Fractional decompositions of dense hypergraphs

Raphael Yuster *
Department of Mathematics
University of Haifa
Haifa 31905, Israel

Abstract

Let H_{0} be a fixed hypergraph. A fractional H_{0}-decomposition of a hypergraph H is an assignment of nonnegative real weights to the copies of H_{0} in H such that for each edge $e \in E(H)$, the sum of the weights of copies of H_{0} containing e is precisely one. Let k and r be positive integers with $k>r>2$, and let K_{k}^{r} denote the complete r-uniform hypergraph with k vertices. We prove that there exists a positive constant $\alpha=\alpha(k, r)$ such that every r-uniform hypergraph with n (sufficiently large) vertices in which every $(r-1)$-set is contained in at least $n(1-\alpha)$ edges has a fractional K_{k}^{r}-decomposition. Using our result together with a recent result of Rödl, Schacht, Siggers and Tokushige, we obtain the following corollary. For every r-uniform hypergraph H_{0}, there exists a positive constant $\alpha=\alpha\left(H_{0}\right)$ such that every r-uniform hypergraph H in which every $(r-1)$-set is contained in at least $n(1-\alpha)$ edges has an H_{0}-packing that covers $|E(H)|\left(1-o_{n}(1)\right)$ edges.

1 Introduction

A hypergraph H is an ordered pair $H=(V, E)$ where V is a finite set (the vertex set) and E is a family of distinct subsets of V (the edge set). A hypergraph is r-uniform if all edges have size r. In this paper we only consider r-uniform hypergraphs where $r \geq 2$ is fixed. Let H_{0} be a fixed hypergraph. For a hypergraph H, the H_{0}-packing number, denoted $\nu_{H_{0}}(H)$, is the maximum number of pairwise edge-disjoint copies of H_{0} in H. A function ψ from the set of copies of H_{0} in H to [0, 1] is a fractional H_{0}-packing of H if $\sum_{e \in H_{0}} \psi\left(H_{0}\right) \leq 1$ for each $e \in E(H)$. For a fractional H_{0}-packing ψ, let $|\psi|=\sum_{H_{0} \in\left(H_{H_{0}}^{H}\right)} \psi\left(H_{0}\right)$. The fractional H_{0}-packing number, denoted $\nu_{H_{0}}^{*}(H)$, is defined to be the maximum value of $|\psi|$ over all fractional H_{0}-packings ψ. Notice that, trivially, $e(H) / e\left(H_{0}\right) \geq \nu_{H_{0}}^{*}(H) \geq \nu_{H_{0}}(H)$. In case $\nu_{H_{0}}(H)=e(H) / e\left(H_{0}\right)$ we say that H has an H_{0}-decomposition. In case $\nu_{H_{0}}^{*}(H)=e(H) / e\left(H_{0}\right)$ we say that H has a fractional H_{0}-decomposition. It is well known that computing $\nu_{H_{0}}(H)$ is NP-Hard already when H_{0} is a 2-uniform hypergraph

[^0](namely, a graph) with more than two edges in some connected component [4]. It is well known that computing $\nu_{H_{0}}^{*}(H)$ is solvable in polynomial time for every fixed hypergraph H_{0} as this amounts to solving a (polynomial size) linear program.

For fixed integers k and r with $k>r \geq 2$, let K_{k}^{r} denote the complete r-uniform hypergraph with k vertices. For $n>k$ it is trivial that K_{n}^{r} has a fractional K_{k}^{r}-decomposition. However, it is far from trivial (and unknown for $r>2$) whether this fractional decomposition can be replaced with an integral one, even when necessary divisibility conditions hold. In the graph-theoretic case this is known to be true (for n sufficiently large), following the seminal result of Wilson [10]. Solving an old conjecture of Erdős and Hanani, Rödl proved in [8] that K_{n}^{r} has a packing with $\left(1-o_{n}(1)\right)\binom{n}{r} /\binom{k}{r}$ copies of K_{k}^{r} (namely, an asymptotically optimal K_{k}^{r}-packing). In case we replace K_{n}^{r} with a dense and large n-vertex r-uniform hypergraph H, it was not even known whether a fractional K_{k}^{r}-decomposition of H exists, or whether an asymptotically optimal K_{k}^{r}-packing exists. In this paper we answer both questions affirmatively. We note that the easier graph theoretic case has been considered by the author in [12].

In order to state our density requirements we need a few definitions. Let $H=(V, E)$ be an r-uniform hypergraph. For $S \subset V$ with $1 \leq|S| \leq r-1$, let $\operatorname{deg}(S)$ be the number of edges of H that contain S. For $1 \leq d \leq r-1$ let $\delta_{d}(H)=\min _{S \subset V,|S|=d} \operatorname{deg}(S)$ be the minimum d-degree of H. Usually, $\delta_{1}(H)$ is also called the minimum degree and $\delta_{2}(H)$ is also called the minimum co-degree. The analogous maximum d-degree is denoted by $\Delta_{d}(H)$. For $0 \leq \alpha \leq 1$ we say that H is α-dense if $\delta_{d}(H) \geq \alpha\binom{n-d}{r-d}$ for all $1 \leq d \leq r-1$. Notice that K_{n}^{r} is 1 -dense and that H is α-dense if and only if $\delta_{r-1}(H) \geq \alpha(n-r+1)$.

Our first main result is given in the following theorem.
Theorem 1.1 Let k and r be integers with $k>r \geq 3$. There exists a positive $\alpha=\alpha(k, r)$ and an integer $N=N(k, r)$ such that if H is a $(1-\alpha)$-dense r-uniform hypergraph with more than N vertices then H has a fractional K_{k}^{r}-decomposition.

