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Abstract

Let H0 be a fixed hypergraph. A fractional H0-decomposition of a hypergraph H is an
assignment of nonnegative real weights to the copies ofH0 inH such that for each edge e ∈ E(H),
the sum of the weights of copies of H0 containing e is precisely one. Let k and r be positive
integers with k > r > 2, and let Kr

k denote the complete r-uniform hypergraph with k vertices.
We prove that there exists a positive constant α = α(k, r) such that every r-uniform hypergraph
with n (sufficiently large) vertices in which every (r − 1)-set is contained in at least n(1 − α)
edges has a fractional Kr

k-decomposition. Using our result together with a recent result of
Rödl, Schacht, Siggers and Tokushige, we obtain the following corollary. For every r-uniform
hypergraphH0, there exists a positive constant α = α(H0) such that every r-uniform hypergraph
H in which every (r − 1)-set is contained in at least n(1 − α) edges has an H0-packing that
covers |E(H)|(1− on(1)) edges.

1 Introduction

A hypergraph H is an ordered pair H = (V,E) where V is a finite set (the vertex set) and E

is a family of distinct subsets of V (the edge set). A hypergraph is r-uniform if all edges have
size r. In this paper we only consider r-uniform hypergraphs where r ≥ 2 is fixed. Let H0 be a
fixed hypergraph. For a hypergraph H, the H0-packing number, denoted νH0(H), is the maximum
number of pairwise edge-disjoint copies of H0 in H. A function ψ from the set of copies of H0

in H to [0, 1] is a fractional H0-packing of H if
∑

e∈H0
ψ(H0) ≤ 1 for each e ∈ E(H). For a

fractional H0-packing ψ, let |ψ| =
∑

H0∈( H
H0

) ψ(H0). The fractional H0-packing number, denoted

ν∗H0
(H), is defined to be the maximum value of |ψ| over all fractional H0-packings ψ. Notice that,

trivially, e(H)/e(H0) ≥ ν∗H0
(H) ≥ νH0(H). In case νH0(H) = e(H)/e(H0) we say that H has an

H0-decomposition. In case ν∗H0
(H) = e(H)/e(H0) we say that H has a fractional H0-decomposition.

It is well known that computing νH0(H) is NP-Hard already when H0 is a 2-uniform hypergraph
∗e-mail: raphy@research.haifa.ac.il World Wide Web: http:\\research.haifa.ac.il\˜raphy

1



(namely, a graph) with more than two edges in some connected component [4]. It is well known that
computing ν∗H0

(H) is solvable in polynomial time for every fixed hypergraph H0 as this amounts
to solving a (polynomial size) linear program.

For fixed integers k and r with k > r ≥ 2, let Kr
k denote the complete r-uniform hypergraph

with k vertices. For n > k it is trivial that Kr
n has a fractional Kr

k-decomposition. However, it is far
from trivial (and unknown for r > 2) whether this fractional decomposition can be replaced with
an integral one, even when necessary divisibility conditions hold. In the graph-theoretic case this is
known to be true (for n sufficiently large), following the seminal result of Wilson [10]. Solving an old
conjecture of Erdős and Hanani, Rödl proved in [8] that Kr

n has a packing with (1− on(1))
(
n
r

)
/
(
k
r

)
copies of Kr

k (namely, an asymptotically optimal Kr
k-packing). In case we replace Kr

n with a
dense and large n-vertex r-uniform hypergraph H, it was not even known whether a fractional
Kr

k-decomposition of H exists, or whether an asymptotically optimal Kr
k-packing exists. In this

paper we answer both questions affirmatively. We note that the easier graph theoretic case has
been considered by the author in [12].

In order to state our density requirements we need a few definitions. Let H = (V,E) be an
r-uniform hypergraph. For S ⊂ V with 1 ≤ |S| ≤ r − 1, let deg(S) be the number of edges of H
that contain S. For 1 ≤ d ≤ r− 1 let δd(H) = minS⊂V,|S|=d deg(S) be the minimum d-degree of H.
Usually, δ1(H) is also called the minimum degree and δ2(H) is also called the minimum co-degree.
The analogous maximum d-degree is denoted by ∆d(H). For 0 ≤ α ≤ 1 we say that H is α-dense
if δd(H) ≥ α

(
n−d
r−d

)
for all 1 ≤ d ≤ r − 1. Notice that Kr

n is 1-dense and that H is α-dense if and
only if δr−1(H) ≥ α(n− r + 1).

