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Abstract

Let G be a bipartite graph, with k | e(G). The zero-sum bipartite Ramsey number B(G,Zk)

is the smallest integer t such that in every Zk-coloring of the edges of Kt,t, there is a zero-sum

mod k copy of G in Kt,t. In this paper we give the first proof which determines B(G,Z2) for all

possible bipartite graphs G. In fact, we prove a much more general result from which B(G,Z2)

can be deduced: Let G be a (not necessarily connected) bipartite graph, which can be embedded

in Kn,n, and let F be a field. A function f : E(Kn,n)→ F is called G-stable if every copy of G

in Kn,n has the same weight (the weight of a copy is the sum of the values of f on its edges).

The set of all G-stable functions, denoted by U(G,Kn,n, F ) is a linear space which is called the

Kn,n uniformity space of G over F . We determine U(G,Kn,n, F ) and its dimension, for all G,

n and F . Utilizing this result in the case F = Z2, we can compute B(G,Z2), for all bipartite

graphs G.

1 Introduction

All graphs and hypergraphs considered here are finite, undirected and have no loops or multiple

edges. For the standard graph-theoretic notations the reader is referred to [5]. Let Zk denote

the cyclic additive group of order k. A Zk-coloring of the edges of a graph G = (V,E) is a

function f : E(G) → Zk. If
∑

e∈E(G) f(e) = 0 in Zk, we say that G is a zero-sum graph mod k

with respect to f . The concepts of zero-sum Ramsey numbers and bipartite zero-sum Ramsey

numbers were first introduced by Bialostocki and Dierker in [3] and [2], and by Caro in [7]. If

k | e(G) then the zero-sum Ramsey number R(G,Zk) is the smallest integer t such that in every

Zk-coloring of Kt there exists a zero-sum mod k copy of G in Kt. If k | e(G) and G is bipartite

then the zero-sum bipartite Ramsey number B(G,Zk) is the smallest integer t such that in every
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Zk-coloring of Kt,t there exists a zero-sum mod k copy of G in Kt,t. The existence of R(G,Zk)

and B(G,Zk) follows from the trivial inequalities R(G,Zk) ≤ R(G, k) and B(G,Zk) ≤ B(G, k)

where R(G, k) and B(G, k) are, respectively, the classical Ramsey number and Bipartite Ramsey

number using k colors. Good approximations of R(Kn, Zk) have been derived in [1]. In [6], the first

author has determined R(G,Z2) for all possible graphs G. The exact values of R(G,Zk) constitute

an open problem for all k ≥ 3. In this paper we determine B(G,Z2) for all possible graphs G.

Upper and lower bounds for B(G,Z2) which differ by at most one were given in [8]. Hence, this

paper closes the gap. The exact result is given in Theorem 1.1. For a bipartite graph G define

m(G) = min{|A|, V (G) = A∪B, |A| ≥ |B|} where the minimum is taken over all the representations

of G as a bipartite graph with classes A and B (e.g., m(K1,n) = n, m(K2,3 ∪K4,7) = 9). Clearly,

B(G,Zk) ≥ m(G). A graph is called a (0, 1)-graph if in every representation of G as a bipartite

graph with classes A and B, where |A| = m(G), all the vertices of A have odd degree, and all the

vertices of B have even degree (e.g K3,4 and K1,4 ∪K2,3 are (0, 1)-graphs).

Theorem 1.1 Let G = (V,E) be a bipartite graph with an even number of edges, and with no

isolated vertices. Then:

1. If G = Kn,n then B(G,Z2) = m(G) + 1.

2. If G = Ka,n where a < n then B(G,Z2) = m(G) + 1 if a is odd, and B(G,Z2) = m(G) if a

is even.

3. If G = Ka,b ∪Kn−a,n−b then B(G,Z2) = m(G) + 1 if n is even and at least one of a or b is

odd. Otherwise, B(G,Z2) = m(G).

4. If G is none of the above, and all the degrees of G are even then B(G,Z2) = m(G).

5. If G is none of the above, and all the degrees of G are odd, then if |V | = 2m(G) then

B(G,Z2) = m(G) + 1, and if |V | < 2m(G) then B(G,Z2) = m(G).

6. If G is none of the above, and G is a (0, 1)-graph, then B(G,Z2) = m(G) + 1.

7. If G is none of the above, then B(G,Z2) = m(G).

Furthermore, given f : E(Kn,n) → Z2 where n = B(G,Z2), one can find a zero-sum copy of G in

Kn,n in O(n4) time.

The proof of Theorem 1.1 is, in fact, an application of a special case of a much more general result

which we now describe.
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In [9] the authors define the concept of uniformity space of graph-theoretic problems. One such

problem they consider is the following: Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs where

G1 is a subgraph of G2. A function f : E2 → F is called G1-stable if all the copies of G1 in G2 have

the same weight (the weight of a copy is the sum of the values of f on the edges of the copy). Let

U(G1, G2, F ) be the set of all G1-stable functions. Clearly, U(G1, G2, F ) is a linear vector space.

We call it the uniformity space of G1 in G2, over F . Let udim(G1, G2, F ) be the dimension of

U(G1, G2, F ). Clearly, udim(G1, G2, F ) ≤ |E2|. In Theorem 1.1 of [9], a basis for U(G,Kn, F ) is

determined for all graphs G with at most n vertices, and for all fields, although it is shown there

that computing udim(G1, G2, F ) is, in general, NP-Complete. It is also shown that determining

whether a given f : E(Kn)→ F is G-stable, can be done in O(n4) time, and if it is not stable, two

copies of G in Kn with different weights can be produced in O(n4) time. By considering the case

F = Z2, and utilizing Theorem 1.1 of [9], it is shown how to obtain an alternative proof for the

Theorem in [6], which determines R(G,Z2). The advantage of the alternative proof over the original

one is due to the fact that it is algorithmic. In analogy to the proof in [9], in this paper we determine

