ2.5(r) , γ2.4(δ2.1(ε, h, r)/2, h)) (5)

N = max(t, N2.6(γ, r), N2.5(r), N2.1(h)) (6)

T = T2.2(γ/r2, N) (7)
7Recall that the meaning of that is that either every set U ⊆ V (G) satisfies e(U) = 1

2
p|U2| ± ζn2 or that every

such set satisfies e(U) = 1
2
p|U2| ± ζn2 for some small ζ > 0

8We note that we need N , which is defined in (6), in order to allow us to apply the various lemmas we stated

above, that all work for large enough graphs.
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δ = δ2.1(ε, h, r)/2T. (8)

To complete the proof that P∗
H implies that a graph is either p-quasi-random or p-quasi-random, we

show (via Lemma 2.3) that for any ζ > 0 there is an N(ζ) and δ(ζ) such that the following holds:
if G is a graph on at least N(ζ) vertices and for every h-tuple of vertex sets U1, . . . , Uh ⊆ V (G) of
(arbitrary) size m each, and for every σ : [h] → [h] we have

H∗
σ[U1, . . . , Uh] = δH(p)mh ± δ(ζ)nh , (9)

then G has an ε-super-regular partition of order k, where k ≥ t. We will show that one can take
N(ζ) to be the integer N defined in (9) and that δ(ζ) can be taken as the value defined in (8).

So let G be a graph of size at least N , and apply Lemma 2.2 (the regularity lemma) on G

with γ/r2 and N that were defined in (5) and (6). Lemma 2.2 guarantees that G has a γ-regular
partition V = {V1, . . . , Vk} where t ≤ N ≤ k ≤ T and T is given in (7). We now need to show that
all but ε

(
k
2

)
of the pairs (Vi, Vj) are ε-regular and satisfy d(Vi, Vj) = p ± ε or ε-regular and satisfy

d(Vi, Vj) = p± ε. Let us define W to be a weighted graph on k vertices, where if (Vi, Vj) is ε-regular
then (i, j) are connected with an edge of weight w(i, j) = d(Vi, Vj), and if (Vi, Vj) is not ε-regular
then (i, j) are not connected. So our goal is to show that either all but ε

(
k
2

)
of the pairs of vertices

of W are connected by an edge with weight p± ε or that all but ε
(
k
2

)
of the pairs of vertices of W

are connected by an edge with weight p± ε.

Claim 2.7 Any copy of Kr in W satisfies the following:

1. Any edge has either weight p± ε or weight p± ε.

2. If p 6= p then either at most r − 1 of them have weight p ± ε or at most r − 1 of them have
weight p± ε.

Proof: Consider any copy of Kr in W and suppose wlog that the vertices of this copy are 1, . . . , r.
Recall that k ≤ T and that G satisfies (9) with the δ that was chosen in (8). We thus infer that
for any injective mapping φ : [h] → [r]

H∗
φ[V1, . . . , Vr] = δH(p)

(n

k

)h
± δnh = (δH(p)± 1

2
δ2.1(ε, h, r))

(n

k

)h
. (10)

In addition, as we are referring to r vertices that form a copy of Kr in W , we know that V1, . . . , Vr

are all pairwise γ-regular. Thus the choice of γ in (5) guarantees via Lemma 2.4 that for any
injective mapping φ : [h] → [r] we have

H∗
φ[V1, . . . , Vr] = (W (φ)± 1

2
δ2.1(ε, h, r))

(n

k

)h
. (11)

Combining (10) and (11) we infer that for any φ : [h] → [r] we have W (φ) = δH(p) ± δ2.1(ε, h, r).
Hence, the two assertions of the claim follow from Lemma 2.1.