We note that the constant $\alpha=\alpha(k, r)$ that we obtain is only exponential in k and r. It is not difficult to show that our proof already holds for $\alpha(k, r)=6^{-k r}$ although we make no effort to optimize the constant. We note the the proof in the graph-theoretic case given in [12] yields $\alpha(k, 2) \leq 1 / 9 k^{10}$. However, the proof in the graph-theoretic case is quite different for the most part and cannot be easily generalized to the hypergraph setting.

Although Theorem 1.1 is stated only for K_{k}^{r}, it is easy to see that a similar theorem also holds for any k-vertex r-uniform hypergraph H_{0}. Indeed, if H_{0} has k vertices then, trivially, K_{k}^{r} has a fractional H_{0}-decomposition. Thus, any hypergraph which has a fractional K_{k}^{r}-decomposition also has a fractional H_{0}-decomposition. We note that in the very special case where H_{0} is an r-uniform simple hypertree then exact decomposition results are known [11].

Our second result is, in fact, a corollary obtained from Theorem 1.1 and a theorem of Rödl,

Schacht, Siggers and Tokushige [9] who proved that the H_{0}-packing number and the fractional $H_{0^{-}}$ packing number are very close for dense r-uniform hypergraphs (an earlier result of Haxell, Nagle and Rödl [6] asserted this for the case $r=3$). The exact statement of their result is the following.

Theorem 1.2 [Rödl, Schacht, Siggers and Tokushige [9]] For any fixed r-uniform hypergraph H_{0}, if H is an n-vertex r-uniform hypergraph then $\nu_{H_{0}}^{*}(H)-\nu_{H_{0}}(H)=o\left(n^{r}\right)$.

From Theorem 1.1 and the comments after it, and from Theorem 1.2, we immediately obtain the following.

Theorem 1.3 Let H_{0} be a fixed r-uniform hypergraph. There exists a positive constant $\alpha=\alpha\left(H_{0}\right)$ such that if $H=(V, E)$ is a $(1-\alpha)$-dense r-uniform hypergraph with n vertices then H has an H_{0}-packing that covers $|E|\left(1-o_{n}(1)\right)$ edges.

In the next section we prove Theorem 1.1. The final section contains some concluding remarks and open problems.

2 Proof of Theorem 1.1

Let \mathcal{F} be a fixed family of r-uniform hypergraphs. An \mathcal{F}-decomposition of an r-uniform hypergraph H is a set L of subhypergraphs of H, each isomorphic to an element of \mathcal{F}, and such that each edge of H appears in precisely one element of L. Let $H(t, r)$ denote the complete r-uniform hypergraph with t vertices and with one missing edge. For the remainder of this section we shall use $t=k(r+1)$. Let $\mathcal{F}(k, r)=\left\{K_{k}^{r}, K_{t}^{r}, H(t, r)\right\}$. The proof of Theorem 1.1 is a corollary of the following stronger theorem.

Theorem 2.1 For all $k>r \geq 3$ there exists a positive $\alpha=\alpha(k, r)$ and an integer $N=N(k, r)$ such that every r-uniform hypergraph with $n>N$ vertices which is $(1-\alpha)$-dense has an $\mathcal{F}(k, r)$ decomposition.

Clearly K_{t}^{r} has a fractional K_{k}^{r}-decomposition, since $t>k$. Thus, in order to prove that Theorem 1.1 is a corollary of Theorem 2.1 is suffices to prove that $H(t, r)$ has a fractional K_{k}^{r}-decomposition. This is done in the following two lemmas.

Lemma 2.2 Let A be an upper triangular matrix of order r satisfying $A_{j, j}>0$ and $A_{i, j} \geq 0$ for all $1 \leq i \leq j \leq r$ and $A_{i, j} \geq A_{i-1, j}$ for all $2 \leq i \leq j \leq r$. Let J be the all-one column vector of length r. Then, in the unique solution of $A x=J$ all coordinates of x are nonnegative.

Proof: Clearly $A x=J$ has a unique solution since A is upper triangular and the diagonal consists of nonzero entries. Let $x^{t}=\left(x_{1}, \ldots, x_{r}\right)$ be the unique solution. Clearly, $x_{r}=1 / A_{r, r}>0$. Assuming $x_{i+1} \geq 0$ we prove $x_{i} \geq 0$. Indeed,

$$
x_{i}=\frac{1}{a_{i, i}}\left(1-\sum_{j=i+1}^{r} a_{i, j} x_{j}\right) \geq \frac{1}{a_{i, i}}\left(1-\sum_{j=i+1}^{r} a_{i+1, j} x_{j}\right)=0
$$

Lemma 2.3 For all $k \geq r \geq 2, H(t, r)$ has a fractional K_{k}^{r}-decomposition.
Proof: Let $A=\left\{u_{1}, \ldots, u_{r}\right\}$ be the unique set of vertices of $H(t, r)$ for which A is not an edge, and let B denote the set of the remaining $t-r$ vertices. For $i=0, \ldots, r-1$, we say that an edge of $H(t, r)$ is of type i if it intersects i elements of A. For $j=0, \ldots, r-1$ we say that a copy of K_{k}^{r} in $H(t, r)$ is of type j if it intersects j elements of A. For $j \geq i$, each edge of type i lies on precisely