U(G,Kn,n, F ) for all bipartite graphs G which are subgraphs of Kn,n (i.e., with m(G) ≤ n). Before

stating this result, we need to state a few definitions and facts. If G is a subgraph of Kn,n, then

by adding to G isolated vertices we can obtain a graph G′ with exactly 2n vertices, which is a

spanning subgraph of Kn,n. Trivially, U(G,Kn,n, F ) = U(G′,Kn,n, F ), and therefore we may always

assume that G is a spanning subgraph of Kn,n. Let p denote the characteristic of F . A graph

G is called a-regular mod p if the degree of every vertex, mod p, is a. In case p = 0, this means

that G is a regular, in the usual sense. A bipartite graph G = (V,E) is called (a, b)-regular mod p

if in every partition of V into two n-vertex classes, the degree of each vertex in one vertex class,

mod p, is a, and the degree of each vertex in the other vertex class, mod p, is b. Clearly, if G is

a-regular mod p then it is also (a, a)-regular mod p. If p = 0, there does not exist an (a, b)-regular

graph, unless a = b. For example, G = K1,2 ∪ K3,2 is (1, 0)-regular mod 2. On the other hand,

G = 2K1,2 ∪ 2K2,3 is not (a, b)-regular mod 2 for any a and b. Recall that Em denotes the empty

graph on m vertices.

Theorem 1.2 Let G = (V,E) be a nonempty spanning subgraph of Kn,n, where n ≥ 2, and let F

be a field of characteristic p. Then:

1. If n ≥ b ≥ a ≥ 1 and G = Ka,b ∪ E2n−a−b then:

(a) If b = n and a = n then udim(G,Kn,n, F ) = n2.

(b) If b = n and at least one of a or b is not 0 mod p (or if p = 0) then udim(G,Kn,n, F ) =

n2 − 2n + 2.
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(c) If b = n and a = 0 mod p and b = 0 mod p then udim(G,Kn,n, F ) = n2 − 2n + 3.

(d) If b < n and a = 0 mod p and b = 0 mod p then udim(G,Kn,n, F ) = 2n− 1.

(e) If b < n and at least one of a or b is not 0 mod p (or p = 0) then udim(G,Kn,n, F ) = 1.

2. If p = 2 and G = Ka,b ∪Kn−a,n−b where 1 ≤ a ≤ b < n then:

(a) If n is odd then udim(G,Kn,n, F ) = n2 − 2n + 2.

(b) If n is even and a = b mod 2 then udim(G,Kn,n, F ) = n2 − 2n + 3.

(c) If n is even and a 6= b mod 2 then udim(G,Kn,n, F ) = n2 − 2n + 2.

3. Otherwise:

(a) If G is a-regular mod p then udim(G,Kn,n, F ) = 2n− 1.

(b) If G is (a, b)-regular mod p, where a 6= b mod p, then udim(G,Kn,n, F ) = 2n− 2.

(c) If G is non of the above then udim(G,Kn,n, F ) = 1.

In all cases, a basis of U(G,Kn,n, F ) can be computed in O(n4) time. Furthermore, given f :

E(Kn,n) → F , one can decide in O(n4) time if f is G-stable, and if it is not, two copies of G in

Kn,n having different weights can be produced.

Note that Theorem 1.2 covers all nonempty spanning subgraphs of Kn,n, where n ≥ 2 (the case

n = 1 is trivial). The reader should be aware that although there are some similarities between the

proof characterizing U(G,Kn, F ) in [9] and the proof of Theorem 1.2 characterizing U(G,Kn,n, F ),

there are also many differences. We therefore provide a complete, self-contained proof of Theorem

1.2 in Section 2, which is independent of the proof in [9]. In section 3 we show how to utilize

Theorem 1.2, in the case where F = Z2, in order to deduce Theorem 1.1.

2 The uniformity space of bipartite graphs

In this section we prove Theorem 1.2. We shall assume that G = (V,E) is a nonempty spanning

subgraph of Kn,n, n ≥ 2. The graph G may contain isolated vertices. Isolated vertices are called

trivial connected components. The degree of a vertex v ∈ G is denoted by d(v). A field is denoted

by F , and p denotes the characteristic of F . It will be convenient to denote the vertices of Kn,n by

the numbers 1, . . . , 2n, where the first n numbers constitute the left vertex class, and the remaining

numbers constitute the right vertex class. Using this convention, we may identify a copy of G in

Kn,n with a one-to-one mapping g : V (G) → {1, . . . , 2n}, which defines the obvious isomorphism

4



between G and its copy in Kn,n. We denote by g−1(i) the vertex of G which maps by g to i. For

a weight function f : E(Kn,n) → F , and for a copy g of G in Kn,n, let w(f, g) be the sum of the

values of f on the edges of the copy g (the summation is performed in the field F ). Thus, if f is

G-stable, w(f, g1) = w(f, g2) for any two copies g1 and g2.

In our proofs we shall make use of several explicit functions which we now designate:

• We denote by f : E(Kn,n)→ F the all-one function. Note that f is always G-stable.

• We denote by f∗ : E(Kn,n) → F the function which assigns 1 to the edges (i, n + i) for

i = 1, . . . , n, and 0 to all other edges.

• For i, j = 1, . . . , n we define the functions fi,j : E(Kn,n) → F as follows: fi,j(e) = 1 if e is

incident with i or with n + j, but not both. If e = (i, n + j) then fi,j(e) = 2. (The constant

2 means 1 + 1 in the field F . In particular 2 = 0 if p = 2). Otherwise, fi,j(e) = 0.

• For i = 1, . . . , 2n we define the functions fi : E(Kn,n)→ F as follows: fi assigns 1 to all the

edges of Kn,n adjacent to i, and 0 otherwise.

• For i = 2, . . . , n and j = n + 2, . . . , 2n we define the functions f1,n+1,i,j : E(Kn,n) → F as

follows: f1,n+1,i,j assigns 1 to the edges of the cycle (1, n + 1, i, j), and 0 to all other edges.

