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Abstract
It is proved that for integers b, r such that 3 ≤ b < r ≤ (b+1

2

)−1, there exists a red/blue
edge-colored graph such that the red degree of every vertex is r , the blue degree of
every vertex is b, yet in the closed neighbourhood of every vertex there are more blue
edges than red edges. The upper bound r ≤ (b+1

2

)−1 is best possible for any b ≥ 3.We
further extend this theorem to more than two colours, and to larger neighbourhoods.
A useful result required in some of our proofs, of independent interest, is that for
integers r , t such that 0 ≤ t ≤ r2

2 − 5r3/2, there exists an r -regular graph in which
each open neighbourhood induces precisely t edges. Several explicit constructions are
introduced and relationships with constant linked graphs, (r , b)-regular graphs and
vertex transitive graphs are revealed.
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1 Introduction

Local versus global phenomena are widely considered both in graph theory (combi-
natorics in general) and in social sciences [1–6]. Such phenomena occur in the most
elementary graph theory observations as well as in highly involved theorems and
conjectures.

A simple example dates back to Euler: Every degree is even (a local property), if
and only if each component has an Eulerian circuit (a global property). More involved
examples are Turán-type problems [7–9], broadly showing that if a graph does not
contain some fixed graph (local property), then its number of edges cannot be too
large (a global property). As an illustration of a somewhat counter-intuitive example,
we recall a famous theorem of Erdős [10] stating that for any h, k ≥ 3, there is a
graph whose shortest cycle has length at least h (a locally verifiable property), yet its
chromatic number is at least k (a global property).

We now introduce an “umbrella” for the local–global problem considered in this
paper. Recall that NG(v) denotes the set of neighbours of a vertex v in G (its open
neighbourhood) and NG [V ] = NG(v) ∪ {v} denotes the closed neighbourhood. We
omit the superscript when the graph is clear from context. Some further notation
follows.

• For a colouring f : E(G) → {1, . . . , k}, k ≥ 1, let E( j) = {e ∈ E(G) : f (e) =
j} and e j (G) = |E( j)|. For k = 1 we use e(G).

• For a vertex v, deg j (v) = |{e : e incident with v and f (e) = j}. For k = 1 we
use deg(v).

• For a vertex v, e j [v] = |E( j) ∩ E(N [v])|. For k = 1 we use e[v].
• For a vertex v, e j (v) = |E( j) ∩ E(N (v))|. For k = 1 we use e(v).

We now state the general flip colouring problem: Given a graph G and an integer
k ≥ 2, does there exist a colouring f : E(G) → {1, . . . , k} such that:

• for every vertex v, deg j (v) > degi (v) for 1 ≤ i < j ≤ k (in particular, forcing
global majority e j (G) > ei (G) for 1 ≤ i < j ≤ k) ;

• for every vertex v, e j [v] < ei [v] for 1 ≤ i < j ≤ k (forcing an opposite local
majority) .

If such an edge-colouring exists, then G is said to be a k-flip graph and the colouring
f is a k-flip colouring.
We shall mostly deal with a version of this problem restricted to regular edge-

coloured subgraphs (hence regular graphs), as this question already captures the
essence of the problem and reduces notation overload. Namely, given k ≥ 2, a d-
regular graph G and a strictly increasing positive integer sequence (a1, . . . , ak) such
that d = ∑k

j=1 a j , does there exist a colouring f : E(G) → {1, . . . , k} such that:

• E( j) spans an a j -regular subgraph, i.e, deg j (v) = a j for every v ∈ V (G) ;
• for every vertex v ∈ V (G), ek[v] < ek−1[v] < · · · < e1[v].
If such an edge-colouring exists then G is said to be an (a1, . . . , ak)-flip graph (in

particular, a k-flip graph) and (a1, . . . , ak) is called a flip sequence ofG. An illustrative
example is given in Fig. 1.
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v

N [v]

Fig. 1 Smallest known (3, 4)-flip graph having 16 vertices, with the subgraph induced by the closed neigh-
bourhood of any vertex v illustrated on the right

1.1 Major problems concerning flip graphs

The notion of flip graph gives rise to several natural problems:

1. Characterise flip sequences: Given a strictly increasing positive integer sequence
(a1, . . . , ak), is it a flip sequence of some graph?