$$
f(i, j)=\binom{r-i}{j-i}\binom{t-2 r+i}{k-r-j+i}
$$

copies of K_{k}^{r} of type j. We now prove that there are nonnegative real numbers x_{0}, \ldots, x_{r-1} such that by assigning the value x_{j} to each copy of K_{k}^{r} of type j, we obtain a fractional K_{k}^{r} decomposition, namely we must show that for each $i=0, \ldots, r-1$,

$$
\sum_{j=i}^{r-1} x_{j} f(i, j)=1
$$

Indeed, consider the upper triangular matrix A of order r with $A_{i, j}=f(i-1, j-1)$. By Lemma 2.2 it suffices to show that $f(j, j)>0$ and $f(i, j) \geq 0$ for all $0 \leq i \leq j \leq r-1$ and $f(i, j) \geq f(i-1, j)$ for all $1 \leq i \leq j \leq r-1$. Indeed, by definition $f(i, j) \geq 0$. Furthermore,

$$
f(j, j)=\binom{t-2 r+j}{k-r}>0
$$

and

$$
\frac{f(i, j)}{f(i-1, j)}=\frac{(t-2 r+i)(j-i+1)}{(r-i+1)(k-r-j+i)} \geq \frac{t-2 r}{(r+1)(k-r)}=\frac{k r+k-2 r}{k r+k-r-r^{2}} \geq 1
$$

Our goal in the remainder of this section is to prove Theorem 2.1. Our first tool is the following powerful result of Kahn [7] giving an upper bound for the minimum number of colors in a proper edge-coloring of a uniform hypergraph (his result is, in fact, more general than the one stated here).

Lemma 2.4 (Kahn [7]) For every $r^{*} \geq 2$ and every $\gamma>0$ there exists a positive constant $\rho=$ $\rho\left(r^{*}, \gamma\right)$ such that the following statement is true:
If U is an r^{*}-uniform hypergraph with $\Delta_{1}(U) \leq D$ and $\Delta_{2}(U) \leq \rho D$ then there is a proper coloring of the edges of U with at most $(1+\gamma) D$ colors.

Our second Lemma quantifies the fact that in a dense r-uniform hypergraph every edge appears on many copies of K_{t}^{r}.

Lemma 2.5 Let $t \geq r \geq 3$ and let $\zeta>0$. Then, for all sufficiently large n, if H is a $(1-\zeta)$-dense r-uniform hypergraph with n vertices then every edge of H appears on at least $\frac{1}{(t-r)!} n^{t-r}\left(1-\zeta t 2^{t}\right)$ copies of K_{t}^{r}.

Fix an edge $e=\left\{u_{1}, \ldots, u_{r}\right\}$. We prove the lemma by induction on t. Our base cases are $t=$ $r, \ldots, 2 r-1$ for which we prove the lemma directly. The case $t=r$ is trivial. If $r+1 \leq t \leq 2 r-1$, then for any $(t-r)$-subset S of $V(H)-e$, the set of t-vertices $S \cup e$ is not a K_{t}^{r} if and only if there exists some $f \subset e$ with $2 r-t \leq|f| \leq r-1$ and some $g \subset S$ with $|g|=r-|f|$ such that $f \cup g$ is not an edge. For any $f \subset e$ with $2 r-t \leq|f| \leq r-1$, the number of non-edges containing f is at most $\zeta\binom{n-|f|}{r-|f|}$. For each such non-edge e^{\prime}, if $g=e^{\prime}-f$ then g appears in at most $\binom{n}{t-r-|g|}=\binom{n}{t-2 r+|f|}$ possible $(t-r)$-subsets S of $V(H)-e$. It follows that e appears on at least

$$
\binom{n-r}{t-r}-\sum_{d=2 r-t}^{r-1}\binom{r}{d} \zeta\binom{n-d}{r-d}\binom{n}{t-2 r+d}>\frac{n^{t-r}}{(t-r)!}\left(1-\zeta 2^{t}\right)
$$

copies of K_{t}^{r}.
Assume the lemma holds for all $t^{\prime}<t$ and that $t \geq 2 r$. Let H^{*} be the subhypergraph of H induced on $V(H)-e$. H^{*} has $n-r$ vertices. Since n is chosen large enough, the deletion of a constant (namely r) vertices from a ($1-\zeta$)-dense n-vertex hypergraph has a negligible affect on the density. In particular, the density of H^{*} is larger than $(1-2 \zeta)$. By the induction hypothesis, each edge of H^{*} appears in at least

$$
\frac{(n-r)^{t-2 r}}{(t-2 r)!}\left(1-2 \zeta(t-r) 2^{t-r}\right)
$$

copies of K_{t-r}^{r} in H^{*}. Since H^{*} is $(1-2 \zeta)$-dense it has at least $\binom{n-r}{r}(1-2 \zeta)$ edges. As each copy of K_{t-r}^{r} has $\binom{t-r}{r}$ edges, we have that H^{*} contains at least

$$
\frac{(n-r)^{t-2 r}}{(t-2 r)!}\left(1-2 \zeta(t-r) 2^{t-r}\right)\binom{n-r}{r}(1-2 \zeta) \frac{1}{\binom{t-r}{r}}>\frac{n^{t-r}}{(t-r)!}\left(1-2 \zeta(t-r) 2^{t-r}\right)(1-3 \zeta)
$$

copies of K_{t-r}^{r}. If S is the set of vertices of some K_{t-r}^{r} in H^{*} we say that S is good if $S \cup e$ is the set of vertices of a K_{t}^{r}, otherwise S is bad. We can estimate the number of bad S in a similar fashion
to the estimation in the base cases of the induction. Indeed, S is bad if and only if there exists some $f \subset e$ with $1 \leq|f| \leq r-1$ and some $g \subset S$ with $|g|=r-|f|$ such that $f \cup g$ is not an edge. It follows that the number of bad S is at most

$$
\sum_{d=1}^{r-1}\binom{r}{d} \zeta\binom{n-d}{r-d}\binom{n}{t-2 r+d}<\frac{n^{t-r}}{(t-r)!} \zeta 2^{t}
$$

It follows that the number of good S, and hence the number of K_{t}^{r} of H containing e, is at least

$$
\frac{n^{t-r}}{(t-r)!}\left(\left(1-2 \zeta(t-r) 2^{t-r}\right)(1-3 \zeta)-\zeta 2^{t}\right)>\frac{n^{t-r}}{(t-r)!}\left(1-\zeta t 2^{t}\right)
$$

as required.