Our first main result is given in the following theorem.

Theorem 1.1 Let k and r be integers with k > r ≥ 3. There exists a positive α = α(k, r) and
an integer N = N(k, r) such that if H is a (1− α)-dense r-uniform hypergraph with more than N

vertices then H has a fractional Kr
k-decomposition.

We note that the constant α = α(k, r) that we obtain is only exponential in k and r. It is not difficult
to show that our proof already holds for α(k, r) = 6−kr although we make no effort to optimize the
constant. We note the the proof in the graph-theoretic case given in [12] yields α(k, 2) ≤ 1/9k10.
However, the proof in the graph-theoretic case is quite different for the most part and cannot be
easily generalized to the hypergraph setting.

Although Theorem 1.1 is stated only for Kr
k , it is easy to see that a similar theorem also holds

for any k-vertex r-uniform hypergraph H0. Indeed, if H0 has k vertices then, trivially, Kr
k has a

fractional H0-decomposition. Thus, any hypergraph which has a fractional Kr
k-decomposition also

has a fractional H0-decomposition. We note that in the very special case where H0 is an r-uniform
simple hypertree then exact decomposition results are known [11].

Our second result is, in fact, a corollary obtained from Theorem 1.1 and a theorem of Rödl,
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Schacht, Siggers and Tokushige [9] who proved that the H0-packing number and the fractional H0-
packing number are very close for dense r-uniform hypergraphs (an earlier result of Haxell, Nagle
and Rödl [6] asserted this for the case r = 3). The exact statement of their result is the following.

Theorem 1.2 [Rödl, Schacht, Siggers and Tokushige [9]] For any fixed r-uniform hypergraph H0,
if H is an n-vertex r-uniform hypergraph then ν∗H0

(H)− νH0(H) = o(nr).

From Theorem 1.1 and the comments after it, and from Theorem 1.2, we immediately obtain the
following.

Theorem 1.3 Let H0 be a fixed r-uniform hypergraph. There exists a positive constant α = α(H0)
such that if H = (V,E) is a (1 − α)-dense r-uniform hypergraph with n vertices then H has an
H0-packing that covers |E|(1− on(1)) edges.

In the next section we prove Theorem 1.1. The final section contains some concluding remarks and
open problems.

2 Proof of Theorem 1.1

Let F be a fixed family of r-uniform hypergraphs. An F-decomposition of an r-uniform hypergraph
H is a set L of subhypergraphs of H, each isomorphic to an element of F , and such that each edge
of H appears in precisely one element of L. Let H(t, r) denote the complete r-uniform hypergraph
with t vertices and with one missing edge. For the remainder of this section we shall use t = k(r+1).
Let F(k, r) = {Kr

k , K
r
t , H(t, r)}. The proof of Theorem 1.1 is a corollary of the following stronger

theorem.

Theorem 2.1 For all k > r ≥ 3 there exists a positive α = α(k, r) and an integer N = N(k, r)
such that every r-uniform hypergraph with n > N vertices which is (1 − α)-dense has an F(k, r)-
decomposition.

Clearly Kr
t has a fractional Kr

k-decomposition, since t > k. Thus, in order to prove that Theorem
1.1 is a corollary of Theorem 2.1 is suffices to prove that H(t, r) has a fractional Kr

k-decomposition.
This is done in the following two lemmas.

Lemma 2.2 Let A be an upper triangular matrix of order r satisfying Aj,j > 0 and Ai,j ≥ 0 for
all 1 ≤ i ≤ j ≤ r and Ai,j ≥ Ai−1,j for all 2 ≤ i ≤ j ≤ r. Let J be the all-one column vector of
length r. Then, in the unique solution of Ax = J all coordinates of x are nonnegative.
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Proof: Clearly Ax = J has a unique solution since A is upper triangular and the diagonal consists
of nonzero entries. Let xt = (x1, . . . , xr) be the unique solution. Clearly, xr = 1/Ar,r > 0. Assuming
xi+1 ≥ 0 we prove xi ≥ 0. Indeed,

xi =
1
ai,i

(1−
r∑

j=i+1

ai,jxj) ≥
1
ai,i

(1−
r∑

j=i+1

ai+1,jxj) = 0.

