
Decomposing Hypergraphs into Simple Hypertrees

Raphael Yuster

Department of Mathematics

University of Haifa-ORANIM

Tivon 36006, Israel.

e-mail: raphy@macam98.ac.il

Abstract

Let T be a simple k-uniform hypertree with t edges. It is shown that if H is any k-uniform

hypergraph with n vertices and with minimum degree at least nk−1

2k−1(k−1)!
(1+o(1)), and the num-

ber of edges of H is a multiple of t then H has a T -decomposition. This result is asymptotically

best possible for all simple hypertrees with at least two edges.

Mathematics Subject Classification (1991): 05C65, 05C70.

1 Introduction

All hypergraphs and graphs considered here are finite and have no multiple edges. For the standard

terminology used the reader is referred to [3]. Let H1 and H2 be two hypergraphs. We say that

H1 has an H2-decomposition if the edge-set of H1 can be partitioned into sets, such that the

subhypergraph induced by each set is isomorphic to H2. H2 is called the decomposing hypergraph

and H1 is called the decomposed hypergraph. An obvious necessary condition for the existence of

an H2-decomposition is that e(H2) divides e(H1) (e(X) and v(X) denote, respectively, the number

of edges and vertices of X).

The combinatorial and computational aspects of the decomposition problem have been studied

extensively, especially in the graph-theoretic case. It is well-known, even for the simpler case of

graphs, that the decomposition problem is NP-Complete even when the decomposing graph is

fixed, and has a connected component with three or more edges [5]. Wilson, in a seminal result,

has proved [7] that if H1 is the complete graph Kn where n ≥ n0 = n0(H2), then Kn always has

an H2-decomposition, assuming the obvious necessary divisibility conditions hold. This author has

proved in [8, 9] that when H2 is a tree, Wilson’s theorem holds not only when H1 is a complete

graph, but also when it has minimum degree ⌊v(H1)/2⌋, and that this is best possible. There is no

analogue of Wilson’s theorem for Hypergraphs. Rödl [6] has shown how to obtain a large packing

of the complete k-uniform hypergraph with smaller k-uniform hypergraphs (an H2-packing of H1 is

1

11

10

1 2 3 12 13

4 6

9 8 5 7

Figure 1: A 3-uniform simple hypertree with 6 edges.

a set of edge disjoint subhypergraphs of H1 which are isomorphic to H2). In fact, the only results

on hypergraph decompositions are either constructions of small explicit designs (see [4] for many

such constructions) or highly symmetric algebraic constructions ([1] is a good example). The result

we present here is an analogue to the result of [8] for hypergraphs. As far as we know, this is the

first hypergraph decomposition result where the decomposed hypergraph is general.

In order to describe our result we need several definitions. A simple hyperforest is a hypergraph

possessing two properties:

1. Any two edges intersect in at most one vertex.

2. Every sequence of distinct edges e1, . . . , er either have a common vertex, or there exists some

j, 1 ≤ j ≤ r, such that ej and ej+1 are disjoint (we define er+1 = e1).

A connected simple hyperforest is called a simple hypertree. Note that a 2-uniform simple hyper-

forest is a forest (in the graph-theoretic sense), and a 2-uniform simple hypertree is a tree. Figure

1 is an example of a 3-uniform simple hypertree with 13 vertices and 6 edges. Our main theorem

is the following:

Theorem 1.1 Let T be a k-uniform simple hypertree with t edges, and let H be any k-uniform

hypergraph with n vertices and tm edges where m is an integer. If the minimum degree of H satisfies

δ(H) ≥
(
⌊n/2⌋ − 1

k − 1

)
+ 9k3t5nk−4/3

then H has a T -decomposition.

Note that, in particular, δ(H) ≥ nk−1

2k−1(k−1)!
(1 + o(1)).

The bound in theorem 1.1 is asymptotically tight for every simple hypertree with two edges

or more (the decomposition problem is trivial when T has a single edge). We can construct a

2

hypergraph H with tm edges and with minimum degree
(⌊n/2⌋−1

k−1

)
− 1 which does not have a T -

decomposition. Take two complete k-uniform hypergraphs H1 and H2 with orders ⌊n/2⌋ and ⌈n/2⌉
respectively, and assume that n ≥ 2kt. Delete r1 < t vertex-disjoint edges from H1 such that the

number of edges remaining in H1 after the deletion is 1 mod t. We can delete these edges since

⌊n/2⌋ ≥ kt − 1 ≥ r1k. Now delete r2 < t vertex-disjoint edges from H2 such that the number of

edges remaining in H2 after the deletion is −1 mod t. Now, if H is the disjoint union of H1 and

H2 after these deletions, we have that H has 0 mod t edges, the minimum degree is
(⌊n/2⌋−1

k−1

)
− 1,

and, obviously, neither H1 nor H2 (after the deletions) have a T -decomposition, thus H does not

have a T -decomposition.

Theorem 1.1 is, in fact, a corollary of a more general theorem, which states that hypergraphs

with good edge expansion can be decomposed into simple hypertrees (assuming the divisibility

condition holds). An n-vertex hypergraph is called r edge-expanding if for every subset of vertices

X with |X| ≤ n/2 there are at least r|X| edges which contain a vertex from X and a vertex outside

of X. The “expansion version” of Theorem 1.1 is:

Theorem 1.2 Let T be a k-uniform simple hypertree with t edges, and let H be any k-uniform

hypergraph with n vertices and tm edges where m is an integer. If H is 9k2t5nk−4/3 edge-expanding

then H has a T -decomposition.

Theorem 1.1 is an immediate corollary of Theorem 1.2 since it is easy to prove (cf. Lemma 4.1

in the last section) that a k-uniform hypergraph with minimum degree
(⌊n/2⌋−1

k−1

)
+ (k − 1)r is r

edge-expanding.

In the following section we prove several lemmas which are necessary for the proof of Theorem

1.2. The proof is completed in Section 3. Section 4 contains some concluding remarks and open

problems. Some ideas of the proof are similar to the proof of the graph-theoretic case in [8], but

there are many additional obstacles appearing here which must be handled, and do not occur in the

graph-theoretic case. This is not surprising since simple hypertrees are more complex objects than

trees. Most of the proofs apply probabilistic arguments. Some of the lemmas are rather technical,

so the reader is advised to first read the statements of all the lemmas and the various definitions,

and only then read the proofs. Finally, we note that throughout this paper all the logarithms are

natural.

