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Abstract

Erdős, Fajtlowicz and Staton asked for the least integer f(k) such that every graph with

more than f(k) vertices has an induced regular subgraph with at least k vertices. Here we

consider the following relaxed notions. Let g(k) be the least integer such that every graph with

more than g(k) vertices has an induced subgraph with at least k repeated degrees and let h(k)

be the least integer such that every graph with more than h(k) vertices has an induced subgraph

with at least k maximum degree vertices. We obtain polynomial lower bounds for h(k) and g(k)

and nontrivial linear upper bounds when the host graph has bounded maximum degree.

1 Introduction

We consider undirected simple and finite graphs. Erdős, Fajtlowicz and Staton (c.f. [7], page 85)

asked for the order of magnitude of the least integer f(k) such that every graph with more than f(k)

vertices has an induced regular subgraph with at least k vertices. Clearly f(k) ≤ R(k) − 1 where

R(k) is the diagonal Ramsey number, but already small values of k suggest that it is smaller. They

conjectured that f(k) is less than exponential in k and this major open problem is still unresolved.

The best lower bound for f(k) is polynomial in k. Alon, Krivelevich and Sudakov [1] proved that

f(k) = Ω(k2/
√

log k) improving an earlier result of Bollobás (c.f. [7]) who proved f(k) = Ω(k2−ε)

for every ε > 0.

In this paper we consider a version of the aforementioned question which relaxes the regularity

requirement. For a graph G, let rep(G) be the maximum multiplicity of a mode (i.e. most common

value) of the degree sequence of G. This parameter, also called the repetition number has been

recently studied by several researchers, see [4, 5]. Likewise, let maxrep(G) be the number of

vertices with maximum degree in G; this has recently been studied in [6, 9]. Let, therefore, g(k)

be the least integer such that every graph with more than g(k) vertices has an induced subgraph

with repetition number at least k and let h(k) be the least integer such that every graph with more
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than h(k) vertices has an induced subgraph with at least k maximum degree vertices. We clearly

have

Θ(k) ≤ g(k) ≤ h(k) ≤ f(k) ≤ R(k)− 1

and small values of k show that all of these parameters are separated.

Our first main contribution in this paper is a polynomial lower bound for g(k) and hence for

h(k).

Theorem 1. There exists an absolute constant c such that g(k) ≥ ck3/2/(log k)1/2.

Determining these functions even with the further restriction that the graph in question has

bounded maximum degree also seems challenging. Let g(k, d) denote the least integer such that

every graph with maximum degree at most d and more than g(k, d) vertices has an induced subgraph

H with rep(H) ≥ k. Similarly define h(k, d) and f(k, d). Again, we have here that for every

nonnegative integer d, g(k, d) ≤ h(k, d) ≤ f(k, d) ≤ (k−1)(d+1) as in every graph with (k−1)(d+

1) + 1 vertices and with maximum degree d there is an independent set of size k. Once again, it is

not difficult to construct some small examples of distinct pairs (k, d) showing that these 2-valued

functions are separated.

For very small fixed d, the values of f(k, d) and g(k, d) are easy to obtain. For example, it

clearly holds that g(k, 0) = h(k, 0) = f(k, 0) = k−1. It is also easy to show that h(k, 1) = g(k, 1) =

f(k, 1) = b1.5(k − 1)c. For d = 2 things are only slightly more involved but all parameters can be

precisely determined as the host graphs in this case are just disjoint unions of cycles, paths, and

isolated vertices. For example, it is not difficult to prove that h(k, 2) = 2(k − 1) for all odd k and

h(k, 2) = 2k−3 for all even k as was shown in [3]. However, already for d = 3, even the asymptotic

behaviors of h(k, 3) as well as g(k, 3) and f(k, 3) seem elusive. It is not difficult to show that for

every fixed d, each of h(k, d)/k, g(k, d)/k, f(k, d)/k has a limit. The following theorem provides

nontrivial upper and lower bounds for the limits of the first two, while Proposition 4.2 provides an

upper bound for the limit of the third.