Lemma 2.1 If p 6= 0 and G is (a, b)-regular mod p, then udim(G,Kn,n, F ) ≥ 2n − 2. Further-

more, a set Q1 of 2n− 2 linearly-independent G-stable functions can be constructed in O(n3) time.

Proof: Consider the set Q1 = {f1,2, f2,2, f2,3, f3,3, . . . , fn−1,n, fn,n}. This set contains exactly 2n−2

distinct functions. Clearly, each member of Q1 can be constructed in O(|E(Kn,n)|) = O(n2) time,

and Q1 is therefore constructed in O(n3) time. Note that each member of Q1 is G-stable since for

every copy g, w(fi,j , g) = a + b mod p. It remains to show that Q1 is a linearly independent set.

Indeed, assume that

c1,2f1,2 + c2,2f2,2 + . . . + cn−1,nfn−1,n + cn,nfn,n = 0.

Consider the edge (1, n + 1). It is assigned 0 in every member of Q1 except f1,2. Thus, c1,2 = 0.

Now consider the edge (1, n+ 2). It is assigned 0 in every member of Q1 except f1,2 and f2,2. Since

c1,2 is already 0, this means c2,2 = 0. Now by considering (2, 2), we obtain in the same manner,

that c2,3 = 0. Continuing in the same way we obtain that all the coefficients are 0. 2

In case G is a-regular mod p, we can obtain a result which is slightly sharper than Lemma 2.1.

Lemma 2.2 If G is a-regular mod p, then udim(G,Kn,n, F ) ≥ 2n− 1. Furthermore, a set Q2 of

2n− 1 linearly-independent G-stable functions can be constructed in O(n3) time.
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Proof: Consider the set Q2 = {fi | i = 1, . . . , 2n−1} which contains 2n−1 distinct functions. Each

member of Q2 can be constructed in O(|E(Kn,n)|) = O(n2) time, and Q2 is therefore constructed in

O(n3) time. Each member of Q2 is G-stable since for every copy g, w(fi, g) = a mod p. It remains

to show that Q2 is a linearly independent set. Indeed, assume that

c1f1 + . . . c2n−1f2n−1 = 0.

Consider the edge (i, 2n), where 1 ≤ i ≤ n. It is assigned 0 in every member of Q except fi. Thus,

ci = 0 for i = 1, . . . , n. Now consider the edge (n, i) where n + 1 ≤ i ≤ 2n − 1. It is assigned 0 in

every member of Q except fn and fi. Thus cn + ci = 0. Since we already know that cn = 0, this

means ci = 0 for i = n + 1 . . . , 2n− 1. 2

Lemma 2.3 Let f : E(Kn,n)→ F . Assume that at least one of the following two conditions holds:

1. G has a connected component which is not complete bipartite.

2. p 6= 2 and G has at least two nontrivial connected components.

If f is G-stable then for every four vertices a, b, c, d of Kn,n, with a, c in the left vertex class and

b, d in the right vertex class,

f(a, b) + f(c, d) = f(b, c) + f(d, a) (1)

holds. If f is not G-stable, and one is given four vertices a, b, c, d which violate (1), then two copies

of G in Kn,n with different weights can be produced in O(n2) time.

Proof: Consider any vertex partition of G into two vertex classes, A and B, with |A| = |B| = n. If

G has a connected component which is not complete bipartite then G must have an induced path on

four vertices, (y, w, x, z). Otherwise, p 6= 2 and G has two nontrivial connected components where

(y, w) and (x, z) are two edges in different connected components. In both cases, (y, z) is not an

edge of G. In the first case, (w, x) is an edge, and in the second case, it is not. Assume, w.l.o.g. that

x, y ∈ A and z, w ∈ B. Put N(y) = {y1, . . . , yr} where w = y1. Put N(x) \ N(y) = {x1, . . . , xs}
where x1 = z. We may assume that {y1, . . . , yt} are also neighbors of x for some 0 ≤ t ≤ r. Note

that t ≥ 1 in case p = 2, since in this case y1 = w is a neighbor of x. Fix any four vertices a, b, c, d

of Kn,n, with 1 ≤ a < c ≤ n and n + 1 ≤ b < d ≤ 2n. Consider a copy g1 of G in Kn,n for which

g1(x) = a, g1(y) = c, g1(z) = b, g1(w) = d. g1 maps the n − 2 remaining vertices of A to the

remaining n− 2 numbers of the left vertex class of Kn,n in some arbitrary way, and the remaining

n−2 vertices of B to the remaining n−2 numbers of the right vertex class of Kn,n in some arbitrary
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way. Now consider a copy g2 of G which coincides with g1 on all vertices except x and y, which are

permuted with respect to g1. Thus, g2(x) = c and g2(y) = a. If f is G-stable we must have

0 = w(f, g1)−w(f, g2) = (
s∑

i=1

f(a, g1(xi))+
r∑

i=t+1

f(c, g1(yi)))− (
s∑

i=1

f(c, g1(xi))+
r∑

i=t+1

f(a, g1(yi))).

(2)

We now define two additional copies, g3 and g4, of G in Kn,n. g3 coincides with g1 on all vertices

except w and z, which are permuted. Thus, g3(z) = d and g3(w) = b. g4 coincides with g3 on all

vertices except x and y, which are permuted. Thus g4(x) = c and g4(y) = a. Once again, if f is

G-stable,

0 = w(f, g3)−w(f, g4) = (
s∑

i=1

f(a, g3(xi))+
r∑

i=t+1

f(c, g3(yi)))− (
s∑

i=1

f(c, g3(xi))+
r∑

i=t+1

f(a, g3(yi))).