2 Obtaining a Homomorphic Decomposition

For the rest of this paper, let T be a fixed k-uniform simple hypertree (k ≥ 2) with t > 1 edges,

and let H = (V,E) be a k-uniform hypergraph with |E| = tm edges where m is an integer and

with |V | = n vertices, which is also 9k2t5nk−4/3 edge-expanding. Our goal is to show that H has a

T -decomposition. For each v ∈ V we let d(v) denote the degree of v in H.

3

Lemma 2.1 E can be partitioned into t subsets E1, . . . , Et, such that |Ei| = m and

|di(v)−
d(v)

t
| ≤ 3

√
d(v) log n,

where di(v) is the number of elements of Ei containing v. Furthermore, each spanning subhypergraph

Hi = (V,Ei) is k2t4nk−4/3 edge-expanding.

Proof: By definition, an r edge-expanding hypergraph must have minimum degree at least r, so

for each v ∈ V we have d(v) ≥ 9k2t5nk−4/3. In particular, k|E| = ktm ≥ 9k2t5nk−1/3. Thus,

m ≥ 9kt4nk−1/3 (1)

and since, trivially, nk−1 > d(v) we may also assume n > 93k6t15 ≥ 93 ·221. We let each edge e ∈ E

choose a random integer between 0 and t, where 0 is chosen with probability β = n(1−k)/2 and the

other numbers are chosen with probability α = (1 − β)/t. All the choices are independent. For

i = 0, . . . , t, let Fi ⊂ E be the set of edges which selected i. Let d′i(v) be the number of elements of

Fi containing v. The expectation of |Fi| is µ(|Fi|) = α|E| = m(1− β), for i ̸= 0. We apply a large

deviation inequality attributed to Chernoff (cf., e.g. [2] Appendix A) to derive, using (1), that for

i ̸= 0

Prob[|Fi| > m] = Prob[|Fi| − µ(|Fi|) > mβ] < exp(−2m2β2

tm
) = (2)

exp(− 2m

nk−1t
) ≤ exp(−18kt3nk−1/3

nk−1
) = exp(−18kt3n2/3) <

1

n
.

Similarly, we have that for all i ̸= 0 and for all v ∈ V

Prob[|d′i(v)− αd(v)| >
√
d(v) log n] < 2 exp(

−2d(v) log n

d(v)
) =

2

n2
. (3)

Analogously, for i = 0 we get

Prob[|d′0(v)− βd(v)| >
√
d(v) log n] < 2/n2. (4)

Since n > 93k6t15 we have

t · (1/n) + nt · (2/n2) + n · (2/n2) =
3t+ 2

n
< 0.1.

Hence, we have by inequalities (2) (3) and (4) that with probability greater than 0.9, all of the

following events hold simultaneously:

1. |Fi| ≤ m for i = 1, . . . , t.

2. |d′i(v)− αd(v)| ≤
√
d(v) log n for all i = 1, . . . , t and for all v ∈ V .

3. |d′0(v)− βd(v)| ≤
√
d(v) log n for all v ∈ V .

4

Consider, therefore, a partition of E into F0, . . . , Ft in which all of these events hold. Since |Fi| ≤ m,

we may partition F0 into t subsets Q1, . . . , Qt, where |Qi| = m − |Fi|. Put Ei = Fi ∪ Qi for

i = 1, . . . , t. Note that |Ei| = m and Ei ∩ Ej = ∅ for 1 ≤ i < j ≤ t. Put Hi = (V,Ei) and let di(v)

be the degree of v in the hypergraph Hi. Clearly,

di(v) ≥ d′i(v) ≥ αd(v)−
√
d(v) log n =

d(v)

t
− d(v)

n(k−1)/2t
−
√
d(v) log n ≥ (5)

d(v)

t
−
√
d(v)

t
−
√
d(v) log n ≥ d(v)

t
− 2

√
d(v) log n.

We also need to bound di(v) from above:

di(v) ≤ d′i(v) + d′0(v) ≤ αd(v) + βd(v) + 2
√
d(v) log n =

d(v)

t
− d(v)

n(k−1)/2t
+ 2

√
d(v) log n+

d(v)

n(k−1)/2
≤ (6)

d(v)

t
+ 2

√
d(v) log n+

d(v)

n(k−1)/2
≤ d(v)

t
+ 2

√
d(v) log n+

√
d(v) ≤ d(v)

t
+ 3

√
d(v) log n.

It now follows from inequalities (5) and (6) that |di(v)− d(v)
t | ≤ 3

√
d(v) log n.

Consider the partition of E into F0, . . . , Ft. We have already shown that with probability greater

than 0.9 this partition is good in the sense that one may obtain the desired partition into the

subsets Ei by transferring vertices from F0 to the Fi’s. This, however, does not guarantee that the

hypergraphs Hi = (V,Ei) are k2t4nk−4/3 edge-expanding, as required. Since edge-expansion is a

monotone-increasing property, it suffices to show that with probability at least 1− 0.9 = 0.1, all of

the hypergraphs H ′
i = (V, Fi) are k

2t4nk−4/3 edge-expanding. We prove this as follows: Let X ⊂ V

with |X| ≤ n/2. Let ni(X) denote the number of edges of Fi containing a vertex from X and a

vertex outside of X. Our aim is to show that ni(X) ≥ |X|k2t4nk−4/3, for all i = 1, . . . , t and for all

X, with probability at least 0.1. Let n(X) be the number of edges of H containing a vertex of X

and a vertex outside of X. Since H is 9k2t5nk−4/3 edge-expanding we have that

n(X) ≥ 9|X|k2t5nk−4/3.

Clearly, µ(ni(X)) = αn(X). Applying the large deviation bound once again we have

Prob[ni(X)− αn(X) < −αn(X)/4] < exp(−2n(X)2α2/16

n(X)
) = exp(−n(X)α2/8) ≤

exp(− n(X)

8(t+ 1)2
) ≤ exp(−9|X|k2t5nk−4/3

8(t+ 1)2
) <<

1

nt
(n
|X|
)

with lots of room to spare in the last part of this inequality. Since there are
(n
|X|
)
sets of cardinality

|X|, and since there are n/2 possible cardinalities to consider, we get from the last inequality that

with probability at least 0.5 > 0.1, for all i = 1, . . . , t and for all sets X ⊂ V with |X| ≤ n/2,

ni(X)− αn(X) ≥ −αn(X)/4.

5

In particular this means that

ni(X) ≥ 3

4
αn(X) ≥ 3

4
· 1

t+ 1
9|X|k2t5nk−4/3 ≥ |X|k2t4nk−4/3.