2. Smallest order of an (a1, . . . , ak)-flip graph: Given a flip sequence (a1, . . . , ak),
determine the smallest order of a graph realising it.

3. Devise explicit constructions for flip graphs with two or more colours.
4. Interval flip. Find k-flip sequences of the form (1 + t, 2 + t, . . . , k + t).
5. Extend the notion of flip from counting colour occurrences in closed neighbour-

hoods to counting colour occurrences in t-closed neighbourhoods (a vertex is in
the t-closed neighbourhood of v if its distance from v is at most t).

6. Complexity of recognising a k-flip graph. Given a (possibly regular) graph G and
an integer k ≥ 2, determine whether it is a k-flip graph. The problem is clearly in
NP, but is it NP-complete?

We shall consider most of these questions in the sequel. The paper is organised as
follows.

Section 2 introduces the coloured Cartesian product techniquewhich is used several
times along this paper, together with a preliminary application using the family of
(r , c)-constant graphs, which are r -regular graphs such that for every vertex v, the
induced graph on N (v) contains exactly c edges.

Section 3 is about the flip problem with two colours. We develop techniques for
constructing (b, r)-flip graphs using Cartesian products. We prove that a necessary
and sufficient condition for (b, r) to be a flip sequence is 3 ≤ b < r ≤ (b+1

2

) − 1.
This theorem completely answers Problems 1, 4 above for flip sequences of length
two, supplies constructions as requested in Problem 3, and gives an upper bound for
Problem 2.
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Section 4 concerns the case of three or more colours. In particular, we prove that if
(a1, a2, a3) is a flip sequence, then a3 ≤ 2(a1)2. We provide a construction that comes
close to this bound. Interestingly, it is revealed that when at least four colours are used,
there are k-flip sequences where ak can be arbitrarily large even if a1 is fixed.

Section 5 concerns (r , c)-constant graphs and their applications to Problem 4 (inter-
val flip). We prove the second theorem mentioned in the abstract and use it to prove
that the interval [b, . . . , b2

4 − 5b3/2
2 ] is a flip sequence. We also propose a simple con-

struction showing that for b ≥ 3, the interval [b, . . . , 2b− 2] is a flip sequence, which
is useful with regards to the above result for small values of b.

Section 6 concerns Problem 5. We prove several results concerning the extension
of flip graphs to larger neighbourhoods.

Finally, Sect. 7 summarises the current work and offers further open problems.

2 The coloured Cartesian product technique

2.1 Cartesian products of edge-coloured graphs

TheCartesian product of graphswill be useful in the construction of flip-graphs.Due to
the additive nature of the degree and closed-neighbourhood sizes under the Cartesian
product, this allows us to consider its factors independently. Before doing so, we recall
the definition of Cartesian product and outline a number of its properties, including
edge-colouring inheritance.

Definition 1 (Cartesian product) The Cartesian product G � H of the graphs G and
H is the graph such that V (G � H) = V (G)× V (H) and there is an edge {uv, u′v′}
in G � H if and only if either u = u′ and vv′ ∈ E(H), or v = v′ and uu′ ∈ E(G).

The Cartesian product of graphs is commutative and associative, so the Cartesian
product of a finite set of graphs is well-defined. It also enjoys a number of additional
properties. In particular, it is vertex-transitive if and only if each of its factors is vertex-
transitive. More so, with an appropriate choice of generating set, the Cartesian product
of Cayley graphs is also a Cayley graph.

Let G1, . . . ,Gr be edge-coloured graphs. We extend the edge-colourings of the
Gi ’s to an edge-colouring of their Cartesian product in the natural way: the colour
of e = {u1u2 · · · ur , u′

1u
′
2 · · · u′

r } is the colour of the unique edge uiu′
i ∈ E(Gi ) for

which ui 	= u′
i . This colouring inheritance is illustrated in Fig. 2, with its properties

summarised in Lemma 1.

Lemma 1 Let G1, . . . ,Gr be edge-coloured by colour set [k] = {1, . . . , k}. Let G be
their edge-coloured Cartesian product with the inherited colouring from its factors.
Then for any i ∈ [k] and u1 · · · ur ∈ V (G):

degi (u1 · · · ur ) =
r∑

j=1

deg
G j
i (u j ) ,
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Fig. 2 Illustration of the
edge-colouring inheritance in
K3 � P3 from its factors, where
K3 is coloured blue and P3 is
coloured red

ei [u1 · · · ur ] =
r∑

j=1

e
G j
i [u j ] .