Theorem 2. There exists an absolute constant c > 0 such that for every d ≥ 2,

c

(
d

log d

)1/3

≤ lim
k→∞

g(k, d)

k
≤ lim

k→∞

h(k, d)

k
≤ d

2
+ 1 .

Regarding the first nontrivial case d = 3 we obtain the following more specific bounds.

Theorem 3.
53

24
≤ lim

k→∞

h(k, 3)

k
≤ 5

2
,

13

6
≤ lim

k→∞

g(k, 3)

k
≤ 12

5
.

In the next section we prove the general lower bound, namely Theorem 1. Section 3 consid-

ers bounded degree graphs where we prove Theorems 2 and 3. The final section contains some

concluding remarks and open problems.
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2 A polynomial lower bound for repetition of induced subgraphs

Proof of Theorem 1. Our construction is probabilistic and follows the non-uniform random graph

model as in [1]. Let p = (p1, . . . , pn) where pi = (1− ε)/
√

2+ i(4+
√

2)ε/(7n) and let G(n, p) be the

probability space of graphs on vertex set [n] where the pair (i, j) is an edge with probability pipj

independently of all other pairs. In this proof we will use ε = 1−
√

2/4 so that pi = 1/4 + i/(2n).

Let C > 0 be an absolute constant to be chosen later and let k = 3Cn2/3(lnn)1/3. We will

assume that k is an integer multiple of 3 as this does not affect the asymptotic claim and also

assume that n is sufficiently large to satisfy the claimed inequalities. For every k ≤ t ≤ n we

will prove that the probability that G ∼ G(n, p) has an induced subgraph H with t vertices

having rep(H) ≥ k is less than 1/n. Hence, by the union bound it will follow that with positive

probability, a graph G ∼ G(n, p) has no subgraph with repetition number at least k and therefore

g(k) ≥ n = ck3/2/(log k)1/2 for a suitable absolute constant c, hence Theorem 1 follows.

Fix some t with k ≤ t ≤ n and fix some T ⊆ [n] with t = |T |. Let H = G[T ] where G ∼ G(n, p).

We will prove that the probability that rep(H) ≥ k is less than (n
(
n
t

)
)−1 and as there are only(

n
t

)
choices for T , this will prove that the probability of G having an induced subgraph H with t

vertices having rep(H) ≥ k is less than 1/n, as claimed.

Fix some R ⊆ T with |R| = k. We will prove that the probability of all the vertices of R

having the same degree in H is less than (
(
t
k

)
)−1(n

(
n
t

)
)−1 hence it will imply the probability that

rep(H) ≥ k is less than (n
(
n
t

)
)−1, as claimed.

Recall that the vertices of R are a subset of the total order [n] hence let R = {v1, . . . , vk} where

vi < vi+1 for i = 1, . . . , k − 1. Let A denote the first k/3 vertices of R and let B denote the last

k/3 vertices of R. Our goal is to upper bound the probability that the sum of the degrees in H of

the vertices in A equals the sum of the degrees in H of the vertices in B. This probability clearly

upper bounds the probability that all the vertices of R have the same degree in H.

For a pair of vertices (i, j), let Xi,j denote the indicator random variable which equals 1 if (i, j)

is an edge. Let XA denote the sum of the degrees of A in H. Let YA denote the sum of the indicator

random variables corresponding to pairs (i, j) such that i ∈ A and j ∈ T \ (A ∪ B) and let ZA

denote the sum of the indicator random variables corresponding to pairs (i, j) such that both i, j

are in A. Analogously define XB, YB, ZB. Notice that XB−XA = YB +2ZB−YA−2ZA (indicator

random variables corresponding to pairs with one endpoint in A and another in B are canceled out

in the difference XB −XA). Also notice that all the 2
(
k/3
2

)
+ 2(k/3)(t − 2k/3) indicator variables

involved in forming YA, YB, ZA, ZB are independent.