Lemma 2.3 For all k ≥ r ≥ 2, H(t, r) has a fractional Kr
k-decomposition.

Proof: Let A = {u1, . . . , ur} be the unique set of vertices of H(t, r) for which A is not an edge,
and let B denote the set of the remaining t− r vertices. For i = 0, . . . , r − 1, we say that an edge
of H(t, r) is of type i if it intersects i elements of A. For j = 0, . . . , r − 1 we say that a copy of Kr

k

in H(t, r) is of type j if it intersects j elements of A. For j ≥ i, each edge of type i lies on precisely

f(i, j) =
(
r − i

j − i

)(
t− 2r + i

k − r − j + i

)
copies ofKr

k of type j. We now prove that there are nonnegative real numbers x0, . . . , xr−1 such that
by assigning the value xj to each copy of Kr

k of type j, we obtain a fractional Kr
k decomposition,

namely we must show that for each i = 0, . . . , r − 1,

r−1∑
j=i

xjf(i, j) = 1.

Indeed, consider the upper triangular matrix A of order r with Ai,j = f(i−1, j−1). By Lemma 2.2
it suffices to show that f(j, j) > 0 and f(i, j) ≥ 0 for all 0 ≤ i ≤ j ≤ r − 1 and f(i, j) ≥ f(i− 1, j)
for all 1 ≤ i ≤ j ≤ r − 1. Indeed, by definition f(i, j) ≥ 0. Furthermore,

f(j, j) =
(
t− 2r + j

k − r

)
> 0

and
f(i, j)

f(i− 1, j)
=

(t− 2r + i)(j − i+ 1)
(r − i+ 1)(k − r − j + i)

≥ t− 2r
(r + 1)(k − r)

=
kr + k − 2r

kr + k − r − r2
≥ 1.

Our goal in the remainder of this section is to prove Theorem 2.1. Our first tool is the following
powerful result of Kahn [7] giving an upper bound for the minimum number of colors in a proper
edge-coloring of a uniform hypergraph (his result is, in fact, more general than the one stated here).
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Lemma 2.4 (Kahn [7]) For every r∗ ≥ 2 and every γ > 0 there exists a positive constant ρ =
ρ(r∗, γ) such that the following statement is true:
If U is an r∗-uniform hypergraph with ∆1(U) ≤ D and ∆2(U) ≤ ρD then there is a proper coloring
of the edges of U with at most (1 + γ)D colors.

Our second Lemma quantifies the fact that in a dense r-uniform hypergraph every edge appears
on many copies of Kr

t .

Lemma 2.5 Let t ≥ r ≥ 3 and let ζ > 0. Then, for all sufficiently large n, if H is a (1− ζ)-dense
r-uniform hypergraph with n vertices then every edge of H appears on at least 1

(t−r)!n
t−r(1− ζt2t)

copies of Kr
t .

Fix an edge e = {u1, . . . , ur}. We prove the lemma by induction on t. Our base cases are t =
r, . . . , 2r− 1 for which we prove the lemma directly. The case t = r is trivial. If r+ 1 ≤ t ≤ 2r− 1,
then for any (t− r)-subset S of V (H)− e, the set of t-vertices S ∪ e is not a Kr

t if and only if there
exists some f ⊂ e with 2r− t ≤ |f | ≤ r− 1 and some g ⊂ S with |g| = r− |f | such that f ∪ g is not
an edge. For any f ⊂ e with 2r− t ≤ |f | ≤ r− 1, the number of non-edges containing f is at most
ζ
(n−|f |

r−|f |
)
. For each such non-edge e′, if g = e′ − f then g appears in at most

(
n

t−r−|g|
)

=
(

n
t−2r+|f |

)
possible (t− r)-subsets S of V (H)− e. It follows that e appears on at least(

n− r

t− r

)
−

r−1∑
d=2r−t

(
r

d

)
ζ

(
n− d

r − d

)(
n

t− 2r + d

)
>

nt−r

(t− r)!
(1− ζ2t)

copies of Kr
t .