2

From now on we fix a partition of E into subsets E1, . . . , Et with the properties guaranteed

by Lemma 2.1. Before we proceed to the next lemma, we need a few definitions. An ordered

hypergraph is a hypergraph whose edges are ordered sets. For an edge e of an ordered hypergraph,

we denote by e(i) the vertex at position i in e. The first vertex in e is e(1), which is called the

header of e. We will assume in what follows that in each ordered edge, e(i) ̸= e(j) if i ̸= j. The

underlying hypergraph of an ordered hypergraph is the hypergraph obtained by ignoring the order.

An ordering of a hypergraph X is an ordered hypergraph whose underlying hypergraph is X. The

following lemma states a simple (and important) fact about simple hypertrees:

Lemma 2.2 The edges of T can be labeled e1, . . . , et such that the following holds: There exists an

ordering T̃ of T such that:

1. Each vertex appears as a nonheader in at most one edge.

2. For each i > 1, the header of ei appears as a non-header in exactly one edge ej, and j < i.

3. The header of e1 never appears as a non-header of any other edge.

Proof: A simple induction on t does the job. If t = 1 this is obvious. Otherwise, since T is a

simple hypertree, there is some edge, which we shall denote by et, having the property that all

vertices in et but one, have degree one in T . Order et such that the header is the vertex whose

degree in T is greater than 1. This ordered edge, together with the ordering of the subtree on the

other edges which exists by the induction hypothesis, is the desired ordering T̃ . 2

For example, if T is the tree depicted in Figure 1, we can let T̃ be e1 = (13, 12, 3), e2 = (3, 2, 1),

e3 = (2, 6, 7), e4 = (2, 10, 11), e5 = (1, 4, 5), e6 = (5, 8, 9).

From now on we fix a labeling e1, . . . , et of T and an ordering T̃ , with the properties of Lemma

2.2. Note that from the proof of Lemma 2.2 we have that e1 can be chosen and ordered arbitrarily,

so we may and will assume that the header of e1 is a vertex of degree 1 in T (in the example above,

the header of e1 is 13, which, indeed, has degree one). Lemma 2.2 defines a parent-child relationship

between the edges, where for each i > 1, the parent of ei is the unique edge ej which contains the

header of ei as a non-header. Let p(i) = j if ej is the parent of ei, and note that p(i) < i. (In the

example above, p(2) = 1, p(3) = 2, p(4) = 2, p(5) = 2, p(6) = 5.)

Our next lemma shows that it is possible to construct an ordering of H such that very precise

requirements are met. We now describe the requirements from the ordering. Let H̃ be an ordering

of H, and let di(s, v) denote the number of edges of Ei, which contain v as the vertex at position

6

s. Clearly
∑k

s=1 di(s, v) = di(v), for all v ∈ V and i = 1, . . . , t. Now let i > 1 and let si be the

position of the header of ei in ep(i). We require two properties from H̃:

Property 1: For each v ∈ V and for each i > 1, dp(i)(si, v) = di(1, v).

Property 2: |di(s, v)− di(v)
k | ≤ ink−4/3 for all i = 1, . . . , t, s = 1, . . . , k and v ∈ V .

If both of these properties are met then H̃ is called a T -homomorphic decomposition of H. Note

that the first property is very precise, we want the number of times v appears as a header in Ei to

be equal to the number of times v appears at position si in Ep(i). The reason for the appearance of

i in the r.h.s. of the inequality in Property 2 will become apparent in the proof of the next lemma.

Lemma 2.3 H has a T -homomorphic decomposition.

Proof: We show how to construct H̃ in t stages, where in stage i we order the edges of Ei. We

will show that Properties 1 and 2 in the definition of a T -homomorphic decomposition are met by

Ei. We begin by ordering E1. The ordering of each edge of E1 is done randomly with uniform

distribution, namely, each of the k! possible orders has the same probability. All the m choices are

independent. Condition 1 is empty for E1, so we only need to show that Condition 2 holds with

positive probability, and this is, once again, shown by a large deviation inequality. Using the fact

that µ(d1(s, v)) =
d1(v)
k we have:

Prob[|d1(s, v)−
d1(v)

k
| > nk−4/3] < 2 exp(−2n2k−8/3

d1(v)
) < 2 exp(−2n2k−8/3

nk−1
) < 2 exp(−2n1/3) <

1

n2
.

Now, since k ·n· 1
n2 < 1 we have that with positive probability, Property 2 holds for E1. We therefore

fix an ordering of E1 which satisfies Property 2. Assume by induction that we have already ordered

all the subsets Ej for 1 ≤ j < i, such that Properties 1 and 2 hold for each Ej . We must show how

to order the edges of Ei such that properties 1 and 2 also hold for Ei. Let j = p(i), and recall that

j < i. Also recall that si is the position of the header of ei in ej . Let cv = dj(si, v). Note that cv

is already determined since Ej is already ordered. Property 1 implies that our ordering of Ei must

satisfy that for each v ∈ V , di(1, v) = cv. Hence, our initial task is to determine the headers of

each edge of Ei such that this equality holds. Note that
∑

v∈V cv = m. Thus, we must show that

each vertex v can select cv edges out of the di(v) edges of Ei containing v, and such that each edge

of Ei is selected by exactly one of its elements (if v selected an edge f ∈ Ei then v becomes the

header of f). In other words, we have a bipartite matching problem. Define a bipartite graph B

as follows: B has two vertex classes of order m each. One vertex class is Ei, while the other vertex

class, denoted by S, contains cv copies of each v. Thus, S = {vw | v ∈ V, 1 ≤ w ≤ cv}. The edges

of B are defined as follows. An element vw ∈ S is connected to e ∈ Ei if v is an element of e. Our

goal is, therefore, to show that B has a perfect matching. By Hall’s Theorem (cf. [3]), it suffices

7

to show that for every set S′ ⊂ S, |N(S′)| ≥ |S′| where N(S′) ⊂ Ei are the neighbors of S′ in B.

Fix ∅ ̸= S′ ⊂ S. Let V ′ = {v ∈ V | vw ∈ S′}. Put V ′ = {v1, . . . , vz}. Clearly, |S′| ≤
∑z

l=1 cvl .