We next estimate E[XB −XA]. First observe that E[ZB −ZA] ≥ 0 since a pair of vertices in B

have a higher chance to be an edge than a pair of vertices in A. Therefore,

E[XB −XA] = E[YB − YA] + 2E[ZB − ZA] ≥ E[YB − YA] .
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For every vertex j ∈ T \ (A ∪ B) and for every i ∈ A and i′ ∈ B the probability of the pair i, j to

be an edge is less than the probability of the pair (i′, j) to be an edge by at least k/(24n) since(
1

4
+

i′

2n

)(
1

4
+

j

2n

)
−
(

1

4
+

i

2n

)(
1

4
+

j

2n

)
≥
(
i′ − i
8n

)
>

k

24n
.

It therefore follows that E[YB − YA] ≥ (k/3)(t− 2k/3) k
24n . Consequently, since t ≥ k we obtain

E[XB −XA] ≥ E[YB − YA] ≥ k

3

(
t− 2k

3

)
k

24n
≥ tk2

216n
.

Let us next consider the random variable S = 1
2E[XB−XA]− 1

2(XB−XA). Then E[S] = 0 and

S is the sum of q = 2
(
k/3
2

)
+ 2(k/3)(t − 2k/3) independent random variables where each of these

random variables takes only two values and those two values are at most 1 apart. Then by a large

deviation result of Chernoff (see [2], Theorem A.1.18),

Pr[S > a] < e
− 2a2

q .

We therefore obtain:

Pr[XB = XA] = Pr

[
S =

E[XB −XA]

2

]
≤ Pr

[
S >

E[XB −XA]

3

]

≤ exp

−2
(
E[XB−XA]

3

)2
q


≤ exp

(
− 2t2k4

9 · 2162n2q

)
≤ exp

(
− tk3

9 · 2162n2

)
.

Recalling that k = 3Cn2/3(lnn)1/3 we obtain from the last inequality that for a sufficiently large
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absolute constant C,

Pr[XB = XA] ≤ exp

(
− tk3

9 · 2162n2

)
≤ exp (−2t lnn)

=
1

n2t

<
1

n
(
t
k

)(
n
t

)
as required.

3 Repetition in induced subgraphs of bounded degree graphs

We first observe that for every fixed d, the sequences g(k, d)/k, h(k, d)/k, f(k, d)/k have a limit.

First observe that as mentioned in the introduction, all of these sequences are bounded from above

by d+ 1. We next show that g(mk, d) ≥ m · g(k, d), h(mk, d) ≥ m · h(k, d), f(mk, d) ≥ m · f(k, d)

holds for any positive integer m implying that the claimed limits exist in all cases. Consider a graph

G with maximum degree at most d and with g(k, d) vertices for which every induced subgraph H

has rep(H) < k. Take m vertex-disjoint copies of G, thereby obtaining a graph with maximum

degree at most d and with m·g(k, d) vertices for which every induced subgraph H has rep(H) < mk.

Thus, by its definition, g(mk, d) ≥ m · g(k, d). An identical argument holds for h(k, d) and f(k, d).

The proofs of Theorems 2 and 3 follow directly from the proofs of the following Lemmas and

proposition.

Proposition 3.1. There exists an absolute constant c > 0 such that for all d ≥ 2,

c

(
d

log d

)1/3

≤ lim
k→∞

g(k, d)

k
.

Proof. Let d ≥ 2. By Theorem 1, there exists an absolute constant C > 0 such that there are

graphs with at most d vertices and for which every induced subgraph has repetition less than

Cd2/3(log d)1/3. Fixing d, let Gd be such a graph. Now take k/(Cd2/3(log d)1/3) pairwise vertex-

disjoint copies of Gd. The resulting graph, which clearly has maximum degree less than d, has

kd1/3/(C(log d)1/3) vertices and every induced subgraph has repetition less than k. It follows that

g(k, d)/k ≥ d1/3/(C(log d)1/3) and the proposition follows.

Lemma 3.2. For infinitely many k it holds that h(k, 3) ≥ (53/24)(k − 1).