Assume the lemma holds for all t′ < t and that t ≥ 2r. Let H∗ be the subhypergraph of H
induced on V (H) − e. H∗ has n − r vertices. Since n is chosen large enough, the deletion of a
constant (namely r) vertices from a (1 − ζ)-dense n-vertex hypergraph has a negligible affect on
the density. In particular, the density of H∗ is larger than (1− 2ζ). By the induction hypothesis,
each edge of H∗ appears in at least

(n− r)t−2r

(t− 2r)!
(1− 2ζ(t− r)2t−r)

copies of Kr
t−r in H∗. Since H∗ is (1− 2ζ)-dense it has at least

(
n−r

r

)
(1− 2ζ) edges. As each copy

of Kr
t−r has

(
t−r
r

)
edges, we have that H∗ contains at least

(n− r)t−2r

(t− 2r)!
(1− 2ζ(t− r)2t−r)

(
n− r

r

)
(1− 2ζ)

1(
t−r
r

) > nt−r

(t− r)!
(1− 2ζ(t− r)2t−r)(1− 3ζ)

copies of Kr
t−r. If S is the set of vertices of some Kr

t−r in H∗ we say that S is good if S∪ e is the set
of vertices of a Kr

t , otherwise S is bad. We can estimate the number of bad S in a similar fashion
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to the estimation in the base cases of the induction. Indeed, S is bad if and only if there exists
some f ⊂ e with 1 ≤ |f | ≤ r − 1 and some g ⊂ S with |g| = r − |f | such that f ∪ g is not an edge.
It follows that the number of bad S is at most

r−1∑
d=1

(
r

d

)
ζ

(
n− d

r − d

)(
n

t− 2r + d

)
<

nt−r

(t− r)!
ζ2t.

It follows that the number of good S, and hence the number of Kr
t of H containing e, is at least

nt−r

(t− r)!
((1− 2ζ(t− r)2t−r)(1− 3ζ)− ζ2t) >

nt−r

(t− r)!
(1− ζt2t)

as required.

Proof of Theorem 2.1 Let k > r ≥ 3 be fixed integers. We must prove that there exists
α = α(k, r) and N = N(k, r) such that if H is an r-uniform hypergraph with n > N vertices and
δd(H) ≥

(
n−d
r−d

)
(1− α) for all 1 ≤ d ≤ r − 1 then H has an F(k, r)-decomposition.

Let ε = ε(k, r) be a constant to be chosen later (in fact, it suffices to take ε = (2kr)−2r but we
make no attempt to optimize ε). Let η = (2−H(ε)0.9)1/ε where H(x) = −x log x− (1−x) log(1−x)
is the entropy function. Let α = min{(η/2)2 , ε2/(t24t+1)}. Let γ > 0 be chosen such that
(1−αt2t)(1− γ)/(1 + γ)2 > 1− 2αt2t. Let r∗ =

(
t
r

)
. Let ρ = ρ(r∗, γ) be the constant from Lemma

2.4. In the proof we shall assume, whenever necessary, that N is sufficiently large as a function of
these constants.

Let H = (V,E) be an r-uniform hypergraph with n > N vertices and δd(H) ≥
(
n−d
r−d

)
(1−α) for

all 1 ≤ d ≤ r − 1.
Our first step is to color the edges of H such that the spanning subhypergraph on each color

class has some “nice” properties. We shall use q colors where q = n1/(4(t
r)−4) (for convenience we

ignore floors and ceilings as they do not affect the asymptotic nature of our result). Each e ∈ E

selects a color from [q] uniformly at random. The choices are independent. Let Hi = (V,Ei)
denote the subhypergraph whose edges received the color i. Let S ⊂ V with 1 ≤ |S| ≤ r − 1.
Clearly, the degree of S in Hi, denoted degi(S), has binomial distribution B(deg(S), 1/q). Thus,
E[degi(S)] = deg(S)/q. By a large deviation inequality of Chernoff (cf. [2], Appendix A) it follows
that the probability that degi(S) deviates from its mean by more than a constant fraction of the
mean is exponentially small in n. In particular, for n sufficiently large,