Note that N(S′) is the set of edges of Ei which contain an element of V ′. Let Qy ⊂ Ei be the set

of edges having exactly y elements in V ′. Clearly, Q1 ∪ . . . ∪Qk = N(S′). Put qi = |Qi|. Clearly,

q1 + 2q2 + . . . + kqk =
∑z

l=1 di(vl). We first consider the case z ≤ n/2. Since Hi = (V,Ei) is

k2t4nk−4/3 edge-expanding and since |V ′| = z ≤ n/2, we have

q1 + q2 + . . .+ qk−1 ≥ zk2t4nk−4/3. (7)

Now, using Property 2 applied to dj(si, vl) and using Lemma 2.1 we have:

|cvl −
di(vl)

k
| = |dj(si, vl)−

di(vl)

k
| ≤ |dj(si, vl)−

dj(vl)

k
|+ |dj(vl)

k
− di(vl)

k
| ≤

jnk−4/3 +
1

k
(|dj(vl)−

d(vl)

t
|+ |di(vl)−

d(vl)

t
|) ≤ jnk−4/3 +

6
√
d(vl) log n

k
≤ (8)

(t− 1)nk−4/3 + 3
√
d(vl) log n ≤ t2nk−4/3.

Thus, by (7) and (8) we have:

|N(S′)| = q1 + . . .+ qk =
z∑

l=1

di(vl)

k
+

(k − 1)q1 + (k − 2)q2 + . . .+ qk−1

k
≥

(
z∑

l=1

di(vl)

k
) + zkt4nk−4/3 =

z∑
l=1

(
di(vl)

k
+ kt4nk−4/3) ≥

z∑
l=1

cvl ≥ |S′|.

Now consider the case where z > n/2. Put V ′′ = V \V ′ = {vz+1, . . . , vn}. Note thatQ1∪. . .∪Qk−1 is

the set of edges connecting V ′ with V ′′. Since Hi is k
2t4nk−4/3 edge-expanding and since |V ′′| ≤ n/2

we have q1 + . . .+ qk−1 ≥ (n− z)k2t4nk−4/3. Now,

|N(S′)| = q1 + . . .+ qk =
z∑

l=1

di(vl)

k
+

(k − 1)q1 + (k − 2)q2 + . . .+ qk−1

k
≥

(
z∑

l=1

di(vl)

k
) + (n− z)kt4nk−4/3 = m−

n∑
l=z+1

(
di(vl)

k
− kt4nk−4/3) ≥

m−
n∑

l=z+1

cvl =
z∑

l=1

cvl ≥ |S′|.

We have shown that we can choose headers for the edges in Ei so that Property 1 holds. We

now need to take care of Property 2. The case where s = 1 can be shown immediately since

di(1, v) = cv = dj(si, v). Thus, by (8), and using the facts that d(v) < nk−1 and n > 93 · 221 we

already have:

|di(1, v)−
di(v)

k
| ≤ jnk−4/3 +

6
√
d(v) log n

k
≤ (j + 1)nk−4/3 ≤ ink−4/3 (9)

8

as required by Property 2. Each edge of Ei still has k − 1 elements, except for the chosen header,

which are still to be ordered. We shall order them randomly and uniformly (each of the (k − 1)!

possible orders has the same probability), where all the m choices are independent. We show that

the obtained ordering of Ei satisfies Property 2 with positive probability. The case s = 1 was

already treated. For s > 1, note that the expectation of di(s, v) is exactly µ(di(s, v)) =
di(v)−di(1,v)

k−1 .

Thus, using the large deviation inequality, together with (9) we get

Prob[|di(s, v)−
di(v)

k
| > ink−4/3] = Prob[|di(s, v)−µ(di(s, v))+

1

k − 1
(
di(v)

k
−di(1, v))| > ink−4/3] <

Prob[|di(s, v)− µ(di(s, v))| > ink−4/3 − | 1

k − 1
(
di(v)

k
− di(1, v))|] <

Prob[|di(s, v)−µ(di(s, v))| > ink−4/3− 1

k − 1
ink−4/3] < Prob[|di(s, v)−µ(di(s, v))| > 0.5ink−4/3] <

Prob[|di(s, v)− µ(di(s, v))| > nk−4/3] < 2 exp(− 2n2k−8/3

di(v)− di(1, v)
) <

2 exp(−2n2k−8/3

nk−1
) < 2 exp(−2n1/3) <

1

n2
.

Since (k − 1)n · 1
n2 < 1, we have that with positive probability, for each s > 1 and each v ∈ V ,

Property 2 holds for Ei. 2

The following simple lemma supplies an absolute lower bound for di(s, v) in a T -homomorphic

decomposition:

Lemma 2.4 di(s, v) ≥ 4kt4nk−4/3 for all i = 1, . . . , t, s = 1, . . . , k and v ∈ V .

Proof: Using Property 2 of a T -homomorphic decomposition, and using Lemma 2.1 we have:

di(s, v) ≥
di(v)

k
− tnk−4/3 ≥ d(v)

kt
− 3

√
d(v) log n

k
− tnk−4/3 ≥

d(v)

kt
− 4tnk−4/3 ≥ 9kt4nk−4/3 − 4tnk−4/3 ≥ 4kt4nk−4/3.

2

3 Proof of the main result

A homomorphism between two hypergraphs H1 and H2 is a function f : V (H1) → V (H2) such that

if e ∈ E(H1) then f(e) ∈ E(H2), and if e ∈ E(H2) then f−1(e) ∈ E(H1). Note that if both H1 and

H2 are k-uniform and have no isolated vertices, the definition implies that f is a surjection, and that

f , restricted to each element of E(H1), is an injection. If f happens to be a bijection then it is called

an isomorphism. With this definition, we can now show that a T -homomorphic decomposition H̃

9

of H (which exists by Lemma 2.3) defines a decomposition of the edges of H into a set L∗ of m

edge-disjoint hypergraphs, each having t edges, exactly one from each Ei. Furthermore, there is a

homomorphism between T and each element of L∗. Unfortunately, these homomorphisms are not

necessarily isomorphisms, so there is still some work to be done in order to obtain a decomposition

of H into m copies of T .

We now describe the process which obtains L∗ from H̃. Let Di(s, v) denote the set of edges of

Ei in H̃, which have v at position s. Recall that |Di(s, v)| = di(s, v) and that dp(i)(si, v) = di(1, v).

Therefore, there are di(1, v)! ways to take a perfect matching between Dp(i)(si, v) and Di(1, v). Let

B(i, v) be one such perfect matching, for each i = 2, . . . , t and for each v ∈ V . The elements of

B(i, v) are, therefore, pairs of edges in the form (f1, f2) where f1 ∈ Ep(i) and f2 ∈ Ei, the header

of f2 is v, and the vertex at position si in f1 is also v. We say that f1 and f2 are matched if

(f1, f2) ∈ B(i, v) for some i = 2, . . . , t and some v ∈ V . Hence being matched is a symmetric

relation on E. The transitive closure of the “matched” relation defines an equivalence relation

where the equivalence classes are ordered subhypergraphs of H̃, each having t edges, one from each

Ei, and which are homomorphic to T̃ , by the homomorphism which maps a vertex of T̃ at position s

in the edge ei to the vertex at position s in the unique edge belonging to Ei in an equivalence class.