Proof of Theorem 2.1 Let $k>r \geq 3$ be fixed integers. We must prove that there exists $\alpha=\alpha(k, r)$ and $N=N(k, r)$ such that if H is an r-uniform hypergraph with $n>N$ vertices and $\delta_{d}(H) \geq\binom{ n-d}{r-d}(1-\alpha)$ for all $1 \leq d \leq r-1$ then H has an $\mathcal{F}(k, r)$-decomposition.

Let $\epsilon=\epsilon(k, r)$ be a constant to be chosen later (in fact, it suffices to take $\epsilon=(2 k r)^{-2 r}$ but we make no attempt to optimize ϵ). Let $\eta=\left(2^{-H(\epsilon)} 0.9\right)^{1 / \epsilon}$ where $H(x)=-x \log x-(1-x) \log (1-x)$ is the entropy function. Let $\alpha=\min \left\{(\eta / 2)^{2}, \epsilon^{2} /\left(t^{2} 4^{t+1}\right)\right\}$. Let $\gamma>0$ be chosen such that $\left(1-\alpha t 2^{t}\right)(1-\gamma) /(1+\gamma)^{2}>1-2 \alpha t 2^{t}$. Let $r^{*}=\binom{t}{r}$. Let $\rho=\rho\left(r^{*}, \gamma\right)$ be the constant from Lemma 2.4. In the proof we shall assume, whenever necessary, that N is sufficiently large as a function of these constants.

Let $H=(V, E)$ be an r-uniform hypergraph with $n>N$ vertices and $\delta_{d}(H) \geq\binom{ n-d}{r-d}(1-\alpha)$ for all $1 \leq d \leq r-1$.

Our first step is to color the edges of H such that the spanning subhypergraph on each color class has some "nice" properties. We shall use q colors where $q=n^{1 /\left(4\binom{t}{r}-4\right)}$ (for convenience we ignore floors and ceilings as they do not affect the asymptotic nature of our result). Each $e \in E$ selects a color from $[q]$ uniformly at random. The choices are independent. Let $H_{i}=\left(V, E_{i}\right)$ denote the subhypergraph whose edges received the color i. Let $S \subset V$ with $1 \leq|S| \leq r-1$. Clearly, the degree of S in H_{i}, denoted $d e g_{i}(S)$, has binomial distribution $B(\operatorname{deg}(S), 1 / q)$. Thus, $E\left[\operatorname{deg}_{i}(S)\right]=\operatorname{deg}(S) / q$. By a large deviation inequality of Chernoff (cf. [2], Appendix A) it follows that the probability that $d e g_{i}(S)$ deviates from its mean by more than a constant fraction of the mean is exponentially small in n. In particular, for n sufficiently large,

$$
\begin{equation*}
\operatorname{Pr}\left[\left|\operatorname{deg}_{i}(S)-\frac{\operatorname{deg}(S)}{q}\right|>\gamma \frac{\operatorname{deg}(S)}{q}\right]<\frac{1}{4 q r n^{r}} . \tag{1}
\end{equation*}
$$

Let $e \in E_{i}$. Let $C(e)$ denote the set of K_{t}^{r} copies of H that contain e and let $c(e)=|C(e)|$. Trivially, $c(e) \leq\binom{ n-r}{t-r}$. Thus, by Lemma 2.5 with $\zeta=\alpha$ we have

$$
\frac{1}{(t-r)!} n^{t-r} \geq c(e) \geq \frac{1}{(t-r)!} n^{t-r}\left(1-\alpha t 2^{t}\right)
$$

Let $C_{i}(e)$ denote the set of K_{t}^{r} copies of H_{i} containing e, and put $c_{i}(e)=\left|C_{i}(e)\right|$. Clearly, $E\left[c_{i}(e)\right]=$ $c(e) q^{-\binom{t}{r}+1}=c(e) n^{-1 / 4}$. Therefore,

$$
\frac{1}{(t-r)!} n^{t-r-1 / 4} \geq E\left[c_{i}(e)\right] \geq \frac{1}{(t-r)!} n^{t-r-1 / 4}\left(1-\alpha t 2^{t}\right)
$$