2.2 (r, c)-constant graphs and their sub-families

We recall constant link graphs, (r , b)-regular graphs, and introduce (r , c)-constant
graphs.Constant link graphs are those for which all subgraphs induced by open neigh-
bourhoods are isomorphic to some fixed graph H (the link). Problems concerning
which graphs H can be links is an old (mostly unsolved) problem stated first by Zikov
in 1964, which received attention over the years. For some references see [11–14].

Graphs are called (r , b)-regular if they are r -regular and all open neighbourhoods
induce a b-regular graph (hence e[v] = r + br

2 ). For a recent article and further
references see [12].

Generalising these two families, we define (r , c)-constant graphs to be r -regular
graphs in which for every vertex v, e(v) = c, hence e[v] = r + c.

Figure3 illustrates the hierarchy of several families of graphs in relation to (r , c)-
constant graphs.

2.3 Coloured Cartesian product lemmas

This subsection explores the useful tool of coloured Cartesian products (abbreviated
as CCP) via two lemmas. The first Lemma 2 describes how to construct a k-flip
graph from a family containing regular graphs satisfying prescribed conditions. The
second Lemma 3 describes how to construct k-flip graphs, k-flip sequences, (r , c)-
constant graphs, (r , b)-regular and constant-link graphs, from such existing graphs,
respectively. We also demonstrate some initial applications of these lemmas.

Lemma 2 (CCPLemma I) Let k ≥ 2 be an integer. Suppose H1, . . . , Hk are a1, . . . , ak
regular graphs respectively, with ai < a j for 1 ≤ i < j ≤ k. Furthermore, suppose

123



  106 Page 6 of 24 Graphs and Combinatorics           (2024) 40:106 

Fig. 3 Hierarchy of (r , c)-constant graphs and their sub-families of interest

that for 1 ≤ i < k,

max
u∈V (Hi+1)

e[u] < min
v∈V (Hi )

e[v].

Then G = �k
j=1Hj is a (a1, . . . , ak)-flip graph.

Proof Colour the edges of Hj using colour j , for 1 ≤ j ≤ k. Let G = �k
j=1Hj be

the corresponding CCP. Clearly then for every vertex w in G, given any 1 ≤ i < k,
degi (w) = ai < ai+1 = degi+1(w) and

ei+1[w] ≤ max
u∈V (Hi+1)

e[u] < min
v∈V (Hi )

e[v] ≤ ei [w]

and consequently G is an (a1, . . . , ak)-flip graph. 
�
Lemma 3 (CCP Lemma II) Let k ≥ 2 be an integer.

1. If, for 1 ≤ j ≤ q, (a j,1, . . . , a j,k) are k-flip sequences then (a1, . . . , ak) is a k-flip
sequence where ai = ∑q

j=1 a j,i .
2. If Hj for 1 ≤ j ≤ q are (r j , c j )-constant graphs, then there exists a graph G

which is a
(∑q

j=1 r j ,
∑q

j=1 c j
)
-constant graph.

3. If Hj for 1 ≤ j ≤ q are (r j , b)-regular graphs, then there exists a graph G which

is a
(∑q

j=1 r j , b
)
-regular graph.

4. If, for 1 ≤ j ≤ q, G j is a constant-link graph with link Hj , then �q
j=1G j is a

constant-link graph with link ∪q
j=1Hj .
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Proof We prove (i) for the case q = 2; the other claims and the extension to larger
q follow the same outline. Let (a1, . . . , ak) and (b1, . . . , bk) be k-flip sequences, so
there exists a graph G which is a (a1, . . . , ak)-flip graph, and a graph H which is a
(b1, . . . , bk)-flip graph.