(3)

We now subtract (3) from (2). In case t = 0, the subtraction gives

0 = (w(f, g1)− w(f, g2))− (w(f, g3)− w(f, g4)) = f(a, b)− f(c, b)− f(a, d) + f(c, d)

which implies f(a, b) + f(c, d) = f(b, c) + f(d, a), as required. In case t = 0, which can only happen

if p 6= 2, the subtraction gives

0 = (w(f, g1)− w(f, g2))− (w(f, g3)− w(f, g4)) =

f(a, b) + f(c, d)− f(c, b)− f(a, d)− f(a, d)− f(c, b) + f(c, d) + f(a, b)

which implies f(a, b) + f(c, d) = f(b, c) + f(d, a), as required.

If f is not G-stable, and we are given four vertices a, b, c, d which violate (1), then we can create

the two copy pairs (g1, g2) and (g3, g4) as before, and compute their weights, in O(n2) time. By

the above equalities, we must have that either w(f, g1) 6= w(f, g2) or w(f, g3) 6= w(f, g4). 2

Let S denote the set of edges of Kn,n which are adjacent to vertex 1 or vertex n + 1. That is,

S = {(1, n + 1), . . . , (1, 2n), (2, n + 1), . . . , (n, n + 1)}

Note that S contains 2n− 1 edges, but has no cycle. Also note that if e ∈ E(Kn,n) and e /∈ S, then

S ∪ {e} contains a four-cycle. The following is an immediate corollary of Lemma 2.3.

Corollary 2.4 Let f : E(Kn) → F be such that for any four vertices a, b, c, d of Kn,n with a, c

in the left vertex class, and b, d in the right vertex class, f(a, b) + f(c, d) = f(b, c) + f(d, a) holds.

Then f is determined by its values on S. In particular, if 1 ≤ i ≤ n and n + 1 ≤ j ≤ 2n then

f(i, j) = f(1, j) + f(i, n + 1)− f(1, n + 1). 2
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Now, corollary 2.4, Lemma 2.3, and the fact that S has 2n − 1 elements imply the following

corollary:

Corollary 2.5 If at least one of the two conditions in Lemma 2.3 holds, then udim(G,Kn,n, F ) ≤
2n− 1.

It is interesting to note the connection between C4-saturated graphs and the set S. A graph G

is called H-saturated if it does not contain a copy of H, and if we add any edge to G, we obtain

a copy of H. In [4], Bollobás has addressed the question of minimal-saturated bipartite graphs.

Let sat(m,n, s, t) denote the minimal number of edges in a bipartitte graph G ⊂ Km,n which is

Ks,t-saturated. Note that due to the fact that S has 2n − 1 edges, Corollary 2.5 and Lemma 2.2

we have that sat(n, n, 2, 2) = 2n − 1. This coincides with the general value for sat(n,m, s, t) =

m(t − 1) + n(s − 1) − (s − 1)(t − 1) proved in [4]. See also [11] for further results on saturated

graphs.

Lemma 2.6 Assume that at least one of the two conditions in Lemma 2.3 holds, and that G is not

(a, b)-regular mod p, for any a and b, and that if p = 0 then G is not regular. Let f : E(Kn,n)→ F .

Then, f is G-stable iff f is constant. If f is not constant, one can find two copies of G in Kn,n,

with different weights, in O(n4) time.

Proof: Clearly, a constant function is always G-stable. Assume, therefore, that f is G-stable.

According to Lemma 2.3 and corollary 2.4 we know that f is determined by its values on the set

S. Furthermore, according to corollary 2.4 it suffices to show that f is constant on S. Since G is

not (a, b)-regular mod p, there exists a vertex partition of G into two vertex classes A and B with

|A| = |B| = n, and two vertices x ∈ A and y ∈ A with d(x) 6= d(y) mod p. Put N(x) \ N(y) =

{x1, . . . , xs}, and N(y) \N(x) = {y1, . . . , yr}. Hence, r 6= s mod p (in case p = 0 this simply means

that r 6= s). Consider two copies of G in Kn,n, that differ only in their values on x and y. One of

the copies, say g1, has g1(x) = 1 and g1(y) = i for some 2 ≤ i ≤ n, while the other copy, g2, has

g2(x) = i and g2(y) = 1. For any other vertex z, we have g1(z) = g2(z). Since f is stable it follows

that

0 = w(f, g1)−w(f, g2) = (
s∑

j=1

f(1, g1(xj))+
r∑

j=1

f(i, g1(yj)))−(
s∑

j=1

f(i, g1(xj))+
r∑

j=1

f(1, g1(yj))). (4)

According to Corollary 2.4, we know that f(i, g1(xj)) = f(1, g1(xj)) + f(i, n+ 1)− f(1, n+ 1), and

f(i, g1(yj)) = f(1, g1(yj)) + f(i, n + 1)− f(1, n + 1). Placing these two equalities in (4) we get:

(s− r)(f(1, n + 1)− f(i, n + 1)) = 0.
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This implies that f(i, n+1) = f(1, n+1) for i = 2, . . . , n. In a similar way we can define two copies

g3 and g4 where g3(x) = n+1 and g3(y) = i for some n+2 ≤ i ≤ 2n, g4(x) = i and g4(y) = n+1, and

g3(z) = g4(z) for any other vertex z. A similar equality shows that (s−r)(f(1, n+1)−f(1, i)) = 0,

which implies f(1, i) = f(1, n + 1) for i = n + 2 . . . , 2n. Thus, f is constant on S.

Now, if f is not constant, then f is not G-stable. If there are four vertices a, b, c, d in Kn,n which

violate (1) (the existence of four such vertices can be determined in O(n4) time by considering all

possible subsets of four vertices), then one can generate two copies with different weights according

to Lemma 2.3. Otherwise, we know by Corollary 2.4 that f cannot be constant on S. We may

assume w.l.o.g. that f(1, n + 1) 6= f(i, n + 1) (otherwise we may rename the vertices of Kn,n such

that this holds). Hence, according to the first part of the proof of our lemma, we must have that

the copies g1 and g2 have different weights. These copies are easily created in O(n2) time. 2

Lemma 2.7 If G has only one non-trivial connected component, and this component is Ka,n, where

1 ≤ a ≤ n, then the following holds:

1. If a = n then udim(G,Kn,n, F ) = n2.

2. If a 6= 0 mod p or n 6= 0 mod p then udim(G,Kn,n, F ) = n2 − 2n + 2.

3. If a = 0 mod p and n = 0 mod p then udim(G,Kn,n, F ) = n2 − 2n + 3.

In all cases, a basis Q3 for U(G,Kn,n, F ) can be computed in O(n4) time. Furthermore, given

f : E(Kn,n) → F , one can decide in O(n2) time if f is G-stable, and if not, produce two copies

with different weights.