We are now going to use Lemma 2.1 in order to color some of the edges of W . Consider any
copy of Kr in W . We know from the first assertion of Claim 2.7 that all the edge weights in the
copy of Kr are either p± ε or p± ε. If p = p then we color all the edges of this Kr with the color
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red. So assume that p 6= p and recall that we assume wlog that in this case ε < |p − p|/2, which
makes it possible to color the edges whose weight is p± ε blue, and the edges whose weight is p± ε

red (in a well defined way). We now apply this coloring scheme to any copy of Kr in W . We claim
that we have thus colored at least (1−γ)

(
k
2

)
of the edges of W . Indeed, as we applied the regularity

lemma with γ/r2 we know that W has at least (1−γ/r2)
(
k
2

)
edges. As k ≥ N2.6(γ, r) we infer from

Lemma 2.6 that at least (1− γ)
(
k
2

)
of the edges of W belong to a copy of Kr thus they are colored

in the above process. Let us now remove from W all the uncolored edges and call the new graph
W ′. Thus W ′ has at least (1− γ)

(
k
2

)
edges and they are all colored either red or blue.

We now claim that either W ′ has at most ε
2

(
k
2

)
red edges, or at most ε

2

(
k
2

)
blue edges. Indeed,

if W ′ had at least ε
(
k
2

)
red edges and at least ε

(
k
2

)
blue edges, then our choice of r and γ in (4) and

(5), the fact that W ′ has at least (1− γ)
(
k
2

)
edges, and that k ≥ N2.5(r), would allow us to apply

Lemma 2.5 on W ′ and infer that it has a copy of Kr with at least r blue edges and at least r red
edges, contradicting Claim 2.7 (recall that W ′ is a subgraph of W ).

We thus conclude that W has at least (1 − γ)
(
k
2

)
≥ (1 − ε

2)
(
k
2

)
edges, and that even if p 6= p

either all but ε
2

(
k
2

)
of them are red or all but at most ε

2

(
k
2

)
of them are blue. By the definition of

W , this means that in the equipartition V either all but ε
(
k
2

)
of the pairs are ε-regular with density

p± ε, or all but at most ε
(
k
2

)
of them are ε-regular with density p± ε, which completes the proof.

2.4 Proofs of additional lemmas

We end this section with the proofs of Lemmas 2.3, 2.5 and 2.6.

Proof of Lemma 2.3: We claim that one can take ε = ε2.3(ζ) = 1
8ζ and t = t2.3(ζ) = 8/ζ.

Indeed, suppose G has an ε-super-regular partition {V1, . . . , Vk} of order k ≥ t, that is, a partition
in which all but ε

(
k
2

)
of the pairs (Vi, Vj) are ε-regular with density d(Vi, Vj) = p ± ε. Let us

count the number of edges of G that do not connect a pair (Vi, Vj) which is ε-regular with density
d(Vi, Vj) = p± ε. As k ≥ t ≥ 8/ζ we know that the number of pairs of vertices that both belong to
the same set Vi is at most k|n/k|2 ≤ 1

8ζn2. As all but ε
(
k
2

)
of the pairs (Vi, Vj) are ε-regular with

density d(Vi, Vj) = p± ε, we also know that the number of pairs connecting pairs (Vi, Vj), which do
not satisfy these two conditions, is bounded by ε

(
k
2

)
(n/k)2 ≤ 1

8ζn2.
Consider now a set of vertices U , and define Ui = U ∩ Vi. The number of vertices of U that

belong to a set Ui whose size is smaller than ε|Vi| is bounded by εn. Therefore the number of pairs
of vertices of U such that one of them belongs to a set Ui of size smaller than ε|Vi| is bounded by
εn2 ≤ 1

8ζn2. Combining the above three facts we conclude that all by 1
2ζn2 of the pairs of vertices

of ui, uj ∈ U are such that: (1) ui ∈ Ui, uj ∈ Uj and i 6= j; (2) Ui ≥ ε|Vi| and Uj ≥ ε|Vj |; (3)
(Vi, Vj) is ε-regular with density p ± ε. Therefore, by the definition of a regular pair we get that
the density of U in all but 1

2ζn2 of its pairs is p± 2ε = p± 1
2ζ, and therefore e(U) = 1

2p± ζn2.