However, this time we cannot simply use Chernoff's inequality to show that $E\left[c_{i}(e)\right]$ is concentrated around its mean, since, given that $e \in E_{i}$, two elements of $C(e)$ are dependent if they contain another common edge in addition to e. However, we can overcome this obstacle using the fact that the dependence is limited. This is done as follows. Consider a graph G whose vertex set is $C(e)$ and whose edges connect two elements of $C(e)$ that share at least one edge (in addition to e). For $X \in C(e)$ the degree of X in G is clearly at most $\left(\binom{t}{r}-1\right)\binom{n-r-1}{t-r-1}$ since given $f \in E(X)$ with $f \neq e$ we have $|f \cup e| \geq r+1$ and thus there are at most $\binom{n-|f \cup e|}{t-|f \cup e|}$ copies of K_{t}^{r} containing both f and e. In particular, $\Delta(G)=O\left(n^{t-r-1}\right)$. On the other hand $|V(G)|=c(e)=\Theta\left(n^{t-r}\right)$. Notice also that the chromatic number of G is $\chi=\chi(G)=O\left(n^{t-r-1}\right)$. Consider a coloring of G with $\chi(G)$ colors. If X and X^{\prime} are in the same color class then, given that $e \in E_{i}$, the event that $X \in C_{i}(e)$ is independent of the event that $X^{\prime} \in C_{i}(e)$. For $z=1, \ldots, \chi(G)$, let $C^{z}(e)$ denote the elements of $C(e)$ colored with z and put $c^{z}(e)=\left|C^{z}(e)\right|$. Put $C_{i}^{z}(e)=C^{z}(e) \cap C_{i}(e)$ and let $c_{i}^{z}(e)=\left|C_{i}^{z}(e)\right|$. Clearly, $c_{i}(e)=\sum_{z=1}^{\chi} c_{i}^{z}(e)$ and $E\left[c_{i}^{z}(e)\right]=c^{z}(e) n^{-1 / 4}$. Whenever $\left|c^{z}(e)\right|>n^{1 / 2}$ we can use Chernoff's inequality to show that $c_{i}^{z}(e)$ is highly concentrated around its mean (that, is, the probability that it deviates from its mean by any given constant fraction of the mean is exponentially small in n). Whenever $\left|c^{z}(e)\right| \leq n^{1 / 2}$ we simply notice that the overall number of elements of $C(e)$ belonging to these small color classes is at most $\chi n^{1 / 2}=O\left(n^{t-r-1 / 2}\right) \ll n^{t-r-1 / 4}$. We therefore have that for n sufficiently large,

$$
\begin{align*}
\operatorname{Pr}\left[c_{i}(e)\right]<(1-\gamma) \frac{1}{(t-r)!} n^{t-r-1 / 4}\left(1-\alpha t 2^{t}\right) & <\frac{1}{4\binom{n}{r}} \tag{2}\\
& \operatorname{Pr}\left[c_{i}(e)\right]>(1+\gamma) \frac{1}{(t-r)!} n^{t-r-1 / 4}<\frac{1}{4\binom{n}{r}} \tag{3}
\end{align*}
$$

Since the overall number of subsets S with $1 \leq|S| \leq r-1$ is less than $r n^{r}$, and since $|E| \leq\binom{ n}{r}$ we have, by (1), (2) and (3) that with probability at least $1-q r n^{r} /\left(4 q r n^{r}\right)-2\binom{n}{r} /\left(4\binom{n}{r}\right) \geq 1 / 4$, a random q-coloring of the edges of H satisfies the following:
A. For all $S \subset V$ with $1 \leq|S| \leq r-1$, and for all $i=1, \ldots, q,\left|\operatorname{deg} g_{i}(S)-\frac{\operatorname{deg}(S)}{q}\right| \leq \gamma \frac{\operatorname{deg}(S)}{q}$.
B. For each $e \in E$, if $e \in E_{i}$ then $c_{i}(e) \geq(1-\gamma) \frac{1}{(t-r)!} n^{t-r-1 / 4}\left(1-\alpha t 2^{t}\right)$ and $c_{i}(e) \leq(1+$ $\gamma) \frac{1}{(t-r)!} n^{t-r-1 / 4}$.

We therefore fix an edge coloring and the resulting spanning subhypergraphs H_{1}, \ldots, H_{q} satisfying properties A and B.

For each $H_{i}=\left(V, E_{i}\right)$ we create another hypergraph, denoted U_{i}, as follows. The vertex set of U_{i} is E_{i}. The edges of U_{i} are the sets of edges of copies of K_{t}^{r} in H_{i}. Notice that U_{i} is a $\binom{t}{r}$-uniform hypergraph. Let $D=(1+\gamma)((t-r)!)^{-1} n^{t-r-1 / 4}$. By Property $B, \Delta_{1}\left(U_{i}\right) \leq D$. Also, we trivially have that for all n sufficiently large, $\Delta_{2}\left(U_{i}\right) \leq n^{t-r-1}<\rho D$. It follows from Lemma 2.4 that the set of K_{t}^{r} copies of H_{i} can be partitioned into at most $(1+\gamma) D$ packings. Denote these packings by $L_{i}^{1}, \ldots, L_{i}^{z_{i}}$ where $z_{i} \leq(1+\gamma) D$.

We now choose a K_{t}^{r}-packing of H as follows. For each $i=1, \ldots, q$ we select, uniformly at random, one of the packings $\left\{L_{i}^{1}, \ldots, L_{i}^{z_{i}}\right\}$. Denote by L_{i} the randomly selected packing. All q selections are performed independently. Notice that $L=L_{1} \cup \cdots \cup L_{q}$ is a K_{t}^{r}-packing of H. Let M denote the set of edges of H that do not belong to any element of L, and let $H[M]$ be the spanning subhypergraph of H consisting of the edges of M. Let $p=\binom{k}{r}-1$. We say that a p-subset $S=\left\{S_{1}, \ldots, S_{p}\right\}$ of L is good for $e \in M$ if we can select edges $f_{i} \in E\left(S_{i}\right)$ such that $\left\{f_{1}, \ldots, f_{p}, e\right\}$ is the set of edges of a K_{k}^{r} in H. We say that L is good if for each $e \in M$ there exists a p-subset $S(e)$ of L such that $S(e)$ is good for e and such that if $e \neq e^{\prime}$ then $S(e) \cap S\left(e^{\prime}\right)=\emptyset$.