Pr
[∣∣∣∣degi(S)− deg(S)

q

∣∣∣∣ > γ
deg(S)
q

]
<

1
4qrnr

. (1)

Let e ∈ Ei. Let C(e) denote the set of Kr
t copies of H that contain e and let c(e) = |C(e)|. Trivially,

c(e) ≤
(
n−r
t−r

)
. Thus, by Lemma 2.5 with ζ = α we have

1
(t− r)!

nt−r ≥ c(e) ≥ 1
(t− r)!

nt−r(1− αt2t).
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Let Ci(e) denote the set of Kr
t copies of Hi containing e, and put ci(e) = |Ci(e)|. Clearly, E[ci(e)] =

c(e)q−(t
r)+1 = c(e)n−1/4. Therefore,

1
(t− r)!

nt−r−1/4 ≥ E[ci(e)] ≥
1

(t− r)!
nt−r−1/4(1− αt2t).

However, this time we cannot simply use Chernoff’s inequality to show that E[ci(e)] is concentrated
around its mean, since, given that e ∈ Ei, two elements of C(e) are dependent if they contain another
common edge in addition to e. However, we can overcome this obstacle using the fact that the
dependence is limited. This is done as follows. Consider a graph G whose vertex set is C(e) and
whose edges connect two elements of C(e) that share at least one edge (in addition to e). For
X ∈ C(e) the degree of X in G is clearly at most (

(
t
r

)
−1)

(
n−r−1
t−r−1

)
since given f ∈ E(X) with f 6= e

we have |f ∪e| ≥ r+1 and thus there are at most
(n−|f∪e|

t−|f∪e|
)

copies of Kr
t containing both f and e. In

particular, ∆(G) = O(nt−r−1). On the other hand |V (G)| = c(e) = Θ(nt−r). Notice also that the
chromatic number of G is χ = χ(G) = O(nt−r−1). Consider a coloring of G with χ(G) colors. If X
and X ′ are in the same color class then, given that e ∈ Ei, the event that X ∈ Ci(e) is independent
of the event that X ′ ∈ Ci(e). For z = 1, . . . , χ(G), let Cz(e) denote the elements of C(e) colored
with z and put cz(e) = |Cz(e)|. Put Cz

i (e) = Cz(e) ∩ Ci(e) and let czi (e) = |Cz
i (e)|. Clearly,

ci(e) =
∑χ

z=1 c
z
i (e) and E[czi (e)] = cz(e)n−1/4. Whenever |cz(e)| > n1/2 we can use Chernoff’s

inequality to show that czi (e) is highly concentrated around its mean (that, is, the probability that
it deviates from its mean by any given constant fraction of the mean is exponentially small in n).
Whenever |cz(e)| ≤ n1/2 we simply notice that the overall number of elements of C(e) belonging to
these small color classes is at most χn1/2 = O(nt−r−1/2) << nt−r−1/4. We therefore have that for
n sufficiently large,

Pr[ci(e)] < (1− γ)
1

(t− r)!
nt−r−1/4(1− αt2t) <

1
4
(
n
r

) , (2)

Pr[ci(e)] > (1 + γ)
1

(t− r)!
nt−r−1/4 <

1
4
(
n
r

) . (3)

Since the overall number of subsets S with 1 ≤ |S| ≤ r − 1 is less than rnr, and since |E| ≤
(
n
r

)
we have, by (1), (2) and (3) that with probability at least 1 − qrnr/(4qrnr) − 2

(
n
r

)
/(4

(
n
r

)
) ≥ 1/4,

a random q-coloring of the edges of H satisfies the following:

A. For all S ⊂ V with 1 ≤ |S| ≤ r − 1, and for all i = 1, . . . , q, |degi(S)− deg(S)
q | ≤ γ deg(S)

q .