Proof of Lemma 2.5: Suppose we randomly pick r vertices v1, . . . , vr from K with repetitions
where r = Ω(1/ε3). Clearly, if k ≥ 10r2 then by a Birthday-Paradox argument we infer that with
probability at least 3/4 all the vertices v1, . . . , vr are distinct. Suppose wlog that r is even and let
us partition the set of unordered pairs (vi, vj) into r − 1 perfect matchings M1, . . . ,Mr−1 on the
vertices v1, . . . , vr. For every pair i, j let pi,j be the indicator random variable for the event that ri
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and rj are connected in K by a red edge. As we sample with repetitions then for every matching
Mt, the r/2 events {pi,j : (i, j) ∈ Mt} are independent. Also, as K has at least ε

(
k
2

)
red edges, we

have that Pr[pi,j = 1] ≥ ε/2 (we lose a little due to the probability of having non distinct vertices).
We thus conclude that for any matching Mt, the expected number of red edges spanned by the
pairs {(i, j) : (i, j) ∈ Mt} is at least εr/4 and by a Chernoff bound, the probability of deviating
from this expectation by more than εr/8 is bounded by 2−Θ(ε2r) < 1/4r. Clearly the same analysis
applies for the red edges. We conclude by the union bound that with probability at least 3/4 the
r vertices span at least εr2/16 red edges and at least εr2/16 blue edges. As r = Ω(1/ε3) we have
εr2/16 ≥ r therefore we have the required amount of red/blue edges. We conclude that one can
take r2.5 = Ω(1/ε3) and N2.5(r) = 10r2.

Finally, to conclude that all the pairs (ri, rj) are connected we take γ2.5 = 1/4r2. This way, the
probability that a pair of vertices are not connected is at most 1/4r2 and by the union bound, with
probability at least 3/4 they are all connected. So to recap, if we sample with repetition r vertices,
then with probability at least 1/4 they are all distinct, all connected, and have at least r red edges
and at least r blue edges. So there must be at least one such set of r vertices in K.

Proof of Lemma 2.6: Suppose k is large enough to guarantee by Rödl’s theorem [18] that the
complete graph on k vertices contains (1− γ)

(
k
2

)
/
(
r
2

)
edge disjoint copies of Kr. If we now consider

the same copies of Kr in K (more precisely, the vertex sets of these copies) then the fact that K

has (1− γ)
(
k
2

)
edges implies that at most γ

(
k
2

)
= γ

(
r
2

)
·
(
k
2

)
/
(
r
2

)
of these copies of Kr have a pair of

vertices that are not connected. Thus, K contains at least (1− γr2)
(
k
2

)
/
(
r
2

)
edge disjoint copies of

Kr implying that at least (1− γr2)
(
k
2

)
edges of K belong to a copy of Kr.

3 Proof of the Key Lemma

As in Section 2, let us fix a real 0 < p < 1 and a fixed graph H on h vertices. Let also p be
the conjugate of p with respect to H. We will again work with weighted complete graphs W

on r vertices, and will identify the vertices of W with [r] and the vertices of H with [h]. Each
pair of vertices 1 ≤ i < j ≤ r of W has a weight 0 ≤ w(i, j) ≤ 1 that is given by some weight
function w : E(W ) → [0, 1]. We remind the reader of the notation W (φ) that was introduced at
the beginning of Section 2.

Recall that Lemma 2.1 states that if all the values W (φ) are close to what they should be, then
all the weights w(i, j) are close to what they should be. The following lemma is an “exact” version
of Lemma 2.1 where we assume that the values W (φ) are exactly what they should be. The proof
of Lemma 2.1 will then follow from the lemma below using standard continuity arguments. Observe
that the lemma below actually gives a bit more information than what we need for Lemma 2.1. In
what follows let Φ be the set of all possible injective mappings φ : [h] → [r], and notice that there
are r!/(r − h)! elements in Φ.

Lemma 3.1 For every h > 2 there exists N3.1 = N3.1(h) so that the following holds. Let H be a
fixed graph with m edges and h vertices. If r ≥ N3.1 and W is a labeled weighted graph on r vertices
satisfying W (φ) = δH(p) for all φ ∈ Φ, then w(i, j) ∈ {p, p} for all 1 ≤ i < j ≤ r. Furthermore,
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if gcd(
(
h
2

)
,m) = 1 then all edge weights are the same, and if gcd(

(
h
2

)
,m) > 1 then either all edge

weights are the same, or else there exists one vertex whose deletion from W yields a subgraph with
r − 1 vertices all of whose edge weights are the same.