Lemma 2.6 If L is good then H has an $\mathcal{F}(k, r)$-decomposition.
Proof: For each $e \in M$, pick a copy of K_{k}^{r} in H containing e and precisely one edge from each element of $S(e)$. As each element of $S(e)$ is a K_{t}^{r}, deleting one edge from such an element results in an $H(t, r)$. We therefore have $|M|$ copies of K_{k}^{r} and $|M|\left(\binom{k}{r}-1\right)$ copies of $H(t, r)$, all being edge disjoint. The remaining element of L not belonging to any of the $S(e)$ are each a K_{t}^{r}, and they are edge-disjoint from each other and from the previously selected K_{k}^{r} and $H(t, r)$.

Our goal in the remainder of this section is to show that there exists a good L. We will show that with positive probability, the random selection of the q packings L_{1}, \ldots, L_{q} yields a good L. We begin by showing that with high probability, $H[M]$ has a relatively small maximum d-degree, for all $1 \leq d \leq r-1$.

Lemma 2.7 With positive probability, for all $d=1, \ldots, r-1, \Delta_{d}(H[M]) \leq 2 \epsilon\binom{n-d}{r-d}$.
Proof: Let $S \subset V$ with $1 \leq|S| \leq r-1$. Let $F_{i}(S) \subset E_{i}$ denote the edges of H_{i} containing S and let $L_{i}(S) \subset F_{i}(S)$ denote those edges of $F_{i}(S)$ that are covered by L_{i}. For $e \in F_{i}(S)$, the probability that e is covered by L_{i} is $c_{i}(e) / z_{i}$. By Property B and since $z_{i} \leq(1+\gamma) D$ we have

$$
\frac{c_{i}(e)}{z_{i}} \geq \frac{(1-\gamma)\left(1-\alpha t 2^{t}\right)}{(1+\gamma)^{2}} \geq 1-2 \alpha t 2^{t} .
$$

It follows that $E\left[\left|L_{i}(S)\right|\right] \geq\left(1-2 \alpha t 2^{t}\right)\left|F_{i}(S)\right|=\left(1-2 \alpha t 2^{t}\right) \operatorname{deg}_{i}(S)$ and that

$$
\operatorname{Pr}\left[\left|L_{i}(S)\right| \leq\left(1-\alpha^{1 / 2} t 2^{t}\right) \operatorname{deg}_{i}(S)\right] \leq 2 \alpha^{1 / 2} \leq \eta .
$$

Since $\left|L_{1}(S)\right|, \ldots,\left|L_{q}(S)\right|$ are independent random variables it follows that the probability that at least ϵq of them have cardinality at most $\left(1-\alpha^{1 / 2} t 2^{t}\right) d e g_{i}(S)$ is at most

$$
\binom{q}{\epsilon q} \eta^{\epsilon q}<0.9^{q} \ll \frac{1}{q r n^{r}}
$$

where in the last inequality we used the fact that $\eta=\left(2^{-H(\epsilon)} 0.9\right)^{1 / \epsilon}$. It follows that there exists a choice of L_{1}, \ldots, L_{q} such that for all S, at most ϵq of the packings have $\left|L_{i}(S)\right| \leq$ $\left(1-\alpha^{1 / 2} t 2^{t}\right) \operatorname{deg}_{i}(S)$. Let $\operatorname{deg}^{M}(S)$ denote the degree of S in $H[M]$. By Property A, $\operatorname{deg}_{i}(S) \leq$ $(1+\gamma) \operatorname{deg}(S) / q$. Thus, since $\sum_{i=1}^{q} \operatorname{deg}_{i}(S)=\operatorname{deg}(S)$ we have

$$
\begin{gathered}
\operatorname{deg} g^{M}(S)=\operatorname{deg}(S)-\sum_{i=1}^{q}\left|L_{i}(S)\right| \leq \operatorname{deg}(S)-\left(1-\alpha^{1 / 2} t 2^{t}\right) \operatorname{deg}(S)+\epsilon q(1+\gamma) \frac{\operatorname{deg}(S)}{q} \\
\leq \operatorname{deg}(S)\left(\alpha^{1 / 2} t 2^{t}+\epsilon(1+\gamma)\right) \leq 2 \epsilon \operatorname{deg}(S) \leq 2 \epsilon\binom{n-|S|}{r-|S|}
\end{gathered}
$$

where in the last inequality we used the fact that $\alpha \leq \epsilon^{2} /\left(t^{2} 4^{t+1}\right)$. It follows that there is a choice of L_{1}, \ldots, L_{q} such that for all $d=1, \ldots, r-1, \Delta_{d}(H[M]) \leq 2 \epsilon\binom{n-d}{r-d}$.

By Lemma 2.7, we may fix L and M such that $\Delta_{d}(H[M]) \leq 2 \epsilon\binom{n-d}{r-d}$ for $d=1, \ldots, r-1$. Let $M=\left\{e_{1}, \ldots, e_{m}\right\}$. Notice that, in particular, $m \leq 2 \epsilon\binom{n}{r}$. Let $\mathcal{U}=\left\{U_{1}, \ldots, U_{m}\right\}$ be the family of p-uniform hypergraphs defined as follows. The vertex set of each U_{i} is L. The edges of U_{i} are the p-subsets of L that are good for e_{i}. A system of disjoint representatives (SDR) for \mathcal{U} is a set of m edges $S\left(e_{i}\right) \in E\left(U_{i}\right)$ for $i=1, \ldots, m$ such that $S\left(e_{i}\right) \cap S\left(e_{j}\right)=\emptyset$ whenever $i \neq j$. Thus, L is good if and only if \mathcal{U} has an SDR. Generalizing Hall's Theorem, Aharoni and Haxell [1] gave a sufficient condition for the existence of an SDR.