Thus, L∗ is the set of all of these subhypergraphs, (or, in set theoretical language, the quotient

set of the equivalence relation). Note that although each S ∈ L∗ is homomorphic to T̃ , it is not

necessarily isomorphic to T̃ since S may contain cycles. Here is a simple example: Assume that T̃

is the 3-uniform simple hypertree defined by the edges e1 = (1, 2, 3) e2 = (2, 4, 5) and e3 = (5, 6, 7).

It may be the case that some edge (a, b, c) ∈ E1 is matched in B(2, b) to the edge (b, d, e) ∈ E2

and the edge (b, d, e) is matched in B(3, e) to the edge (e, f, a). Hence, L∗ contains an element S

whose edges are (a, b, c), (b, d, e) and (e, f, a). Obviously, S is homomorphic to T̃ . However, this is

not an isomorphism since both the vertices 1 and 7 are mapped to a, and, indeed, S is not a simple

hypertree.

If we are lucky and all the m elements of L∗ are isomorphic to T̃ , we are done and have proved

that H has a T -decomposition. This, however, may not be true, as demonstrated above. There

are many ways to create L∗. In fact, since there are di(1, v)! ways of picking each perfect matching

B(i, v) there are exactly

Πt
i=2Πv∈V di(1, v)!

different ways to create the decomposition L∗. Our goal is to show that in at least one of these

decompositions, all the elements of L∗ are, in fact, isomorphic to T̃ , and this will conclude Theorem

1.2. Before proceeding with the proof of Theorem 1.2, we require a few definitions.

We say that the edge ej of T̃ is a descendant of ei if either i = j or ep(j) is a descendant of ei (note

the recursive definition). Clearly, if i > 1, T̃ can always be partitioned into two nonempty simple

hypertrees, one consisting of the descendants of ei and the other consisting of the non-descendants

of ei. For an element S ∈ L∗, and for i = 1, . . . , t, let Si be the subhypergraph of S which consists

10

only of the first i edges, namely those belonging to E1∪ . . .∪Ei. Let S(i) be the edge of S belonging

to Ei. Note that for i > 1, Si is obtained from Si−1 by adding the edge S(i). Trivially, S1 is a

simple hypertree consisting of one edge. Now, suppose Si−1 is a simple hypertree, and Si is not

a simple hypertree. This means that some non-header of the edge S(i) already appears in Si−1.

Hence, we call an edge S(i) bad if some non-header of S(i) already appears in Si−1. Otherwise, S(i)

is called good. Clearly, S is isomorphic to T̃ if and only if all its t edges are good. For 1 ≤ i ≤ j ≤ t

and for v ∈ V let us define the following set:

N(v, i, j) = {S ∈ L∗ | S(i) ∈ Di(1, v) and S(j) is bad}.

Clearly, |N(v, i, j)| ≤ di(1, v). Our first goal is to show that if all the n(t − 1) perfect matchings

B(i, v) are selected randomly and independently, then with high probability, |N(v, i, j)| is signifi-

cantly smaller than di(1, v). Before proving this, we need to state the following simple inequality

which is proved using Stirling’s Formula:

Lemma 3.1 For every 0 < α < 1 and every positive integer x:(
x

⌊xα⌋

)
< (e · x1−α)x

α

2

Lemma 3.2 If each of the perfect matchings B(i, v) is selected randomly, and all the n(t − 1)

choices are independent, then with probability at least 0.9, for all 1 ≤ i ≤ j ≤ t and for all v ∈ V ,

|N(v, i, j)| ≤ nk−4/3.

Proof: First note that by definition N(v, 1, 1) = ∅, so we may assume j > 1. Since the perfect

matchings are selected randomly and independently, we may assume that the n matchings Bj(u)

for all u ∈ V are selected after all the other n(t− 2) matchings Br(u), for r ̸= j, are selected. Prior

to the selection of the last n matchings, the transitive closure of the “matched” relation defines

two sets M∗ and N∗ each having m elements. Each element of M∗ is a nonempty subhypergraph

containing the edges of an equivalence class, with exactly one edge from each Er where er is a

descendant of ej . Each element of N∗ is a nonempty subhypergraph containing the edges of an

equivalence class, with exactly one edge from each Er where r is not a descendant of j. Note that

the matchings Bj(u) for all u ∈ V match the elements of M∗ with the elements of N∗, and each

such match produces an element of L∗. Let us estimate |N(v, i, j)| given that we know exactly

what N∗ contains; i.e. we shall estimate {|N(v, i, j)| | N∗}. Clearly, if i < j, then ei is not a

descendant of ej and thus each element of N∗ contains one edge from Ei. If i = j then p(i) < j, and

each element of N∗ contains one edge from Ep(i). We therefore call an element S′ ∈ N∗ relevant

if either i < j and v is the header of the unique edge of S′ belonging to Ei, or i = j and v is the

vertex at position si in the unique edge of S′ belonging to Ep(i). Note that, in any case, the number

11

of relevant elements of N∗ is exactly di(1, v). Clearly, the value of N(v, i, j) depends only on the

relevant elements of N∗ and on the perfect matchings Bj(u) for each u ∈ V .

Consider a set U = {f1, . . . , fz} of z edges of Ep(j), where for y = 1, . . . , z, each fy belongs to some

relevant element S(y) of N∗ (indeed, since p(j) < j, ep(j) is not a descendant of ej , so each relevant

element of N∗ contains one edge from Ep(j), so we pick z such edges and call this set U). Let uy be

the vertex at position sj in fy. The perfect matching Bj(uy) matches fy with an edge of Ej whose

header is uy (namely, an edge of Dj(1, uy)). We call U bad, if for all y = 1, . . . , z, fy is matched in

Bj(uy) to an edge which contains as a non-header some vertex which already appears in S(y) (in

other words, it is matched to a bad edge). We wish to estimate the probability that U is bad. For

this purpose, we must first estimate the number of edges in Dj(1, uy) which have some non-header

already appearing in S(y). Consider some vertex w ̸= uy. Obviously, the co-degree of w and uy in

H (the co-degree of two vertices is the number of edges containing both of them) is at most nk−2.