We split the proof of Lemma 3.1 into two parts. We initially prove Lemma 3.2 below showing
that all w(i, j) are taken from {p, p}. We then use this lemma in order to show that in fact most
of the w(i, j) are either p or p.

An important ingredient in the proof of Lemma 3.2 will be a theorem of Gottlieb [3], concerning
the rank of set inclusion matrices. For integers r ≥ h > 2, the inclusion matrix A(r, h) is defined
as follows: The rows of A(r, h) are indexed by h-element subsets of [r], and the columns by the
2-element subsets of [r]. Entry (i, j) of A(r, h) is 1 if the 2-element set, whose index is j, is contained
in the r-element set, whose index is i. Otherwise, this entry is 0. Notice that A(r, h) is a square
matrix if and only if r = h + 2, and that for r > h + 2, A(r, h) has more rows than columns.
Trivially, rank(A(r, h)) ≤

(
r
2

)
. However, Gottlieb [3] proved 9 that in fact

Theorem 4 (Gottlieb [3]) rank(A(r, h)) =
(
r
2

)
for all r ≥ h + 2.

Lemma 3.2 Let H be a fixed graph with h > 2 vertices. If r ≥ h + 2 and W is a labeled weighted
graph on r vertices satisfying W (φ) = δH(p) for all φ ∈ Φ, then w(i, j) ∈ {p, p} for all 1 ≤ i < j ≤ r.

Proof: We associate a variable xi,j for each 1 ≤ i < j ≤ r, which represents the unknown w(i, j).
Thus, for any φ ∈ Φ we have that W (φ) is given by the polynomial

Pφ =
∏

(i,j)∈E(H)

xφ(i),φ(j)

∏
(i,j) 6∈E(H)

(1− xφ(i),φ(j)) . (12)

As our assumption is that W (φ) = δH(p) for all φ ∈ Φ we have the following set of r!/(r − h)!
polynomial equations Eφ:

Eφ :
∏

(i,j)∈E(H)

xφ(i),φ(j)

∏
(i,j) 6∈E(H)

(1− xφ(i),φ(j)) = δH(p) . (13)

Our goal now is to show that the only solution to this system is xi,j ∈ {p, p}.
For a vertex set S ⊆ [r] of size h, let E[S] denote the

(
h
2

)
edges of W induced by S. Let S be

the set of all h-element subsets of V (W ) = [r] and notice that |S| =
(

r
h

)
. For every S ∈ S let ΦS

be the set of all h! elements of Φ that are bijections on S. For every set S let us take the product
of the h! equations {Eφ : φ ∈ ΦS} of (13). We thus get the following system of

(
r
h

)
polynomial

equations (one for every S ∈ S) with
(
r
2

)
variables (one for each (i, j) ∈ E(W )):

ES :
∏

(i,j)∈E[S]

(
xm

i,j · (1− xi,j)(
h
2)−m

)2!(h−2)!
= (δH(p))h! . (14)

9Gottliebs’s theorem actually deals with the more general case where the columns are indexed by the d element

subsets of [r] where 2 ≤ d ≤ h, and in that case the rank is
�

r
d

�
for all r ≥ h + d.
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In order to show that the only solution of the equations ES is given by xi,j ∈ {p, p}, it would be
convenient to first transform them to linear equalities, by taking logarithms on both sides. Define

yi,j = m · log(xi,j) +
((

h

2

)
−m

)
· log(1− xi,j) (15)

and note that if we take logarithm of the equations given in (14) and use the yi,j defined above, we
thus obtain an equivalent system of linear equations on the

(
r
2

)
variables yi,j , where equation ES

becomes

E′
S :

∑
(i,j)∈E[S]

yi,j =
(

h

2

)
· log(δH(p)) . (16)

We can write the
(

r
h

)
linear equations E′

S as Ax = b where A in an
(

r
h

)
×

(
r
2

)
matrix, and b is the all(

h
2

)
· log(δH(p)) vector. A key observation at this point is that A is precisely the inclusion matrix