Proof. Consider the following set of graphs {K1, H1, H2, H3} where K1 is the isolated vertex and

H1, H2, H3 are the graphs shown in Figure 1. Observe that each of them has maximum degree at
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most 3. Now, suppose k−1 is a multiple of 24. Construct a graph Gk as follows. Take (7/24)(k−1)

disjoint copies of K1, (1/24)(k − 1) disjoint copies of H1, (1/24)(k − 1) disjoint copies of H2 and

(1/6)(k − 1) disjoint copies of H3. The graph Gk has

1 · 7

24
(k − 1) + 6 · 1

24
(k − 1) + 8 · 1

24
(k − 1) + 8 · 1

6
(k − 1) =

53

24
(k − 1)

vertices. It is not hard to check that for an induced subgraph H of Gk we have maxrep(H) ≤ k−1

as follows. A subgraph with maximum degree 0 can be obtained from of all copies of K1, two

vertices from a copy of H1, three vertices from a copy of H2 and three vertices from a copy of H3,

yielding a total of k− 1. A subgraph with maximum degree 1 can be obtained from 4 vertices from

each copy of H1, H2, H3, yielding a total of k − 1. A subgraph with maximum degree 2 can be

obtained from 3, 5, 4 vertices from each copy of H1, H2, H3 respectively, yielding a total of k− 1. A

subgraph with maximum degree 3 can be obtained from 2, 2, 5 vertices from each copy of H1, H2, H3

respectively, yielding a total of k − 1.

Figure 1: The graphs H1, H2, H3 of Lemma 3.2 shown from left to right.

The reasoning behind the construction of Lemma 3.2 is as follows. A close to optimal con-

struction for h(k, 3) is a disjoint union of bounded size components since we have observed in the

beginning of this section that a lower bound for h(2k, 3) is obtained by taking two copies of an

optimal construction for h(k, 3) and that the sequence divided by k converges. So, given a positive

integer constant r, we would like to optimize over all graphs G consisting of components of size at

most r each and maximum degree at most 3. Denote by D(r, 3) the set of all connected graphs with

at most r vertices and maximum degree at most 3. If we can generate D(r, 3), we can use linear

programming to decide upon the optimal ratio of components of each possible element belonging to

D(r, 3). Construct a linear programming instance as follows. For each H ∈ D(r, 3) define a nonneg-

ative variable xH . Now maximize the sum |H|xH under the following constraints, one constraint

for each p = 0, 1, 2, 3. Let c(H, p) denote the maximum number of vertices of maximum degree p in

an induced subgraph of H. Then we require that the sum c(H, p)xH is at most k − 1 (or one can

normalize dividing by k − 1). Now, if r is too large, we do not have enough computing power to

determine D(r, 3). We have, however, determined D(10, 3), and have run the aforementioned linear
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program 1, the result of which is the construction of Lemma 3.2 which yielded, after normalization

xK1 = 7/24, xH1 = 1/24, xH2 = 1/24 xH3 = 1/6. The remaining variable are zero. In particular,

this means that in any improved construction, if exists, one would need to use components of size

at least 11.

Observe that the construction of Lemma 3.2 fails as a lower bound construction for g(k, 3) since

there is an induced subgraph (of maximum degree 3) where the degree 2 appears more than k − 1

times.

Lemma 3.3. For infinitely many k it holds that g(k, 3) ≥ (13/6)(k − 1).

Proof. Consider the following set of graphs {K1,K2, P4, Q} where P4 is the path on four vertices

and Q is the complement of C6. Observe that each of them has maximum degree at most 3. Now,

suppose k − 1 is a multiple of 6. Construct a graph Gk as follows. Take (k − 1)/6 disjoint copies

of each of K1, K2, P4, Q. The graph Gk has

1 · 1

6
(k − 1) + 2 · 1

6
(k − 1) + 4 · 1

6
(k − 1) + 6 · 1

6
(k − 1) =

13

6
(k − 1)

vertices. It is not hard to check that for an induced subgraph H of Gk we have rep(H) ≤ k − 1 as

follows. The degree 0 can be repeated at most 1, 1, 2, 2 times in an induced subgraph of K1, K2,

P4, Q respectively. The degree 1 can be repeated at most 0, 2, 2, 2 times in an induced subgraph

of K1, K2, P4, Q respectively. The degree 2 can be repeated at most 0, 0, 2, 4 times in an induced

subgraph of K1, K2, P4, Q respectively. The degree 3 can be repeated at most 0, 0, 0, 6 times in an

induced subgraph of K1, K2, P4, Q respectively. In all four cases, the yielded total is k − 1.