B. For each e ∈ E, if e ∈ Ei then ci(e) ≥ (1 − γ) 1
(t−r)!n

t−r−1/4(1 − αt2t) and ci(e) ≤ (1 +
γ) 1

(t−r)!n
t−r−1/4.

We therefore fix an edge coloring and the resulting spanning subhypergraphs H1, . . . ,Hq satisfying
properties A and B.
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For each Hi = (V,Ei) we create another hypergraph, denoted Ui, as follows. The vertex set of
Ui is Ei. The edges of Ui are the sets of edges of copies of Kr

t in Hi. Notice that Ui is a
(

t
r

)
-uniform

hypergraph. Let D = (1 + γ)((t− r)!)−1nt−r−1/4. By Property B, ∆1(Ui) ≤ D. Also, we trivially
have that for all n sufficiently large, ∆2(Ui) ≤ nt−r−1 < ρD. It follows from Lemma 2.4 that the
set of Kr

t copies of Hi can be partitioned into at most (1 + γ)D packings. Denote these packings
by L1

i , . . . , L
zi
i where zi ≤ (1 + γ)D.

We now choose a Kr
t -packing of H as follows. For each i = 1, . . . , q we select, uniformly at

random, one of the packings {L1
i , . . . , L

zi
i }. Denote by Li the randomly selected packing. All q

selections are performed independently. Notice that L = L1 ∪ · · · ∪ Lq is a Kr
t -packing of H.

Let M denote the set of edges of H that do not belong to any element of L, and let H[M ] be the
spanning subhypergraph of H consisting of the edges of M . Let p =

(
k
r

)
−1. We say that a p-subset

S = {S1, . . . , Sp} of L is good for e ∈ M if we can select edges fi ∈ E(Si) such that {f1, . . . , fp, e}
is the set of edges of a Kr

k in H. We say that L is good if for each e ∈ M there exists a p-subset
S(e) of L such that S(e) is good for e and such that if e 6= e′ then S(e) ∩ S(e′) = ∅.

Lemma 2.6 If L is good then H has an F(k, r)-decomposition.

Proof: For each e ∈ M , pick a copy of Kr
k in H containing e and precisely one edge from each

element of S(e). As each element of S(e) is a Kr
t , deleting one edge from such an element results

in an H(t, r). We therefore have |M | copies of Kr
k and |M |(

(
k
r

)
−1) copies of H(t, r), all being edge

disjoint. The remaining element of L not belonging to any of the S(e) are each a Kr
t , and they are

edge-disjoint from each other and from the previously selected Kr
k and H(t, r).

Our goal in the remainder of this section is to show that there exists a good L. We will show
that with positive probability, the random selection of the q packings L1, . . . , Lq yields a good L.
We begin by showing that with high probability, H[M ] has a relatively small maximum d-degree,
for all 1 ≤ d ≤ r − 1.

Lemma 2.7 With positive probability, for all d = 1, . . . , r − 1, ∆d(H[M ]) ≤ 2ε
(
n−d
r−d

)
.

Proof: Let S ⊂ V with 1 ≤ |S| ≤ r − 1. Let Fi(S) ⊂ Ei denote the edges of Hi containing S

and let Li(S) ⊂ Fi(S) denote those edges of Fi(S) that are covered by Li. For e ∈ Fi(S), the
probability that e is covered by Li is ci(e)/zi. By Property B and since zi ≤ (1 + γ)D we have

ci(e)
zi

≥ (1− γ)(1− αt2t)
(1 + γ)2

≥ 1− 2αt2t.