Thus, the number of edges in Dj(1, uy) which contain as a non-header some vertex of S(y) is at

most (|S(y)|−1)nk−2 where |S(y)|−1 is the total number of vertices of S(y), not including uy. Since

|S(y)| ≤ kt we get that:

Prob[fy is matched in Bj(uy) to a bad edge] <
ktnk−2

dj(1, uy)
.

Similarly, the probability that fy is matched in Bj(uy) to a bad edge, given that fy′ is matched in

Bj(uy′) to a bad edge, for all 1 ≤ y′ < y, is less than ktnk−2/(dj(1, uy)− (y − 1)). Thus,

Prob[U is bad] < Πz
y=1

ktnk−2

dj(1, uy)− y + 1
.

Now put

z = ⌊di(1, v)
k−4/3
k−1 ⌋.

Note that z < nk−4/3 so by Lemma 2.4, z < dj(1, uy)/4. Hence, again by Lemma 2.4:

Prob[U is bad] < (
ktnk−2

0.75dj(1, uy)
)z ≤ (

ktnk−2

3kt4nk−4/3
)z ≤ (

1

3t3
n−2/3)z.

Now, if there is no bad U , this means that, given N∗, N(v, i, j) < z. Thus, by considering all

possible choices for U we obtain:

Prob[|N(v, i, j)| ≥ z | N∗] <

(
di(1, v)

z

)
(
1

3t3
n−2/3)z.

Note that the estimation in the last inequality does not depend on N∗, and thus,

Prob[|N(v, i, j)| ≥ z] <

(
di(1, v)

z

)
(
1

3t3
n−2/3)z.

12

We shall now use Lemma 3.1 with x = di(1, v) and α = (k − 4/3)/(k − 1) and obtain:

Prob[|N(v, i, j)| ≥ z] < (e · di(1, v)1/(3k−3))di(1,v)
k−4/3
k−1

(
1

3t3
n−2/3)di(1,v)

k−4/3
k−1 −1 ≤

(e · n1/3)di(1,v)
k−4/3
k−1

(
1

3t3
n−2/3)di(1,v)

k−4/3
k−1

3t3n2/3 ≤ (
e

3t3
n−1/3)di(1,v)

k−4/3
k−1

3t3n2/3 <<
1

10t2n
.

Thus, with probability at least 1 − n · t2 1
10t2n

≥ 0.9, for all 1 ≤ i ≤ j ≤ t, and for all v ∈ V ,

|N(v, i, j)| < z < nk−4/3. 2

The next lemma shows that, with high probability, any pair of distinct vertices do not appear

together in elements of L∗ too often.

Lemma 3.3 If each of the perfect matchings B(i, v) is selected randomly, and all the n(t − 1)

choices are independent, then with probability at least 3/4, for every two distinct vertices u,w ∈ V ,

the number of elements of L∗ containing both u and w is at most t2nk−4/3.

Proof: Fix two distinct vertices u and w, and fix two integers i, j where 1 ≤ i ≤ j ≤ t. We shall

estimate the number of elements S ∈ L∗ for which u ∈ S(i) and w ∈ S(j), and w is not the header

of S(j). We shall denote this number by N(u, i, w, j). Now, in any element S ∈ L∗ which contains

both u and w, at least one of these vertices is a non-header of some edge of S. This follows from

Lemma 2.2 and from the fact that S is homomorphic to T̃ . Furthermore, the only vertex in S

which does not appear as a non-header in any edge of S, is the header of S(1). It follows that the

overall number of elements of L∗ which contain both u and w, denoted by N(u,w) satisfies:

N(u,w) ≤
t∑

i=1

t∑
j=i

(N(u, i, w, j) +N(w, i, u, j)).

Thus, in order to prove the lemma it suffices to show that N(u, i, w, j) is greater than nk−4/3 with

probability at most 1/(4n2t2).

Consider first the case where i = j. In this case, N(u, i, w, j) is at most the co-degree of u and w

and therefore N(u, i, w, j) ≤ nk−2 < nk−4/3, so the claim holds with probability 0 in this case.

We may now assume that i < j. Since the perfect matchings are selected randomly and indepen-

dently, we may assume that the n matchings Bj(v) for all v ∈ V are selected after all the other

n(t − 2) matchings Br(v), for r ̸= j, are selected. Let N∗ be defined as in the proof of Lemma

3.2. We shall estimate N(u, i, w, j) given that we know N∗. Notice that since i < j and p(j) < j,

each of the m elements of N∗ contains one edge from Ei and one edge from Ep(j) (it may be that

i = p(j)). Recall that sj is the position of the header of ej in ep(j). For v ∈ V , Let Fv denote the

set of elements of N∗ for which u appears in the edge of N∗ belonging to Ei, and v appears at

position sj in the edge of N∗ belonging to Ep(j). Put fv = |Fv|. Clearly,∑
v∈V

fv = di(u).

13

Let Gv denote the set of edges of Dj(1, v) which contain w, and let gv = |Gv|. Consider the perfect
matching Bj(v). It is a perfect matching between Dj(1, v) and the edges of Ep(j) which have v

at position sj . Thus, the probability that a specific edge of Ep(j) belonging to Fv is matched to

an edge of Gv is exactly gv/dj(1, v). We estimate gv/dj(1, v) in case v ̸= w as follows: Clearly,

gv is at most the co-degree of v and w, and thus gv ≤ nk−2. On the other hand, by Lemma 2.4,

dj(1, v) > nk−4/3. Hence
gv

dj(1, v)
≤ n−2/3 whenever v ̸= w.

In order to estimate N(u, i, w, j) given N∗, we shall define N(u, i, w, j, v) for each v ∈ V , v ̸= w as

follows: N(u, i, w, j, v) is the number of elements of Ep(j) belonging to Fv which are matched by

the perfect matching Bj(v) to an edge of Gv. Clearly:

[N(u, i, w, j) | N∗] =
∑

v∈V , v ̸=w

N(u, i, w, j, v).

We shall therefore estimate N(u, i, w, j) using estimates for N(u, i, w, j, v). We must first dispose

of the case where k = 2, which must be treated differently (the graph-theoretic case). If k = 2

then, trivially, gv ≤ 1 so N(u, i, w, j, v) ≤ 1. In particular, N(u, i, w, j, v) = 1 if and only if (v, w)

is an edge of Dj(1, v) and in this case, by Lemma 2.4 we have

Prob[N(u, i, w, j, v) = 1] =
fv

dj(1, v)
≤ fv

n2/3
.