We now turn to the upper bounds. Our next lemma implies, in particular, limk→∞
h(k,3)
k ≤ 5

2 .

Lemma 3.4. h(k, d) ≤ (k − 1)(d/2 + 1).

Proof. We prove the lemma by induction on d where the base case d = 0 is trivial. Suppose G is a

graph with n > (k− 1)(d/2 + 1) vertices and with maximum degree at most d. We must show that

there is an induced subgraph H with maxrep(H) ≥ k. If G has k or more vertices of degree d, we

are done as we can take H = G. So, assume otherwise. This means that the sum of the degrees of

the vertices of G is at most (d− 1)n+ k − 1 so G has at most n(d− 1)/2 + (k − 1)/2 edges.

We perform the following process which has d− 1 stages. At the beginning of stage t, we have

an induced subgraph of G denoted by Gd+1−t with maximum degree at most d. For t = 1 set

Gd = G. Stage t consists of repeatedly removing vertices of degree d+ 1− t form Gd+1−t until we

remain with a subgraph with maximum degree at most d− t denoted by Gd−t. Let xd+1−t be such

that the number of vertices removed in stage t is xd+1−t(k − 1) and observe that we may assume

1Soure code of our program is available at https://www.dropbox.com/s/27acszyntajyh6i/Induced%

20subgraphs%20with%20many%20max%20degree%20vertices.zip?dl=0
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that 0 ≤ xi ≤ 1 for i = 2, . . . , d as otherwise we are trivially done. When the process ends after

stage d− 1, the remaining graph G1 has maximum degree at most 1.

The number of vertices of G1 is

n− (k − 1)

d∑
i=2

xi .

The number of edges of G1 is

|E(G)| − (k − 1)
d∑
i=2

ixi ≤ n(d− 1)/2 + (k − 1)/2− (k − 1)
d∑
i=2

ixi .

Now suppose that for some 2 ≤ i ≤ d we have
∑d

j=i xj < n/(k − 1) − (i + 1)/2. In this case we

have that the number of vertices of Gi−1 is

n− (k − 1)
d∑
j=i

xj > (k − 1)

(
i− 1

2
+ 1

)

which implies by the induction hypothesis that Gi−1 has an induced subgraph H with maxrep(H) ≥
k. So, we may assume that for all 2 ≤ i ≤ d it holds that

∑d
j=i xj ≥ n/(k − 1) − (i + 1)/2. In

particular, this means that

d∑
i=2

(i− 1)xi ≥
n(d− 1)

k − 1
− (d+ 2)(d+ 1)/4 + 1.5. (1)

Returning now to G1, it has an independent set of size its number of vertices minus its number of

edges, namely, using (1) of size at least(
n− (k − 1)

d∑
i=2

xi

)
−

(
n(d− 1)/2 + (k − 1)/2− (k − 1)

d∑
i=2

ixi

)
(2)

= n

(
1− d− 1

2

)
− k − 1

2
+ (k − 1)

d∑
i=2

(i− 1)xi

≥ n

(
1− d− 1

2

)
− k − 1

2
+ (k − 1)

(
n(d− 1)

k − 1
− (d+ 2)(d+ 1)

4
+ 1.5

)
= n

(
1 +

d− 1

2

)
+ (k − 1)

(
1− (d+ 2)(d+ 1)

4

)
> (k − 1)

[(
d

2
+ 1

)(
1 +

d− 1

2

)
+ 1− (d+ 2)(d+ 1)

4

]
= k − 1 .
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So, there is an independent set of size at least k in G which is, in particular an induced subgraph

H with maxrep(H) ≥ k.