A(r, h). Since r ≥ h + 2 we obtain, by Theorem 4, that the system has a unique solution and the
values of the variables yi,j are uniquely determined. Now, as each set S ∈ S is of size h it is clear
that setting yi,j = log(δH(p)) for all (i, j) gives a valid solution of the linear equations given in (16),
and by the above observation, this is in fact the unique solution. Recalling the definition of yi,j in
(15), this implies that for all (i, j) we have

xm
i,j · (1− xi,j)(

h
2)−m = δH(p) .

Now, as {p, p} are the only solutions to the above equation, we deduce that indeed xi,j ∈ {p, p},
proving the lemma.

For the proof of Lemma 3.1, we will need another simple lemma. A graph is called pairwise
regular if there exists a number t so that d(x) + d(y) − d(x, y) = t for all pairs of distinct vertices
x, y. Here d(v) denotes the degree of v and d(u, v) = 1 if (u, v) is an edge, otherwise d(u, v) = 0. A
graph is called pairwise outer-regular if there exists a number t so that d(x)+d(y)−2d(x, y) = t for
all pairs of distinct vertices x, y. Trivially, a graph is pairwise regular if and only if its complement
is. The same holds for pairwise outer-regular. It is also trivial that the complete graph (and the
empty graph) is both pairwise regular and pairwise outer-regular. Notice, that K1,2 is also pairwise
regular, and that K1,3 is also pairwise outer-regular. The following lemma, whose proof is deferred
to the end of this section, establishes that these are the only non-trivial cases.

Lemma 3.3 The only non-complete and non-empty graphs which are pairwise regular are K1,2 and
its complement. The only non-complete and non-empty graphs which are pairwise outer-regular are
K1,3 and its complement.

Proof of Lemma 3.1: Notice that if p = p then there is actually nothing to prove, since Lemma
3.2 already yields the desired conclusion. Hence, assume p 6= p. Observe, that this implies that H

in not the complete graph nor the empty graph as in these two cases p = p.
By Lemma 3.2, each edge weight is either p or p. We color the edges of W with two colors: blue

for edges whose weight is p and red for edges whose weight is p. We may assume that our coloring
is non-trivial, that is, that we have both red and blue edges, since otherwise there is nothing to
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prove. Each φ ∈ Φ defines a labeled copy of H in W . Let b(φ) be the number of edges of H mapped
to blue edges and let a(φ) be the number of non-edges10 of H mapped to blue edges. Then, the
number of edges of H mapped to red edges is m− b(φ) and the number of non-edges of H mapped
to red edges is

(
h
2

)
−m− a(φ). Thus, we have for every φ ∈ Φ that

δH(p) = W (φ) = pb(φ)pm−b(φ)(1− p)a(φ)(1− p)(
h
2)−m−a(φ) . (17)

Multiplying (17) by pb(φ)(1− p)a(φ) we get that

δH(p) · pb(φ)(1− p)a(φ) = pb(φ)(1− p)a(φ)pm(1− p)(
h
2)−m = δH(p) · pb(φ)(1− p)a(φ) (18)

where in the second equality we use the fact that pm(1− p)(
h
2)−m = δH(p). This implies that(

p

p

)b(φ) (
1− p

1− p

)a(φ)

= 1 . (19)

On the other hand, since p and p are both solutions of the equation xm · (1− x)(
h
2)−m = δH(p) we

also know that (
p

p

)m (
1− p

1− p

)(h
2)−m

= 1 . (20)

Thus, solving (19) for p
p and plugging it into (20) gives that for any φ

a(φ) ·m = b(φ) ·
((

h

2

)
−m

)
. (21)

Consider first the case where gcd(m,
(
h
2

)
) = 1. This implies that gcd(m,

(
h
2

)
−m) = 1. Since the

red-blue coloring is not trivial there is a Kh subgraph of W which contains both red and blue edges.
Thus there exists φ ∈ Φ so that 0 < a(φ) + b(φ) <

(
h
2

)
. There are two ways in which (21) can be

satisfied: the first is if a(φ) = b(φ) = 0, but this violates the fact that 0 < a(φ) + b(φ). The second
is if a(φ) is a multiple of

(
h
2

)
−m and b(φ) is a multiple of m, but this violates a(φ) + b(φ) <

(
h
2

)
.