Proof: If a = n then G = Kn,n, and every function is G-stable. Thus, udim(G,Kn,n, F ) = n2,

and the standard basis is a basis for U(G,Kn,n, F ) in this case. We may now assume that a < n.

We first show that if i and j belong to the same vertex class of Kn,n, and f : E(Kn,n) → F is

G-stable, then the sum of weights of the edges adjacent to i is equal to the sum of weights of the

edges adjacent to j. Indeed, assume w.l.o.g. that 1 ≤ i < j ≤ n. Let g1 be a copy of G which

assigns the a vertices of G with degree n, to a set A ⊂ {1, . . . , n} of vertices of Kn,n where i ∈ A

but j /∈ A. Let g2 be identical to g1 except that g2(g
−1
1 (i)) = j, and g2(g

−1
1 (j)) = i. Now,

0 = w(f, g1)− w(f, g2) =
2n∑

k=n+1

f(i, k)−
2n∑

k=n+1

f(j, k).

We have thus shown that if f is G-stable, then there exist w1 = w1(f), w2 = w2(f) such that for

each i = 1, . . . , n, si =
∑2n

k=n+1 f(i, k) = w1, and for each i = n+ 1, . . . , 2n, si =
∑n

k=1 f(k, i) = w2.
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Consider first the G-stable functions for which w1 = w2 = 0. These functions form a subspace

U ′ of U(G,Kn,n, F ), and satisfy the 2n equations si = 0 for i = 1, . . . , 2n. Note, however, that

the set of 2n − 1 equations si = 0 for i = 1, . . . , 2n − 1 are linearly independent (the proof of

independence is identical to the one in Lemma 2.2), and that s2n depends on {s1, . . . , s2n−1} since

s1 + . . . + sn = sn+1 + . . . s2n. Thus, dim(U ′) = n2 − (2n − 1) = n2 − 2n + 1. A basis Q′ of

U ′ can be computed by solving a set of 2n linear equations in n2 variables, which can be done in

O(n4) time by Gaussian elimination. Now consider the function f∗ which assigns 1 to the edges

(i, n + i) for i = 1, . . . , n. Note that f∗ is G-stable as w(f∗, g) = a mod p for every copy g of G in

Kn,n. However, f∗ clearly does not belong to U ′, since for f∗ we have w1(f
∗) = w2(f

∗) = 1. Thus,

udim(G,Kn,n, F ) ≥ n2 − 2n + 2 and Q′′ = Q′ ∪ {f∗} is linearly independent in U(G,Kn,n, F ).

If f is any G-stable function, then by summing the values of f on all edges in two ways (once from

the A side and once from the side of B), we obtain nw1(f) = nw2(f). Also note that if g is a copy

of G which assigns the a vertices of G with degree n to vertices of the left vertex class of Kn,n then

w(f, g) = aw1. Similarly, if g′ assigns the a vertices of G with degree n to vertices of the right vertex

class of Kn,n then w(f, g′) = aw2. Thus, aw1 = aw2. It follows that if a 6= 0 mod p or n 6= 0 mod p

then w1 = w2. Furthermore, by putting f ′ = f − w1f
∗ we have that f ′ ∈ U ′, and therefore f

is a linear combination of Q′′. Thus, udim(G,Kn,n, F ) = n2 − 2n + 2, and putting Q3 = Q′′, we

have that Q3 is a basis of U(G,Kn,n, F ). We remain with the case a = 0 mod p and n = 0 mod p.

Consider the function f1 (recall that this functions assigns 1 to the edges adjacent to vertex 1 in

Kn,n). Clearly, f1 is G-stable as w(f1, g) = 0 mod p, for every copy g. Also, w1(f1) = 0 while

w2(f1) = 1. Thus, f1 is independent of Q′′. Put Q3 = Q′′ ∪ {f1}. Let f be any G-stable function.

We show that f depends on Q3. Put f ′ = f − w1(f)f∗ + (w1(f) − w2(f))f1. f ′ is G-stable with

w1(f
′) = w1(f)−w1(f)w1(f

∗) + (w1(f)−w2(f))w1(f1) = 0, and w2(f
′) = w2(f)−w1(f)w2(f

∗) +

(w1(f)−w2(f))w2(f1) = 0. Thus, f ′ ∈ U ′, and therefore f is a linear combination of Q3. It follows

that Q3 is a basis for U(G,Kn,n, F ) and udim(G,Kn,n, F ) = n2 − 2n + 3.

Given a function f : E(Kn,n) → F one can compute, for all i ∈ Kn,n, the sum of weights of the

edges adjacent to i in O(n2) time. If there are two vertices, i and j, in the right vertex class, with

different sums of adjacent weights, we construct the copies g1 and g2 defined in the first part of the

proof, in O(n2) time, and these copies must have different weights. Similar considerations apply to

the right vertex class. If all the weights in the left vertex class are w1, and all the weights in the

right vertex class are w2, and w1 = w2, then f is G-stable. Otherwise, w1 6= w2, and we must have

n = 0 mod p. If a = 0 mod p then f is also G-stable. If a 6= 0 mod p then two copies g and g′ with

different weights w(f, g) = aw1 and w(f, g′) = aw2, can be produced in O(n2) time. 2

The final lemma of this section determines U(G,Kn,n, F ) and udim(G,Kn,n, F ) in case p = 2
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and G is a union of exactly two non-trivial complete bipartite graphs.