It follows that E[|Li(S)|] ≥ (1− 2αt2t)|Fi(S)| = (1− 2αt2t)degi(S) and that

Pr[|Li(S)| ≤ (1− α1/2t2t)degi(S)] ≤ 2α1/2 ≤ η.
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Since |L1(S)|, . . . , |Lq(S)| are independent random variables it follows that the probability that at
least εq of them have cardinality at most (1− α1/2t2t)degi(S) is at most(

q

εq

)
ηεq < 0.9q <<

1
qrnr

where in the last inequality we used the fact that η = (2−H(ε)0.9)1/ε. It follows that there
exists a choice of L1, . . . , Lq such that for all S, at most εq of the packings have |Li(S)| ≤
(1 − α1/2t2t)degi(S). Let degM (S) denote the degree of S in H[M ]. By Property A, degi(S) ≤
(1 + γ)deg(S)/q. Thus, since

∑q
i=1 degi(S) = deg(S) we have

degM (S) = deg(S)−
q∑

i=1

|Li(S)| ≤ deg(S)− (1− α1/2t2t)deg(S) + εq(1 + γ)
deg(S)
q

≤ deg(S)(α1/2t2t + ε(1 + γ)) ≤ 2εdeg(S) ≤ 2ε
(
n− |S|
r − |S|

)
where in the last inequality we used the fact that α ≤ ε2/(t24t+1). It follows that there is a choice
of L1, . . . , Lq such that for all d = 1, . . . , r − 1, ∆d(H[M ]) ≤ 2ε

(
n−d
r−d

)
.

By Lemma 2.7, we may fix L and M such that ∆d(H[M ]) ≤ 2ε
(
n−d
r−d

)
for d = 1, . . . , r − 1. Let

M = {e1, . . . , em}. Notice that, in particular, m ≤ 2ε
(
n
r

)
. Let U = {U1, . . . , Um} be the family of

p-uniform hypergraphs defined as follows. The vertex set of each Ui is L. The edges of Ui are the
p-subsets of L that are good for ei. A system of disjoint representatives (SDR) for U is a set of m
edges S(ei) ∈ E(Ui) for i = 1, . . . ,m such that S(ei) ∩ S(ej) = ∅ whenever i 6= j. Thus, L is good
if and only if U has an SDR. Generalizing Hall’s Theorem, Aharoni and Haxell [1] gave a sufficient
condition for the existence of an SDR.

Lemma 2.8 [Aharoni and Haxell [1]] Let U = {U1, . . . , Um} be a family of p-uniform hypergraphs.
If for every W ⊂ U there is a matching in ∪U∈WU of size greater than p(|W| − 1) then U has an
SDR.

We use Lemma 2.8 to prove:

Lemma 2.9 If ∆d(H[M ]) ≤ 2ε
(
n−d
r−d

)
for d = 1, . . . , r − 1 then U has an SDR.

Proof: Let Ri denote the set of Kr
k copies of H that contain ei and whose remaining p edges

are each from a distinct element of L. We establishing a lower bound for |Ri|. Let ai denote the
number of copies of Kr

k containing ei, let bi denote the number of copies of Kr
k containing ei and at

least two edges from the same element of L. Let ci denote the number of copies of Kr
k containing

ei and at least another edge of M . Clearly, |Ri| = ai − bi − ci.

9



A similar proof to that of Lemma 2.5 where we use k instead of t and ζ = α immediately gives

ai ≥
1

(k − r)!
nk−r(1− αk2k). (4)

Consider a pair of edges f1, f2 that belong to the same element of L. Suppose |(f1∪f2)∩ei| = d then
we must have 0 ≤ d ≤ r−1. The overall number of choices for f1, f2 for which |(f1∪f2)∩em| = d is
O(nr−d) (there are O(nr−d) choices for f1, and given f1 there are only

(
t
r

)
− 1 choices for f2 in the

same element of L). Given f1, f2, the number of Kr
k containing f1, f2, ei is at most O(nk−(2r+1−d)),

since |f1 ∪ f2 ∪ em| ≥ 2r + 1− d. Thus, in total, we get,

bi =
r−1∑
d=0

O(nr−dnk−(2r+1−d)) = O(nk−r−1). (5)

Consider an edge f ∈ M with f 6= ei. If f and ei are independent then there are at most
(
n−2r
k−2r

)
copies of Kr

k containing both of them. Overall, there are less than m
(
n−2r
k−2r

)
such copies. If f and

ei intersect in d vertices then there are at most
(
n−2r+d
k−2r+d

)
copies of Kr

k containing both of them.
However, the maximum d-degree of M is at most 2ε

(
n−d
r−d

)
and hence there are at most

(
r
d

)
2ε

(
n−d
r−d

)
choices for f . We therefore have that

ci ≤ m

(
n− 2r
k − 2r

)
+

r−1∑
d=1

(
r

d

)
2ε

(
n− d

r − d

)(
n− 2r + d

k − 2r + d

)
(6)

≤
r−1∑
d=0

2ε
(
r

d

)(
n− d

r − d

)(
n− 2r + d

k − 2r + d

)
.