Thus, the coloring must be trivial, and we are done.
Now consider the case gcd(m,

(
h
2

)
) > 1. By Ramsey’s Theorem if N3.1(h) is sufficiently large,

there is a monochromatic copy of K3h−8 in W . Let T denote a maximal monochromatic copy in
W . Thus, T has t vertices and r > t ≥ 3h− 8. Suppose, w.l.o.g., that T is completely red. Let x

be a vertex outside T . By maximality of T , there exists y ∈ T so that (x, y) is blue. Suppose x has
at least h − 2 red neighbors in T , say (x, v1), . . . , (x, vh−2) are all red. Then, {x, y, v1, . . . , vh−2}
induce a copy of Kh which has precisely one blue edge. If φ is any bijection onto this copy then
a(φ)+ b(φ) = 1, but this must violate (21) and hence the coloring must be trivial and we are done.

We may now assume that each vertex x outside T has at most h− 3 red neighbors in T . Now,
if t = r − 1 then there are at most r − 1 blue edges in our coloring, all incident with x, and
we are done. Otherwise, there are at least two vertices x1 and x2 outside T , that have at least
t − 2(h − 3) ≥ 3h − 8 − 2h + 6 = h − 2 common neighbors {v1, . . . , vh−2} in T so that all edges
(xi, vj) are blue for i = 1, 2 and j = 1, . . . , h− 2.

10The non-edges of H are all the pairs i, j that are not connected in H.
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Consider first the case where (x1, x2) is blue. Since gcd(m,
(
h
2

)
) > 1 we must have that H is

not K1,2 nor its complement. Thus, by Lemma 3.3, H is not pairwise regular11. Let {u1, u2} and
{u3, u4} be two pairs of distinct vertices of H so that

d(u1) + d(u2)− d(u1, u2) 6= d(u3) + d(u4)− d(u3, u4) . (22)

Let φ1 be a bijection from V (H) to {x1, x2, v1, . . . , vh−2} mapping u1 to x1 and u2 to x2. Clearly,
b(φ1) = d(u1) + d(u2)− d(u1, u2). Similarly, if φ2 is a bijection from V (H) to {x1, x2, v1, . . . , vh−2}
mapping u3 to x1 and u4 to x2 then b(φ2) = d(u3) + d(u4) − d(u3, u4). In particular, we get
from (22) that b(φ1) 6= b(φ2). We claim however that this is impossible as in fact b(φ1) = b(φ2).
Indeed, by combining (21) for φ1 and for φ2 we get that a(φ1)/a(φ2) = b(φ1)/b(φ2). Further we
have b(φ1) + a(φ1) = b(φ2) + a(φ2) as both sides are equal to the number of blue edges in the
corresponding induced Kh of W . Combining the two equations we get b(φ1) = b(φ2).

Consider finally the case where (x1, x2) is red. Assume first that H is not K1,3 nor its com-
plement. Thus, by Lemma 3.3, H is not pairwise outer-regular. Let {u1, u2} and {u3, u4} be two
pairs of distinct vertices of H so that

d(u1) + d(u2)− 2d(u1, u2) 6= d(u3) + d(u4)− 2d(u3, u4) .

Let φ1 be a bijection from V (H) to {x1, x2, v1, . . . , vh−2} mapping u1 to x1 and u2 to x2. Clearly,
b(φ1) = d(u1)+d(u2)−2d(u1, u2). Similarly, if φ2 is a bijection from V (H) to {x1, x2, v1, . . . , vh−2}
mapping u3 to x1 and u4 to x2 then b(φ2) = d(u3)+d(u4)−2d(u3, u4). In particular, b(φ1) 6= b(φ2).
As in the previous case, this is a contradiction. If H = K1,3 then h = 4 and we can use the fact
that x1 has at least 3h− 8− (h− 3) = 3 blue neighbors in T denoted y1, y2, y3. Thus, x1, y1, y2, y3

have a red triangle and a blue K1,3. Let φ1 map the vertex of degree 3 of H to x1 and the rest to
y1, y2, y3, yielding b(φ1) = 3. Let φ2 map the vertex of degree 3 of H to y1 and the rest to x1, y2, y3

yielding b(φ2) = 1. Again, b(φ1) 6= b(φ2), a contradiction. The case of the complement of K1,3 is
proved in the same way.