Lemma 2.8 If G = Ka,b ∪Kn−a,n−b where 1 ≤ a ≤ b < n, and p = 2 then:

1. If n is odd then udim(G,Kn,n, F ) = n2 − 2n + 2.

2. If n is even and a = b mod 2 then udim(G,Kn,n, F ) = n2 − 2n + 3.

3. If n is even and a 6= b mod 2 then udim(G,Kn,n, F ) = n2 − 2n + 2.

In all cases, a basis Q4 for U(G,Kn,n, F ) can be computed in O(n4) time. Furthermore, given

f : E(Kn,n) → F , one can decide in O(n2) time if f is G-stable, and if not, produce two copies

with different weights.

Proof: Partition G into two vertex classes A and B, where |A| = |B| = n. Assume w.l.o.g. that the

a vertices of degree b in the Ka,b component of G belong to A. This forces the n−a vertices of degree

n−b in the Kn−a,n−b component of G to belong to A. We first show, as in Lemma 2.7, that if i and

j belong to the same vertex class of Kn,n, and f : E(Kn,n)→ F is G-stable, then the sum of weights

of the edges adjacent to i is equal to the sum of weights of the edges adjacent to j. Indeed, assume

w.l.o.g. that 1 ≤ i < j ≤ n. Let g1 be a copy of G which assigns the n vertices of A to the vertices

{1, . . . , n} of Kn,n in some arbitrary way, and assign B to the vertices {n+1, . . . , 2n} of Kn,n is some

way. Now consider a copy g2 which is identical to g1 except that g2(g
−1
1 (i)) = j, and g2(g

−1
1 (j)) = i.

Since w(f, g1) − w(f, g2) = 0 and the since negation and addition are the same when p = 2, we

obtain, as in Lemma 2.7 that
∑2n

k=n+1 f(i, k) =
∑2n

k=n+1 f(j, k). Symmetric arguments apply when

n + 1 ≤ i < j ≤ 2n. We have thus shown, as in Lemma 2.7, that if f is G-stable, then there exist

w1 = w1(f), w2 = w2(f) such that for each i = 1, . . . , n, si =
∑2n

k=n+1 f(i, k) = w1, and for each

i = n+1, . . . , 2n, si =
∑n

k=1 f(k, i) = w2. Let U ′ be the subspace of the G-stable functions for which

f(w1) = f(w2) = 0. As in the proof in Lemma 2.7, we know that dim(U ′) ≤ n2−2n+1 (unlike the

previous lemma, we cannot deduce equality since there is no guarantee that functions that satisfy

si = 0 for i = 1, . . . , 2n are G-stable). In order to show that, indeed, dim(U ′) = n2 − 2n + 1, we

construct a basis of U ′. Consider the functions f1,n+1,i,j defined at the beginning of this section, and

consider Q′ = {f1,n+1,i,j | 2 ≤ i ≤ n, n+ 2 ≤ j ≤ 2n}. Note that Q′ contains (n− 1)2 = n2− 2n+ 1

members, which belong to U ′, and which are linearly independent since the edge (i, j) is assigned 1

only in f1,n+1,i,j . Now consider the function f∗. Clearly, f∗ is G-stable and w1(f
∗) = w2(f

∗) = 1.

Thus, udim(G,Kn,n, F ) ≥ n2−2n+2 and Q′′ = Q′∪{f∗} is linearly independent in U(G,Kn,n, F ).

Assume that n is odd. By counting the sum of weights on all the edges of Kn,n in two ways we

have w1 = w2. As in Lemma 2.7, any G-stable function is linearly dependent on Q′′ and thus
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Q4 = Q′′ is a basis for U(G,Kn,n, F ) and udim(G,Kn,n, F ) = n2 − 2n + 2. Now consider the

case where n is even. If a = b mod 2 then, clearly, n − a, n − b, a, b all have the same parity and

therefore the function f1 is G-stable and has w1(f1) = 0 and w2(f1) = 1. Thus, f1 is independent

of Q′′, and putting Q4 = Q′′ ∪ {f1} we obtain, as in Lemma 2.7, a basis for U(G,Kn,n, F ), and

udim(G,Kn,n, F ) = n2 − 2n + 3. The only remaining case is when n is even and a 6= b mod 2. We

show that Q′′ is a basis in this case by showing that we must have w1 = w2. Indeed, assume that

g1 is any copy, and g2 is obtained from g1 by putting g2(g
−1
1 (i)) = n + i and g2(g

−1
1 (n + i)) = i for

i = 1, . . . , n. Let x be the sum of weights on the edges that do not appear in neither g1 nor g2.

Note that these edges induce a complete bipartite graph with b − a vertices in each vertex class.

Therefore, 0 = w(f, g1)−w(f, g2) = ((b− a)w1− x)− ((b− a)w2− x). Thus, 0 = (b− a)(w1−w2),

and therefore w1 = w2. The algorithmic part of the lemma is similar to that of Lemma 2.7, and is

left for the reader. 2

We are now ready to prove our main result.

Proof of Theorem 1.2: Given a partition of V into vertex classes A and B with |A| = |B| = n,

we denote by G(V,E) the bipartite complement of G. That is,

E = {(a, b) | a ∈ A, b ∈ B, (a, b) /∈ E}.

Note that if G is not connected, there may be more than one way to partition V into A and B, and

so there may be more than one bipartite complement. However, it is clear that if G is connected,

then

U(G,Kn,n, F ) ⊂ U(G,Kn,n, F ) (5)

as any G-stable function is also G-stable. Furthermore, if G has a unique bipartite complement,

then equality holds in (5). We now step through the cases in Theorem 1.2.