We can slightly modify the proof of Lemma 3.4 to obtain an upper bound for g(k, d). This

upper bound gives, in particular, that limk→∞
g(k,3)
k ≤ 12

5 .

Lemma 3.5. g(k, d) ≤ (k − 1)(2d+ 6)/5 for d ≥ 2 and g(k, 1) ≤ 1.5(k − 1).

Proof. We prove the lemma by induction on d where the base case d = 1 is an easy exercise. Assume

now that d ≥ 2 and suppose G is a graph with n > (k − 1)(2d+ 6)/5 vertices and with maximum

degree at most d. We must show that there is an induced subgraph H with rep(H) ≥ k. If G has

k or more vertices of the same degree we are done as we can take H = G. So, assume otherwise.

This means that there are at most k−1 vertices of any given degree. Let r ≥ 2 be any integer such

that r(k − 1) ≤ n then the sum of the degrees of the vertices of G is at most

dn− (k− 1)− 2(k− 1)− · · · − (r− 1)(k− 1)− r(n− r(k− 1)) = (d− r)n− (k− 1)

(
r

2

)
+ r2(k− 1) .

So the number of edges of G is at most

(d− r)n
2

+ (k − 1)

(
r2

2
− r(r − 1)

4

)
.

We perform the exact same process with d−1 stages as in Lemma 3.4 and using the same notations

of Gi and xi as in that lemma. When the process ends after stage d − 1, the remaining graph G1

has maximum degree at most 1. The number of vertices of G1 is n−(k−1)
∑d

i=2 xi and the number

of edges of G1 is

|E(G)| − (k − 1)
d∑
i=2

ixi ≤
(d− r)n

2
+ (k − 1)

(
r2

2
− r(r − 1)

4

)
− (k − 1)

d∑
i=2

ixi .

Now suppose that for some 3 ≤ i ≤ d we have
∑d

j=i xj < n/(k − 1) − (2i + 4)/5. In this case we

have that the number of vertices of Gi−1 is

n− (k − 1)

d∑
j=i

xj > (k − 1)

(
2(i− 1) + 6

5

)

which implies by the induction hypothesis that Gi−1 has an induced subgraph H with rep(H) ≥ k.

So, we may assume that for all 3 ≤ i ≤ d it holds that
∑d

j=i xj ≥ n/(k − 1) − (2i + 4)/5. In the
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case i = 2, if we have
∑d

j=2 xj < n/(k − 1)− 1.5 then the number of vertices of G1 is

n− (k − 1)
d∑
j=2

xj > 1.5(k − 1)

which implies that G1 has an induced subgraph H with rep(H) ≥ k. So, we may assume that∑d
j=2 xj ≥ n/(k − 1)− 1.5. In particular, this means that

d∑
i=2

(i− 1)xi ≥
n(d− 1)

k − 1
− 4

5
(d− 1)− d(d+ 1)

5
+ 0.5.

Returning now to G1, it has an independent set of size its number of vertices minus its number of

edges, namely of size at least(
n− (k − 1)

d∑
i=2

xi

)
−

(
(d− r)n

2
+ (k − 1)

(
r2

2
− r(r − 1)

4

)
− (k − 1)

d∑
i=2

ixi

)

≥ n

(
d+ r

2

)
+ (k − 1)

(
r(r − 1)

4
− r2

2
+

1

2
− 4

5
(d− 1)− d(d+ 1)

5

)
> (k − 1)

[(
2d+ 6

5

)(
d+ r

2

)
+
r(r − 1)

4
− r2

2
+

1

2
− 4

5
(d− 1)− d(d+ 1)

5

]
.

Now, the last inequality is at least k−1 if r ≥ 2 and equals k−1 if r = 2. So, there is an independent

set of size at least k in G which is, in particular an induced subgraph H with rep(H) ≥ k.

4 Concluding remarks and open problems

Recall the important notion of quasi-random graphs defined by Chung, Graham, and Wilson [8].