For the proof of Lemma 2.1, we will need the following simple fact

Claim 3.4 For any integer p and δ there is a γ = γ3.4(δ, p) with the following property: Let A be
any p× p non-singular 0/1 matrix, let b be any vector in Rp and let x ∈ Rp be the unique solution
of the system of linear equations Ax = b. Then if b′ satisfies `∞(b′, b) ≤ γ then the unique solution
x′ of Ax′ = b′ satisfies `∞(x′, x) ≤ γ.

Proof: Fix any p×p non-singular matrix A with 0/1 entries. Then the solution of Ax = b is given
by x = A−1b. As xi =

∑p
j=1 A−1

i,j · bj is a continuous function of b it is clear to for any δ there is a
γ = γ(δ,A) such that if `∞(b′, b) ≤ γ then the unique solution x′ of Ax′ = b′ satisfies `∞(x′, x) ≤ δ.
Now, as there are finitely many 0/1 p× p matrices, we can set γ = γ3.4(δ, p) = minA γ(δ,A), where
the minimum is taken over all 0/1 p× p matrices.

11Remember that at this point we know that H is neither a complete graph nor an edgeless graph.
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Proof of Lemma 2.1: The lemma is an immediate consequence of Lemma 3.1 using standard
arguments of continuity; the continuity of polynomials as functions, and the continuity of unique
solutions to linear systems that is given in Lemma 3.4 above. First we can take N2.1(h) = N3.1(h).
Now, given any r ≥ N3.1(h) and ε we need to show that if all W (φ) are very close to δH(p) then
we can get the conclusion of Lemma 2.1.

First, we see that in Lemma 3.2 if all W (φ) are close to δH(p) then by Lemma 3.4 any solution
to the linear equations E′

S given in (16) satisfies that all yi,j are very close to log(δH(p)). By

continuity of 2x this means that xm
i,j(1− xi,j)(

h
2)−m is close to δH(p), which again by continuity of

xk implies that either xi,j is close to p or to p. So the conclusion of Lemma 3.2 is that if all W (φ)
are close to δH(p), then all densities are indeed close to either p or p.

For the rest of the proof, in equations (17) and (18) we replace p and p with quantities close to
them. This means that (19) and (20) are no longer equations but approximately equal to 1. This
implies that in (21) we also have approximate equality. However, note that as both sides of (21)
involve integers, once the two sides are close enough, they must in fact be equal. Now, as the rest
of the proof only relies on the validity of (21) it follows verbatim as in the proof of Lemma 3.1.

It is interesting to note that we cannot hope to prove a stronger version of Lemma 3.1 in which
all edge weights are the same, regardless of gcd(

(
h
2

)
,m). Indeed, consider the case where H = Ch

is a cycle with h ≥ 4 vertices. For every r ≥ h + 1, there are weighted complete graphs W with r

vertices having W (φ) = δH(p) for each φ ∈ Φ, while still some edges of W have weight p and others
have weight p. Indeed, assume that all weights of edges not incident with r ∈ W have weight p,
and the r − 1 edges incident with r has weight p. Now, if the image of φ does not contain r then,
clearly,

W (φ) = ph(1− p)(
h
2)−h = δH(p).

On the other hand, if the image of φ contains r then

W (φ) = ph−2p2(1− p)(
h
2)−2h+3(1− p)h−3.

But not that p2(1 − p)h−3 is just δH(p)2/h, and hence it also equals p2(1 − p)h−3. Consequently,
W (φ) = δH(p) in this case as well.