Cases (1a), (1b) and (1c) are covered in Lemma 2.7. Now consider cases (1d) and (1e). In these

cases, G has a unique bipartite complement G, which is connected, and which is not complete

bipartite, thus equality holds in (5). Furthermore, G has vertices with degree n in both vertex

classes. It also has b vertices with degree n− a in one vertex class and a vertices with degree n− b

in the other vertex class. If at least one of a or b is not 0 mod p, (if p = 0 then this is trivially true),

then the conditions in Lemma 2.6 are satisfied for G and hence udim(G,Kn,n, F ) = 1, proving

(1e). If both a and b are 0 mod p, then G is regular mod p, and so we have from Lemma 2.2

and Corollary 2.5 that udim(G,Kn,n, F ) = 2n − 1, proving (1d). Cases (2a), (2b) and (2c) are

determined in Lemma 2.8. Consider case 3, and assume first that at least one of the two conditions

in Lemma 2.3 is satisfied. Under this assumption, (3a) follows from Lemma 2.2 and Corollary

2.5. If G is (a, b)-regular mod p, and a 6= b mod p, we have from Lemma 2.1 and Corollary 2.5
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that 2n − 1 ≥ udim(G,Kn,n, F ) ≥ 2n − 2. In order to show that udim(G,Kn,n, F ) = 2n − 2 it

suffices to show that there exists a weight function on the set S (defined prior to Corollary 2.4)

which cannot be extended to a G-stable function (recall that the extension is uniquely defined

in Corollary 2.5). Indeed, assume that f assigns 0 to all the members of S except for the edge

(2, n+1) which is assigned 1. The extension of f to E(Kn,n) is exactly the function f2 (the function

which assigns 1 to the edges adjacent to vertex 2, and 0 otherwise). Clearly, f2 is not G-stable,

since if v ∈ G has degree a mod p and g1 is a copy with g1(v) = 2, then w(f2, g1) = a mod p,

and if u ∈ G has degree b mod p and g2 is a copy with g2(u) = 2, then w(f2, g2) = b mod p. We

have thus proved case (3b). Case (3c) follows directly from Lemma 2.6. We now need to show

that cases (3a), (3b) and (3c) also apply when the two conditions in Lemma 2.3 do not hold, and

cases (1a)-(1e) and (2a)-(2c) do not hold. If p 6= 2 this is impossible, since if G has only one

nontrivial connected component, this component is not complete-bipartite (since cases (1a)-(1e)

deal with this case), and so the first condition in Lemma 2.3 holds. Otherwise, G has at least two

nontrivial connected components and the second condition in Lemma 2.3 holds. Thus, we must

have p = 2, and every non-trivial connected component of G is complete bipartite, and G has at

least three connected components, and at least two of them are non-trivial. This implies that every

bipartite complement of G is connected, and is not complete bipartite. Fix a bipartite complement

G of G. If G is not (a, b)-regular mod 2 for no a and b, then G is not (a, b)-regular mod 2 for no

a and b, and so 1 ≤ udim(G,Kn,n, F ) ≤ udim(G,Kn,n, F ) ≤ 1, proving (3c). If G is a-regular

mod 2 then, by Lemma 2.2, udim(G,Kn,n, F ) ≥ 2n − 1, and since G is (n − a)-regular mod 2,

we have 2n − 1 = udim(G,Kn,n, F ) ≥ udim(G,Kn,n, F ) ≥ 2n − 1, proving (3a). Finally, if G is

(a, b)-regular mod 2, where a 6= b mod 2 then by Lemma 2.1 udim(G,Kn,n, F ) ≥ 2n− 2, and since

G is (n− a, n− b)-regular mod 2 and n− a 6= n− b mod 2, we have 2n− 2 = udim(G,Kn,n, F ) ≥
udim(G,Kn,n, F ) ≥ 2n− 2, proving (3b).

The fact that in all cases a basis for U(G,Kn,n, F ) can be computed in O(n4) time follows from the

constructions of the bases Q1, Q2, Q3 and Q4 in Lemmas 2.1, 2.2, 2.7 and 2.8 respectively (in case

udim(G,Kn,n, F ) = 1 one can construct the all-one function f as a basis, in O(n2) time). Given

f : E(Kn,n)→ F , deciding whether f is G-stable, and producing two copies with different weights

if it is not can be done in O(n4) time in the various cases, as shown in Lemmas 2.3, 2.6, 2.7 and

2.8.

Finally, given a graph G as an input, we need to determine which of the various cases in the theorem

applies to G. This can clearly be done in O(n2) by examining the degrees of the vertices of G, unless

G is not connected, and every connected component is (a, b)-regular mod p, where a 6= b mod p.

In this case we can decide whether G is (a, b)-regular mod p, or not, using the standard dynamic
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programming algorithm for subset-sum (cf. [10]), in O(n3) time. 2

3 Zero-sum mod 2 bipartite Ramsey numbers

In this section we show how to use Theorem 1.2 in order to compute the zero-sum mod 2 bipartite

Ramsey numbers B(G,Z2). Namely, we prove Theorem 1.1.

Proof of Theorem 1.1: We use the same notation used in Section 2. Recall first that, trivially,

B(G,Z2) ≥ m(G). Note also that if r < B(G,Z2), then there exists f : E(Kr,r) → Z2 such that

for every copy g of G in Kr,r, w(f, g) 6= 0. But in Z2 this implies that w(f, g) = 1, and thus f is

G-stable. Since f is not the constant function (as the constant function has weight 0 on every copy

of G), it follows that if udim(G,Kn,n, Z2) = 1 then B(G,Z2) ≤ n. More generally, if Q is a basis

for udim(G,Kn,n, Z2) and every member of Q assign 0 to every copy of G, then B(G,Z2) ≤ n. We

shall make extensive use of these facts.

We now analyze the different cases in Theorem 1.1. We demonstrate the algorithmic part only in

the first case. The reader may verify the algorithmic part in the other cases in an analogous way.