Consider the CCP graph F = G � H . The colour degrees of a vertex v in V (F)

are ci = ai + bi for 1 ≤ i ≤ k and note that ci < c j for 1 ≤ i < j ≤ k. Also for
v = (x, y) ∈ V (F), we have that

ei [v] = ei [x] + ei [y] > e j [x] + e j [y] = e j [v]

for 1 ≤ i < j ≤ k. Hence F is a (c1, . . . , ck)-flip graph. 
�
Regular graphs with constant link are useful for flip graph construction, as ifG is b-

regular with constant link H where e(H) = c, then for any r such that b < r < b+ c,
and for any triangle free r -regular graph F , the CCP graph G � F , with G coloured
blue and F coloured red, is an (r +b)-regular graph with r red edges and b blue edges
incident with every vertex v and yet in N [v] there are just r red edges but b + c > r
blue edges. Hence G � F is a (b, r)-flip graph.

Similarly, (b, c)-regular graphs are useful for flip graph construction, as if G is a
(b, c)-regular graph and b < r < b + bc

2 then for any triangle free r -regular graph F ,
the CCP graph G � F , with G coloured blue and F coloured red, is an (r +b)-regular
graph with r red edges and b blue edges incident with every vertex v and yet in N [v]
there are just r red edges but b + bc

2 > r blue edges. Hence G � F is a (b, r)-flip
graph.

Clearly if G is a (b, c)-constant regular graph and b < r < r + c, then, as above,
for any r such that b < r < b + c, and for any triangle free r -regular graph F , the
CCP graph G � F is a (b, r)-flip graph.

Therefore, we have an abundance of known (b, c)-regular graphs, Cayley graphs,
vertex-transitive graphs and graphs with constant link as well as strongly regular
graphs, which can be used to construct a panoramic collection of flip-graphs via the
coloured Cartesian product.

3 Existence of (b, r)-flip graphs

This section settles the question: which pairs (b, r) form a flip sequence? We also
establish an upper bound for h(b, r), the smallest possible order of a (b, r)-flip graph.

Theorem 4 Let r , b ∈ N. If 3 ≤ b < r ≤ (b+1
2

) − 1 then there exists a (b, r)-flip
graph, and both the upper bound and lower bound are sharp.

We split the proof into two parts. We first prove that we must have r <
(b+1

2

)
(in

particular, since r > b, this implies b ≥ 3). Then we prove the rest of the theorem.
Before proceeding further, we need some notation describing edge-coloured triangles
rooted at some vertex.

Let B = blue = 1 and R = red = 2. In a graph G with edges coloured from
{B, R} and X ,Y , Z ∈ {B, R} a triangle rooted at a vertex v is said to be of type XY Z
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Type BBB Type BRB Type RRB Type BBR Type BRR Type RRR

v v v v v v

Fig. 4 All possible triangle types

at v if the two edges incident to v are coloured X and Y , and the third edge is coloured
Z (the types BRR and RBR are considered identical and the types RBB and BRB are
also considered identical). Hence, a triangle rooted at v can have one of six possible
types, illustrated in Fig. 4.

Let TXY Z (v) be the number of triangles of type XY Z rooted at v. We need the
following simple lemma.

Lemma 5 In a graph G with edges coloured from {B, R}, we have that

2
∑

v∈V
TRRB(v) =

∑

v∈V
TBRR(v) and 2

∑

v∈V
TBBR(v) =

∑

v∈V
TBRB(v).

Proof Consider a triangle with two edges coloured R and a single edge coloured B.
Each such triangle is of BRR-type for two vertices and is of RRB-type for a single
vertex. Summing over all such triangles yields the first equality. The second equality
is symmetrical by considering triangles with two edges coloured B and a single edge
coloured R. 
�
Proposition 6 In a (b, r)-sequence, we must have r <

(b+1
2

)
.

Proof Suppose that G = (V , E) is a (b, r)-flip graph equipped with a suitable colour-
ing. Note that since eB[v] = eB(v) + b and eR[v] = eR(v) + r , we have from the
definition of a flip graph that eB(v) − eR(v) > r − b. For any vertex v, the number of
edges coloured B (respectively R) in the open neighbourhood is equal to the number
of triangles rooted at v which have an edge coloured B (respectively R) not incident
to v, so:

eB(v) = TBBB(v) + TBRB(v) + TRRB(v) ,

eR(v) = TRRR(v) + TBBR(v) + TBRR(v) .