Proof of Lemma 3.3: Let us say that (x1, y1)(x2, y2) are violating, with respect to the property
of being pairwise regular if d(x1) + d(y1)− d(x1, y1) 6= d(x2) + d(y2)− d(x2, y2) and violating with
respect to the property of being pairwise outer-regular if d(x1)+d(y1)−2d(x1, y1) 6= d(x2)+d(y2)−
2d(x2, y2). Suppose first that G is a pairwise regular graph which is neither complete nor empty.
We claim that this implies that |d(x)− d(y)| ≤ 1 for any two vertices x, y ∈ V (G). Indeed, if there
is a pair that violates this, then (x, z), (y, z) is violating for any z. Note that G cannot be regular,
otherwise (x1, y1)(x2, y2) is violating whenever (x1, y1) is and edge and (x2, y2) is not. So partition
the vertices of G into two non empty sets, V1 and V2, where all the vertices of V1 have degree s and
those of V2 have degree s− 1.

If |V1| > 1 then V1 must be a clique otherwise (x1, y)(x2, y) is violating for any x1, x2 ∈ V1 and
y ∈ V2. In particular, we have t = 2s− 1. We also have that |V2| = 1 as otherwise (x1, x2)(y1, y2)
is violating for any x1, x2 ∈ V1 and y1, y2 ∈ V2. If the unique vertex v of V2 is connected to x1 ∈ V1
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but not to x2 ∈ V1 then (x1, v)(x2, v) is clearly violating, so v is either connected to all the vertices
of V1 or else is an isolated vertex. If v is an isolated vertex then s = 1, which implies that V1 is
a clique of size 2, and G is thus the complement of K1,2. If v is connected to all the vertices of
V1 then |V1| = s− 1 which is impossible, since in a graph with s vertices there cannot be vertices
with degree s. If |V1| = 1 then we must have |V2| > 1. Note that in this case V2 must span an
independent set as otherwise (x, y1)(y1, y2) is violating for any choice of y1, y2 ∈ V2 and x ∈ V1. As
G is not edgeless we infer that s− 1 = 1 implying that G is K1,2.

Suppose now that G is pairwise outer-regular and is neither complete nor empty. Following
the same reasoning as above, we must have for any two vertices x, y of G, that |d(x) − d(y)| ≤ 2.
Again, note that G cannot be regular, so partition the vertices of G into two non-empty sets, V1

and V2, where all of the vertices of V1 have degree s and all the vertices of V2 have degree s− 1 or
s − 2. If |V1| > 1 then again V1 must span a clique, as otherwise (x1, y)(x2, y) is violating for any
x1, x2 ∈ V1 and y ∈ V2, and therefore t = 2s − 2. Note that if y ∈ V2 is connected to x ∈ V1 then
(x1, x)(x, y) is violating for any other x1 ∈ V1. Also, if |V2| ≥ 2 then any pair of vertices of V2 must
be disconnected with degree s− 1 as otherwise (x1, x2)(y1, y2) is violating for any x1, x2 ∈ V1 and
y1, y2 ∈ V2. We thus get that the degree of vertices in V2 is zero, hence either s = 1 or s = 2. The
former case implies that t = 0 and that |V1| = 2. This means that G has just one edge, which is
not an outer-regular graph. If s = 2 then |V1| = 3 implying that G is a triangle plus some isolated
vertices. If there is one such vertex then G is the complement of K1,3, and if there are two such
vertices y1, y2, then (y1, y2)(y1, v) is violating for any v ∈ V1. So assume that |V1| = 1, which implies
that |V2| ≥ 2. Let x be the unique vertex of V1, and observe that if x is connected to y1 ∈ V2 but
not to y2 ∈ V2 then (x, y1)(x, y2) is violating. So either v is connected to all the vertices of V2 or
to none of them, but note that the latter case is impossible as s > s − 1 ≥ 0. We now claim that
V2 must be edgeless. Indeed if y1, y2 ∈ V2 are connected and d(y1) ≥ d(y2) then (y1, y2)(x, y1) is
violating. We infer that the degree of the vertices of V2 is 1, so G is either K1,2, which is not outer
regular, or K1,3.
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