Thus, the expectation of N(u, i, w, j), given N∗, is exactly∑
v∈V (v,w)∈Dj(1,v)

fv
dj(1, v)

≤ di(u)

n2/3
≤ n1/3.

Since the n perfect matchings Bj(v) are chosen independently, we have that N(u, i, w, j), given N∗,

is the sum of at most n independent indicator random variables, so a large deviation inequality

immediately gives:

Prob[N(u, i, w, j)− n1/3 > 0.5n2/3 | N∗] < exp(−2 · 0.25 · n4/3

n
) <

1

4t2n2
.

Since the last inequality does not depend on N∗ we have, in particular, that

Prob[N(u, i, w, j) > n2/3] <
1

4t2n2

as required.

We can now assume k ≥ 3. We estimate N(u, i, w, j, v) by considering two cases. If fv ≤ nk−7/3

then we shall use the trivial estimate N(u, i, w, j, v) ≤ fv ≤ nk−7/3. If fv > nk−7/3 the estimate is

done as follows. Let 0 < α < 1 be the real number which satisfies

f1−α
v = n1/3.

14

Note that since k ≥ 3 we have fv ≥ n3−7/3 = n2/3, so α exists. Let z = ⌊fα
v ⌋. Let U be a set of

exactly z edges of Ep(j) taken from elements of Fv. U is called bad if all its elements are matched to

edges of Gv. We shall prove that the probability that there exists a bad U is at most 1/(4n3t2). As

shown above, the probability that each edge of U is matched to an edge of Gv is gv/dj(1, v) ≤ n−2/3.

Hence, the probability that an edge of U is matched to an edge of Gv given that y previous edges

of U are matched to edges of Gv is (gv − y)/(dj(1, v)− y) ≤ n−2/3. Thus,

Prob[U is bad] ≤ (n−2/3)z.

Taking into account all possible sets U we get:

Prob[N(u, i, w, j, v) ≥ z] ≤
(
fv
z

)
(n−2/3)z.

The last inequality is estimated using Lemma 3.1 with x = fv and α as defined above, giving:

Prob[N(u, i, w, j, v) ≥ z] ≤ (e · f1−α
v)f

α
v (n−2/3)f

α
v n2/3 =

(en−1/3)f
α
v n2/3 <<

1

4n3t2
.

Since z ≤ fα
v = fv/n

1/3 we have

Prob[N(u, i, w, j, v) ≥ fv
n1/3

] <
1

4n3t2
.

Hence, with probability at least 1 − 1
4n2t2

, for each v ∈ V , we have N(u, i, w, j, v) ≤ fv
n1/3 . Hence,

with probability at least 1− 1
4n2t2

:

[N(u, i, w, j) | N∗] =
∑

v∈V , v ̸=w

N(u, i, w, j, v) ≤
∑

w ̸=v fv≤nk−7/3

nk−7/3 +
∑

w ̸=v fv>nk−7/3

fv
n1/3

≤ nk−4/3.

Since the last estimate does not depend on N∗ we have that N(u, i, w, j) > nk−4/3 with probability

at most 1
4n2t2

. 2

Completing the proof of Theorem 1.2: According to Lemmas 3.2 and 3.3 we know that with

probability at least 0.65, we can obtain a decomposition L∗ with the properties guaranteed by

Lemmas 3.2 and 3.3. We therefore fix such a decomposition, and denote it by L′. We let each

element S ∈ L′ choose an integer c(S), where 1 ≤ c(S) ≤ t. Each value has equal probability 1/t.

All the m choices are independent. Let C(v, i) be the set of elements S ∈ L′ for which c(S) = i

and for which v is the header of S(i). Put |C(v, i)| = c(v, i). Clearly, 0 ≤ c(v, i) ≤ di(1, v), and the

expectation of c(v, i) is µ(c(v, i)) = di(1, v)/t. Since the choices are independent, we know that

Prob[c(v, i) <
di(1, v)

t+ 1
] < exp(− 2di(1, v)

2

(t+ 1)2t2di(1, v)
) ≤ exp(−2di(1, v)

(t+ 1)4
) <

1

2nt
.

15

Thus, with positive probability (in fact, with probability at least 0.5), we have that for all v ∈ V

and for all i = 1, . . . , t,

c(v, i) ≥ di(1, v)

t+ 1
. (10)

We therefore fix the choices c(S) for all S ∈ L′ such that (10) holds.

We are now ready to mend L′ into a decomposition L consisting only of simple hypertrees isomorphic

to T̃ . Recall that each element of L′ is homomorphic to T̃ . We shall perform a process which, in

each step, reduces the overall number of bad edges in L′ by at least one, while maintaining the

homomorphisms. Thus, at the end, there will be no bad edges, and all the elements are, therefore,

simple hypertrees isomorphic to T̃ . Our process uses two sets L1 and L2 where, initially, L1 = L′

and L2 = ∅. We shall maintain the invariant that, in each step in the process, L1 ∪ L2 is a

decomposition of H into subhypergraphs homomorphic to T̃ . Note that this holds initially. We

shall also maintain the invariant that L1 ⊂ L′. Our process halts when no element of L1 ∪ L2

contains a bad edge, and by putting L = L1 ∪ L2 we obtain a decomposition of H into copies of

T̃ , as required. As long as there is some Sα ∈ L1 ∪ L2 which contains a bad edge, we show how

to select an element Sβ ∈ L1, and how to create two subhypergraphs Sγ and Sδ which are also

homomorphic to T̃ with E(Sα) ∪ E(Sβ) = E(Sγ) ∪ E(Sδ), such that the number of bad edges in

E(Sγ) ∪ E(Sδ) is less than the number of bad edges in E(Sα) ∪ E(Sβ). Thus, by deleting Sα and

Sβ from L1∪L2 and inserting Sγ and Sδ both into L2, we see that L1∪L2 is a better decomposition

since it has less bad edges. It remains to show that this procedure can, indeed, be completed.

Let i be the maximum integer such that there exists an element Sα ∈ L1 ∪ L2 where Sα(i) is bad.

Let v be the header of Sα(i). Consider the subhypergraph Sϵ of Sα consisting of all the edges Sα(j)

where ej is a descendant of ei. Our aim is to find an element Sβ ∈ L1, which satisfies the following

requirements:

1. c(Sβ) = i.