Lemma 2.8 [Aharoni and Haxell [1]] Let $\mathcal{U}=\left\{U_{1}, \ldots, U_{m}\right\}$ be a family of p-uniform hypergraphs. If for every $\mathcal{W} \subset \mathcal{U}$ there is a matching in $\cup_{U \in \mathcal{W} U} U$ of size greater than $p(|\mathcal{W}|-1)$ then \mathcal{U} has an SDR.

We use Lemma 2.8 to prove:
Lemma 2.9 If $\Delta_{d}(H[M]) \leq 2 \epsilon\binom{n-d}{r-d}$ for $d=1, \ldots, r-1$ then \mathcal{U} has an $S D R$.
Proof: Let R_{i} denote the set of K_{k}^{r} copies of H that contain e_{i} and whose remaining p edges are each from a distinct element of L. We establishing a lower bound for $\left|R_{i}\right|$. Let a_{i} denote the number of copies of K_{k}^{r} containing e_{i}, let b_{i} denote the number of copies of K_{k}^{r} containing e_{i} and at least two edges from the same element of L. Let c_{i} denote the number of copies of K_{k}^{r} containing e_{i} and at least another edge of M. Clearly, $\left|R_{i}\right|=a_{i}-b_{i}-c_{i}$.

A similar proof to that of Lemma 2.5 where we use k instead of t and $\zeta=\alpha$ immediately gives

$$
\begin{equation*}
a_{i} \geq \frac{1}{(k-r)!} n^{k-r}\left(1-\alpha k 2^{k}\right) . \tag{4}
\end{equation*}
$$

Consider a pair of edges f_{1}, f_{2} that belong to the same element of L. Suppose $\left|\left(f_{1} \cup f_{2}\right) \cap e_{i}\right|=d$ then we must have $0 \leq d \leq r-1$. The overall number of choices for f_{1}, f_{2} for which $\left|\left(f_{1} \cup f_{2}\right) \cap e_{m}\right|=d$ is $O\left(n^{r-d}\right)$ (there are $O\left(n^{r-d}\right)$ choices for f_{1}, and given f_{1} there are only $\binom{t}{r}-1$ choices for f_{2} in the same element of L). Given f_{1}, f_{2}, the number of K_{k}^{r} containing f_{1}, f_{2}, e_{i} is at most $O\left(n^{k-(2 r+1-d)}\right)$, since $\left|f_{1} \cup f_{2} \cup e_{m}\right| \geq 2 r+1-d$. Thus, in total, we get,

$$
\begin{equation*}
b_{i}=\sum_{d=0}^{r-1} O\left(n^{r-d} n^{k-(2 r+1-d)}\right)=O\left(n^{k-r-1}\right) . \tag{5}
\end{equation*}
$$

Consider an edge $f \in M$ with $f \neq e_{i}$. If f and e_{i} are independent then there are at most $\binom{n-2 r}{k-2 r}$ copies of K_{k}^{r} containing both of them. Overall, there are less than $m\binom{n-2 r}{k-2 r}$ such copies. If f and e_{i} intersect in d vertices then there are at most $\binom{n-2 r+d}{k-2 r+d}$ copies of K_{k}^{r} containing both of them. However, the maximum d-degree of M is at most $2 \epsilon\binom{n-d}{r-d}$ and hence there are at most $\binom{r}{d} 2 \epsilon\binom{n-d}{r-d}$ choices for f. We therefore have that

$$
\begin{gather*}
c_{i} \leq m\binom{n-2 r}{k-2 r}+\sum_{d=1}^{r-1}\binom{r}{d} 2 \epsilon\binom{n-d}{r-d}\binom{n-2 r+d}{k-2 r+d} \tag{6}\\
\leq \sum_{d=0}^{r-1} 2 \epsilon\binom{r}{d}\binom{n-d}{r-d}\binom{n-2 r+d}{k-2 r+d} .
\end{gather*}
$$

We now get, using (4), (5) and (6), that for $\epsilon=\epsilon(k, r)$ sufficiently small and for n sufficiently large,

$$
\begin{aligned}
\left|R_{i}\right| \geq \frac{1}{(k-r)!} n^{k-r}\left(1-\alpha k 2^{k}\right) & -O\left(n^{k-r-1}\right)-\sum_{d=0}^{r-1} 2 \epsilon\binom{r}{d}\binom{n-d}{r-d}\binom{n-2 r+d}{k-2 r+d} \\
& \geq \frac{1}{2(k-r)!} n^{k-r} .
\end{aligned}
$$

Let $\mathcal{W} \subset \mathcal{U}$ with $w=|\mathcal{W}|$. Without loss of generality assume $\mathcal{W}=\left\{U_{1}, \ldots, U_{w}\right\}$. Put $M(\mathcal{W})=$ $\left\{e_{1}, \ldots, e_{w}\right\}$. We must show that the condition in Lemma 2.8 holds. Assume that this is not the case. Consider a maximum matching T in $U_{1} \cup \cdots \cup U_{w}$. Thus, $|T| \leq p(w-1)$. In particular, $|T|$ contains at most $p^{2}(w-1)$ vertices (recall that the vertices are element of L). Let $L^{\prime} \subset L$ denote the vertices contained in T. Thus, $\left|L^{\prime}\right| \leq p^{2}(w-1)$. The overall number of copies of K_{k}^{r} that contain precisely one edge from $M(\mathcal{W})$ and whose other edges are in p distinct elements of L is

$$
\left|R_{1}\right|+\cdots+\left|R_{w}\right| \geq w \frac{1}{2(k-r)!} n^{k-r}
$$