1. G = Kn,n. Note that n is even. Consider G′ = G ∪ E2. Clearly, udim(G,Kn+1,n+1, Z2) =

udim(G′,Kn+1,n+1, Z2). Note that case (1d) of Theorem 1.2 applies to G′, and so we have

that udim(G′,Kn+1,n+1, Z2) = 2(n + 1) − 1, and the proof of this case shows that the set

Q2 = {fi | i = 1, . . . , 2(n+ 1)− 1} of Lemma 2.2 is a basis. Since every member of Q2 assigns

0 to every copy of G in Kn+1,n+1 it follows that B(G,Z2) ≤ n + 1.

We now show that B(G,Z2) > n, thus proving B(G,Z2) = n + 1 = m(G) + 1. This follows

by considering a function f : E(Kn,n) → Z2 which assigns 1 to a single edge, and 0 to all

other edges. Clearly, every copy of G is not zero-sum.

We now prove the algorithmic part. According to Theorem 1.2, given an assignment f :

E(Kn+1,n+1) → Z2 we can find in O(n4) time whether f is G-stable or not, and if it is not,

we can produce two copies with different weights in O(n4) time. One of these copies has

weight 0 (since the other has weight 1). If f is stable, then it is a linear combination of the

elements of the basis, each element having weight 0 on each copy. Thus, f also has weight 0

on each copy, so we choose an arbitrary copy.

2. G = Ka,n, a < n. Assume first that a is odd, and thus n is even. Consider G′ = G∪En−a+2.

Case (1e) applies to G′, so udim(G,Kn+1,n+1, Z2) = udim(G′,Kn+1,n+1, Z2) = 1. Therefore,

B(G,Z2) ≤ n+1. The function f∗ : E(Kn,n)→ Z2 assigns a = 1 mod 2 to every copy of G in

Kn,n, thus showing B(G,Z2) > n. Consequently, B(G,Z2) = n+ 1 = m(G) + 1. Now assume
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that a is even. If n is odd then case (1b) applies to G, so udim(G,Kn,n, Z2) = n2 − 2n + 2.

The functions f1,n+1,i,j for i, j = 2, . . . , n together with the function f∗ form a basis of

the space. Since each of these functions assigns 0 to every copy of G in Kn,n, we have

B(G,Z2) ≤ n. Thus, B(G,Z2) = n = m(G). If n is even then case (1c) applies for G, so

udim(G,Kn,n, F ) = n2−2n+ 3. Using the same basis as in the case where n is odd, together

with the function f1, we obtain a basis for the space. Since every member of the basis assigns

0 to every copy of G we have, once again, B(G,Z2) = n = m(G).

3. G = Ka,b ∪Kn−a,n−b. Clearly, m(G) = n. Assume first that n is even and at least one of a

or b is odd. Consider G′ = G ∪E2. Any partition of G′ into two n + 1 vertex classes has the

property that at least one vertex class has both an odd and an even degree vertex. Thus,

case (3c) applies to G′ so udim(G′,Kn+1,n+1, Z2) = 1, showing that B(G,Z2) ≤ n + 1. If

both a and b are odd, the function f1 gives an odd weight to every copy of G in Kn,n. If

exactly one of a or b is odd, the function f∗ gives an odd weight to every copy of G in Kn,n.

In any case we have B(G,Z2) = n + 1. Assume next that n is even and both a and b are

even. Case (2b) applies to G giving udim(G,Kn,n, Z2) = n2− 2n+ 3. The basis of this space

is explicitly determined in Lemma 2.8, and every member of the basis gives total weight 0 to

every copy of G. Hence, B(G,Z2) = n. Now assume that n is odd. In this case a + b must

be odd. Since case (2a) applies to G we have udim(G,Kn,n, Z2) = n2 − 2n + 2. Once again,

the basis is determined in Lemma 2.8, and every member gives total weight 0 to every copy

of G. Therefore, B(G,Z2) = n.

4. G is none of the graphs above, and all the degrees are even. Adding 2m(G) − |V | isolated

vertices to G we obtain a 0-regular graph G′. By case (3a), udim(G,Km(G),m(G), Z2) =

udim(G′,Km(G),m(G), Z2) = 2m(G) − 1. The functions {fi | i = 1, . . . , 2m(G) − 1} form the

basis, and each gives total weight 0 to every copy of G. Thus, B(G,Z2) = m(G).

5. G is none of the graphs above and all the degrees are odd. If |V | < 2m(G) then by

adding 2m(G) − |V | isolated vertices, we obtain a graph G′ to which case (3c) applies, so

udim(G′,Km(G),m(G), Z2) = 1. This shows B(G,Z2) = m(G). If |V | = 2m(G) consider

G′ = G ∪ E2. Once again (3c) applies to G′, so udim(G,Km(G)+1,m(G)+1, Z2) = 1. Hence,

B(G,Z2) ≤ m(G) + 1. The function f1 : E(Km(G),m(G))→ Z2 gives total odd weight to every

copy of G, showing B(G,Z2) > m(G). Thus, B(G,Z2) = m(G) + 1.

6. G is none of the graphs above, and G is a (0, 1)-graph. Consider G′ = G∪E2m(G)+2−|V |. Note

that G′ has m(G)+2 vertices with even degree, and m(G) vertices with odd degree. Thus, G′

is not (a, b)-regular mod 2, so case (3c) applies to G′. This shows that B(G,Z2) ≤ m(G) + 1.
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The functions fi,j : E(Km(G),m(G)) → Z2, give total odd weight to every copy of the (0, 1)-

graph G. This shows B(G,Z2) = m(G) + 1.

7. G is none of the graphs above. Considering G′ = G ∪ E2m(G)−|V |, we have that case (3c)

applies to G′, so udim(G,Km(G),m(G), Z2) = udim(G′,Km(G),m(G), Z2) = 1. This shows

B(G,Z2) = 1. 2

As a final comment, we note that given a bipartite graph G = (V,E) as input, we can compute

m(G) in O(|V |3) time using standard dynamic programming as for the Subset-Sum problem, shown

in [10]. After computing m(G), deciding whether G is a (0, 1)-graph can be done, by similar dynamic

programming, in O(|V |3) time.
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