We now get, using (4), (5) and (6), that for ε = ε(k, r) sufficiently small and for n sufficiently large,

|Ri| ≥
1

(k − r)!
nk−r(1− αk2k)−O(nk−r−1)−

r−1∑
d=0

2ε
(
r

d

)(
n− d

r − d

)(
n− 2r + d

k − 2r + d

)

≥ 1
2(k − r)!

nk−r.

Let W ⊂ U with w = |W|. Without loss of generality assume W = {U1, . . . , Uw}. Put M(W) =
{e1, . . . , ew}. We must show that the condition in Lemma 2.8 holds. Assume that this is not the
case. Consider a maximum matching T in U1 ∪ · · · ∪ Uw. Thus, |T | ≤ p(w − 1). In particular, |T |
contains at most p2(w − 1) vertices (recall that the vertices are element of L). Let L′ ⊂ L denote
the vertices contained in T . Thus, |L′| ≤ p2(w − 1). The overall number of copies of Kr

k that
contain precisely one edge from M(W) and whose other edges are in p distinct elements of L is

|R1|+ · · ·+ |Rw| ≥ w
1

2(k − r)!
nk−r.

10



Let F be the set of edges in the elements of L′. Hence, |F | = |L′|
(

t
r

)
. Let f ∈ F . Let c(f) denote

the number of copies of Kr
k containing f and precisely one edge from M(W). For Y ( f , let

Mf (Y ) = {ei | ei ∩ f = Y , i = 1, . . . , w}. This partitions M(W) into 2r − 1 classes according to
the choice of Y . Let c(f, Y ) denote the number of copies of Kr

k containing f and precisely one edge
from Mf (Y ). Given e ∈Mf (Y ), the number of Kr

k containing both f and e is at most
(n−2r+|Y |
k−2r+|Y |

)
.

On the other hand, since degM (Y ) ≤ 2ε
(n−|Y |

r−|Y |
)

we have |Mf (Y )| ≤ 2ε
(n−|Y |

r−|Y |
)
. Thus,

c(f, Y ) ≤ 2ε
(
n− |Y |
r − |Y |

)(
n− 2r + |Y |
k − 2r + |Y |

)
< 2εnk−r.

It follows that
c(f) < 2r+1εnk−r.

Now, for ε = ε(k, r) sufficiently small∑
f∈F

c(f) < |L′|
(
t

r

)
2r+1εnk−r ≤ p2(w − 1)

(
t

r

)
2r+1εnk−r

≤ w
1

2(k − r)!
nk−r ≤ |R1|+ · · ·+ |Rw|.

It follows that there exists a Kr
k containing precisely one edge from M(W), say, ei, and whose other

edges are in p distinct elements of L−L′. The p distinct elements form an edge {S1, . . . , Sp} of Ui

and hence {S1, . . . , Sp} is an edge of ∪U∈WU . Since {S1, . . . , Sp} is independent of all the edges of
T we have that T is not a maximal matching of ∪U∈WU , a contradiction.

We have now completed the proof of Theorem 2.1.

3 Concluding remarks and open problems

• A simpler version of Theorem 1.1 holds in case we assume that every edge of Kr
n lies on

approximately the same number of copies of Kr
k (such is the case in, say, the random r-

uniform hypergraph). In this case the statement of Theorem 1.1 follows quite easily from the
result given in [3] and the result of [5]. However, our Theorem 1.1 does not assume these
regularity conditions. It only assumes a minimum density threshold.

• Theorem 2.1 gives a nontrivial minimum density requirement which guarantees the existence
of an F-decomposition for the family F = {Kr

k ,K
r
t ,H(t, r)}. It is interesting to find other

more general families F for which nontrivial density conditions guarantee an F-decomposition.
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