We say that a graph G is quasi-random if for any subset of vertices U ⊆ V (G) we have e(U) =
1
2

(|U |
2

)
± o(n2). In other words, it resembles the behavior of the random graph G(n, 12) with respect

to edge distributions. It is well-known that quasi-random graphs possess many (though not all)

properties of a typical random graph. Observe that in our proof of Theorem 1 we have used

ε = 1 −
√

2/4 but the proof works equally well with any fixed ε > 0 (this only affects the value

of the constant c) or even when ε is a function of n tending slowly to zero (in which case we

will still have g(k) ≥ ck3/2/ log k). But then observe that the distribution G(n, p) in the proof

is a quasi-random graph with very high probability, since each pair is an edge with probability
1
2 ± on(1). Consequently, this shows that there are quasi-random graphs with n vertices for which

every induced subgraph has repetition at most n2/3 log n. This should be compared to the result

proved by Krivelevich, Sudakov, and Wormald [10] showing that with high probability a largest
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induced regular subgraph of G(n, 12) has about n2/3 vertices. So, a random graph usually has a

regular subgraph with about n2/3 vertices. On the other hand, there are quasi-random graphs

which do not contain an induced subgraph with repetition number much larger than n2/3. Noticing

this, it seems interesting to determine the typical maximum repetition of an induced subgraph of

a random graph.

The functions f(k, d), g(k, d), h(k, d) have the following sub-additive property.

Lemma 4.1. Let z ∈ {f, g, h}, then z(k, d1) + z(k, d2) ≥ z(k, d1 + d2 + 1).

Proof. By a result of Lovász [11], the vertices of a graph G with maximum degree d1+d2+1 can be

partitioned into two parts A1 and A2 where the maximum degree of G[Ai] is at most di for i = 1, 2.

Now, if G has more than h(k, d1) +h(k, d2) vertices, there is some i for which G[Ai] has more than

h(k, di) vertices, so by definition G[Ai] has an induced subgraph H with maxrep(H) ≥ k. The

same argument holds for g and f .

While Lemma 4.1 is not strong enough to improve upon Lemmas 3.4 and 3.5, it is useful for

obtaining the following upper bound:

Proposition 4.2.

lim
k→∞

f(k, d)

k
≤ 11d

15
.

Proof. We prove that f(k, 2) ≤ 11(k− 1)/5. Let G be a graph with n > 11(k− 1)/5 vertices and of

maximum degree at most 2. Let t denote the number of vertices on all the cycles of G. If t ≥ k we

are done. Otherwise, let G′ denote the induced subgraph on the path components which consists

of n− t vertices. Let t0 denote the size of an independent set of G′ and let t1 denote the number of

vertices in a maximum induced matching of G′. It is straightforward to verify that t0 + t1 ≥ n− t.
Now, in each cycle of length r, the number of independent vertices plus the number of vertices in

an induced matching is at least 4r/5 where the worst case occurs for C5. So, if s0 denotes the size

of an independent set of G and s1 denotes the number of vertices in a maximum induced matching

of G we have that s0 + s1 ≥ n− t+ 4t/5. So there is an induced regular subgraph of G of order at

least n/2− t/10. But
n

2
− t

10
>

11(k − 1)

10
− k − 1

10
= k − 1 .

It is worth noting that the bound 11(k − 1)/5 is tight as for any k such that k − 1 is a multiple

of 10 we can take (k − 1)/5 copies of C5 and 3(k − 1)/10 copies of P4 and obtain a graph with

11(k − 1)/5 vertices and no induced regular subgraph on k vertices.

Now, as we have proved f(k, 2) ≤ 11(k−1)/5, we can apply the sub-additive inequality of Lemma

4.1 and obtain (with room to spare) that f(k, d) ≤ (11/5)d(k−1) hence f(k, d)/k ≤ 11d/15. As we

have already shown in Section 3 that the limit exists, the upper bound 11d/15 serves as an upper

bound for the limit.

11



Finally, it would be interesting to obtain a sub-linear upper bound for the limit of h(k, d)/k or

improve the polynomial lower bound for g(k) which would imply, by Proposition 3.1, an improved

lower bound for the limit of g(k, d)/k.
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