Let F be the set of edges in the elements of L^{\prime}. Hence, $|F|=\left|L^{\prime}\right|\binom{t}{r}$. Let $f \in F$. Let $c(f)$ denote the number of copies of K_{k}^{r} containing f and precisely one edge from $M(\mathcal{W})$. For $Y \subsetneq f$, let $M_{f}(Y)=\left\{e_{i} \mid e_{i} \cap f=Y, i=1, \ldots, w\right\}$. This partitions $M(\mathcal{W})$ into $2^{r}-1$ classes according to the choice of Y. Let $c(f, Y)$ denote the number of copies of K_{k}^{r} containing f and precisely one edge from $M_{f}(Y)$. Given $e \in M_{f}(Y)$, the number of K_{k}^{r} containing both f and e is at most $\binom{n-2 r+|Y|}{k-2 r+|Y|}$. On the other hand, since $\operatorname{deg}^{M}(Y) \leq 2 \epsilon\binom{n-|Y|}{r-|Y|}$ we have $\left|M_{f}(Y)\right| \leq 2 \epsilon\binom{n-|Y|}{r-|Y|}$. Thus,

$$
c(f, Y) \leq 2 \epsilon\binom{n-|Y|}{r-|Y|}\binom{n-2 r+|Y|}{k-2 r+|Y|}<2 \epsilon n^{k-r}
$$

It follows that

$$
c(f)<2^{r+1} \epsilon n^{k-r}
$$

Now, for $\epsilon=\epsilon(k, r)$ sufficiently small

$$
\begin{aligned}
\sum_{f \in F} c(f) & <\left|L^{\prime}\right|\binom{t}{r} 2^{r+1} \epsilon n^{k-r} \leq p^{2}(w-1)\binom{t}{r} 2^{r+1} \epsilon n^{k-r} \\
& \leq w \frac{1}{2(k-r)!} n^{k-r} \leq\left|R_{1}\right|+\cdots+\left|R_{w}\right|
\end{aligned}
$$

It follows that there exists a K_{k}^{r} containing precisely one edge from $M(\mathcal{W})$, say, e_{i}, and whose other edges are in p distinct elements of $L-L^{\prime}$. The p distinct elements form an edge $\left\{S_{1}, \ldots, S_{p}\right\}$ of U_{i} and hence $\left\{S_{1}, \ldots, S_{p}\right\}$ is an edge of $\cup_{U \in \mathcal{W}} U$. Since $\left\{S_{1}, \ldots, S_{p}\right\}$ is independent of all the edges of T we have that T is not a maximal matching of $\cup_{U \in \mathcal{W}} U$, a contradiction.

We have now completed the proof of Theorem 2.1.

3 Concluding remarks and open problems

- A simpler version of Theorem 1.1 holds in case we assume that every edge of K_{n}^{r} lies on approximately the same number of copies of K_{k}^{r} (such is the case in, say, the random r uniform hypergraph). In this case the statement of Theorem 1.1 follows quite easily from the result given in [3] and the result of [5]. However, our Theorem 1.1 does not assume these regularity conditions. It only assumes a minimum density threshold.
- Theorem 2.1 gives a nontrivial minimum density requirement which guarantees the existence of an \mathcal{F}-decomposition for the family $\mathcal{F}=\left\{K_{k}^{r}, K_{t}^{r}, H(t, r)\right\}$. It is interesting to find other more general families \mathcal{F} for which nontrivial density conditions guarantee an \mathcal{F}-decomposition.

References

[1] R. Aharoni and P. Haxell, Hall's theorem for hypergraphs, Journal of Graph Theory 35 (2000), 83-88.
[2] N. Alon and J. H. Spencer, The Probabilistic Method, Second Edition, Wiley, New York, 2000.
[3] N. Alon and R. Yuster, On a hypergraph matching problem, submitted.
[4] D. Dor and M. Tarsi, Graph decomposition is NPC - A complete proof of Holyer's conjecture, Proc. 20th ACM STOC, ACM Press (1992), 252-263.
[5] P. Frankl and V. Rödl, Near perfect coverings in graphs and hypergraphs, European J. Combinatorics 6 (1985), 317-326.
[6] P. E. Haxell, B. Nagle and V. Rödl, Integer and fractional packings in dense 3-uniform hypergraphs, Random Structures and Algorithms 22 (2003), 248-310.
[7] J. Kahn, Asymptotically good list colorings, J. Combin. Theory, Ser. A 73 (1996), 1-59.
[8] V. Rödl, On a packing and covering problem, Europ. J. of Combin. 6 (1985), 69-78.
[9] V. Rödl, M. Schacht, M. H. Siggers and N. Tokushige, Integer and fractional packings of hypergraphs, submitted.
[10] R. M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, Congressus Numerantium XV (1975), 647-659.
[11] R. Yuster, Decomposing hypergraphs with simple hypertrees, Combinatorica 20 (2000), 119-140.
[12] R. Yuster, Asymptotically optimal K_{k}-packings of dense graphs via fractional K_{k}-decompositions, J. Combin. Theory, Ser. B, to appear.

[^0]: *e-mail: raphy@research.haifa.ac.il World Wide Web: http:
research.haifa.ac.il ${ }^{\text {~ raphy }}$