2. The header of Sβ(i) is v.

3. No vertex of Sα, except v, appears in Sβ.

We show that an Sβ meeting these requirements can always be found. The set C(v, i) is exactly

the set of elements of L′ which meet the first two requirements (although some of them may not be

elements of L1). Let U be the set of vertices of Sα, not including v. For u ∈ U , all the elements of

L′ which contain both u and v are not allowed to be candidates for Sβ, since this would violate the

third requirement. According to Lemma 3.3, there are at most t2nk−4/3 elements of L′ containing

both u and v. Let C ′(v, i) be the number of elements of C(v, i) which satisfy the third requirement.

Since U contains less than kt vertices, we have by (8), Lemma 2.4 and Lemma 3.3 that:

|C ′(v, i)| ≥ c(v, i)− kt3nk−4/3 ≥ di(1, v)

t+ 1
− kt3nk−4/3 > kt3nk−4/3.

16

We need to show that at least one of the elements of C ′(v, i) is also in L1. Each element S ∈ C(v, i)

that was removed from L′ in a prior stage was removed either because it had a bad edge S(j)

where j ≥ i (this is due to the maximality of i), or because it was chosen as an Sβ counterpart of

some prior Sα, having a bad edge Sα(i) whose header is v. There are at most |N(v, i, j)| elements

S ∈ C(v, i) which have a bad edge S(j) where j ≥ i, and there are at most |N(v, i, i)| elements

S ∈ C(v, i) having S(i) as a bad edge. According to Lemma 3.2,
∑t

j=i |N(v, i, j)| + |N(v, i, i)| ≤
(t+ 1)nk−4/3 < |C ′(v, i)|. Thus, we have shown that the desired Sβ can be selected.

Let Sπ be the subhypergraph of Sβ consisting of all the edges Sβ(j) where ej is a descendant of ei.

Sγ is defined by taking Sα and replacing its subhypergraph Sϵ with the subgraph Sπ. Likewise,

Sδ is defined by taking Sβ and replacing its subgraph Sπ with the subgraph Sϵ. Note that Sγ and

Sδ are both still homomorphic to T̃ , and that E(Sα) ∪ E(Sβ) = E(Sγ) ∪ E(Sδ), so by deleting

Sα and Sβ from L1 ∪ L2, and by inserting Sγ and Sδ to L2 we have that L1 ∪ L2 is still a valid

decomposition into subhypergraphs homomorphic to T̃ . The crucial point however, is that every

edge of E(Sα) ∪ E(Sβ) that was good, remains good due to requirement 3 from Sβ, and that the

edge Sα(i) which was bad, now plays the role of Sδ(i), and it is now a good edge due to requirement

3. Thus, the overall number of bad edges in L1 ∪ L2 is reduced by at least one. 2

4 Concluding remarks and open problems

1. As mentioned in the introduction, theorem 1.1 is an immediate consequence of Theorem

1.2, since every k-uniform hypergraph with minimum degree
(⌊n/2⌋−1

k−1

)
+ (k − 1)r is r edge-

expanding. This is formally proved as follows:

Lemma 4.1 Let H be a k-uniform hypergraph with minimum degree
(⌊n/2⌋−1

k−1

)
+ (k − 1)r.

Then H is r edge-expanding.

Proof: Let X be any subset of vertices with |X| ≤ n/2. For each v ∈ X there are at most(|X|−1
k−1

)
≤
(⌊n/2⌋−1

k−1

)
edges containing v and which lie completely within X. Hence, there are

at least (k − 1)r edges containing v and at least one vertex outside of X. Summing up for

each v ∈ X there is a total of at least (k − 1)r|X| such edges. Each such edge is counted at

most k − 1 times (once for each vertex it contains from X). Hence, there are at least r|X|
edges containing a vertex of X and a vertex outside of X. 2

2. The proof of Theorem 1.2 can also be implemented as a randomized algorithm. That is, given

an input hypergraph H satisfying the edge-expansion properties, and with tm edges where m

is an integer, one can produce a T -decomposition of H with constant positive probability. To

see this, note that Lemma 2.1 is algorithmic, as the partition into the Fi’s having the required

properties can be done with probability of success at least 0.9, and the Fi’s can be checked to

17

have the required properties in polynomial time. The correction of the Fi’s into the subsets

Ei can be done in polynomial time with probability of success at least 0.5. The ordering

of the edges satisfying the properties of a T -homomorphic decomposition can be performed

by using any polynomial time algorithm for bipartite matching. After choosing the n(t − 1)

perfect matchings B(i, v) randomly and independently, one can compute in polynomial time

that the obtained L∗ satisfies the conditions in Lemmas 3.2 and 3.3. This happens with

probability at least 0.65, according to these lemmas. If this is the case, the choices for C(v, i)

in Theorem 1.2 can be checked to comply with (10) in polynomial time, and (10) holds with

probability at least 0.5. The final step of mending L′ into the desired decomposition L is a

purely sequential, non-randomized process, which can be done in polynomial time.

3. The power k−4/3 appearing in Theorem 1.1 and in Theorem 1.2 can somewhat be improved,

but we are currently unable to get rid of the dependency on k. We conjecture, however, that

this is possible in Theorem 1.1, and even more so:

Conjecture 4.2 For every k-uniform simple hypertree T with t > 1 edges, there exists a

constant c(T) such that every k-uniform hypergraph H with tm edges, where m is an integer,

and with

δ(H) ≥
(
⌊n/2⌋ − 1

k − 1

)
+ c(T)

has a T -decomposition.

4. Although Theorem 1.1 and Theorem 1.2 are stated for k-uniform simple hypertrees, it is

obvious that the theorems and all the lemmas used to prove them, can be easily modified to

hold in case the decomposing hypergraph is a k-uniform simple hyperforest.

References

[1] N. Alon, Decomposition of the complete r-graph into complete r-partite r-graphs, Graphs and

Combinatorics 2 (1986), 95-100.

[2] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley and Sons Inc., New York,

1991.

[3] C. Berge, Graph and Hypergraphs, North-Holland, Amsterdam, 1973.

[4] C.J. Colbourn and J.H. Dinitz, CRC Handbook of Combinatorial Design, CRC press 1996.

[5] D. Dor and M. Tarsi, Graph decomposition is NPC - A complete proof of Holyer’s conjecture,

Proc. 20th ACM STOC, ACM Press (1992), 252-263.

18

[6] V. Rödl, On a packing and covering problem, European J. Combinatorics 5 (1985), 69-78.

[7] R. M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph,

Congressus Numerantium XV (1975), 647-659.

[8] R. Yuster, Tree decomposition of graphs, Random Structures and Algorithms 12 (1998), 237-

251.

[9] R. Yuster, Packing and decomposition of graphs with trees, submitted.

19