Using these equalities and Lemma 5, we obtain:

∑

v∈V
eB(v) − eR(v)

=
∑

v∈V
TBBB(v) + TBRB(v) + TRRB(v) − TRRR(v) − TBBR(v) − TBRR(v)

≤
∑

v∈V
TBBB(v) +

(
∑

v∈V
TBRB(v) − TBBR(v)

)

+
(

∑

v∈V
TRRB(v) − TBRR(v)

)
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=
∑

v∈V
TBBB(v) +

∑

v∈V
TBBR(v) −

∑

v∈V
TRRB(v)

≤
∑

v∈V
TBBB(v) + TBBR(v)

where the next to last step follows from Lemma 5. Observe that TBBB(v) + TBBR(v)

is the number of edges incident with two blue neighbours of v hence is at most
(b
2

)
,

thus

∑

v∈V
eB(v) − eR(v) ≤ |V |

(
b

2

)
.

It follows that there exists a vertex v ∈ V such that eB(v) − eR(v) ≤ (b
2

)
. Recalling

that r − b < eB(v) − eR(v) we have that r − b <
(b
2

)
, so r <

(b+1
2

)
. 
�

Proof (Proof of Theorem 4) That 3 ≤ b < r ≤ (b+1
2

) − 1 follows immediately from
Proposition 6. We show that given such r and b, a (b, r)-flip graph exists.

Consider the CCP graph G = Kr ,r � Kb+1 where the edges of Kb+1 are coloured
blue and the edges of Kr ,r are coloured red. By Lemma 1, it follows that every vertex
v in G has degB(v) = b and degR(v) = r . Moreover, we have that eB[v] = (b+1

2

)
and

eR[v] = r . Hence G is a (b, r)-flip graph. 
�

3.1 Upper bounds on h(b, r)

As the graph G in the proof of Theorem 4 has 2r(b + 1) vertices, it follows that
h(b, r) ≤ 2r(b + 1). On the other hand, we have already seen in Fig. 1 an example
of a (3, 4)-flip graph with 16 vertices. Hence h(3, 4) ≤ 16, so the aforementioned
bound is not tight. The next result offers a more general construction, considerably
improving the 2r(b + 1) upper bound.

Theorem 7 Let b, r ∈ N such that 3 ≤ b < r ≤ (b+1
2

) − 1. Then,

h(b, r) ≤ min

{
2(r + x)(b + 1 − x) : x ∈ Z, 0 ≤ x ≤ b, x +

(
b + 1 − x

2

)
> r

}
.

Proof Let x be an integer satisfying the theorem’s condition. Consider an edge-
colouring of Kr+x,r+x such that an x-factor is coloured B and an r -factor is coloured
R. Also consider Kb+1−x where all the edges are coloured B. Every vertex v of the
CCP graphG = Kr+x,r+x � Kb+1−x has degB(v) = b−x+x = b and degR(v) = r .
Moreover, eB[v] = x + (b+1−x

2

)
and eR[v] = r . By our choice of x , it follows that

eB[v] > eR[v]. 
�
The upper bound in Theorem 7 warrants further analysis. We first require a lemma.
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Lemma 8 Let b, r ∈ N such that 3 ≤ b < r ≤ (b+1
2

) − 1. Let x0 = �b − (1 +√
1 + 8(r − b))/2� − 1. Then, 2(r + x0)(b + 1 − x0)

= min

{
2(r + x)(b + 1 − x) : x ∈ Z, 0 ≤ x ≤ b, x +

(
b + 1 − x

2

)
> r

}
.

Proof Let g(z) = z + (b+1−z
2

) − r be a real-valued function. As 2(r + x)(b + 1− x)
is strictly decreasing in [0,∞), the claimed minimum, in integer value, is attained for
the largest possible integer 0 ≤ x0 ≤ b, such that g(x0) > 0. Rearranging, g(z) can
be written as a quadratic in z,

g(z) =
(
b + 1

2

)
− r +

(
1

2
− b

)
z + z2

2

which has a minimum, as well as distinct roots z± = b − 1∓√
1+8(r−b)
2 .

Then g(z) > 0 whenever z < z− or z > z+. Since the integer x0 we are seeking
must satisfy x0 ≤ b, then the only admissible case when g(x0) > 0 is when x0 < z−.
Sincewe seek the largest such integer, then x0 =

⌈
b− 1+√

1+8(r−b)
2

⌉
−1.What remains

is to ensure that x0 ≥ 0. It suffices to show that b >
1+√

1+8(r−b)
2 . Rearranging, we

require that (2b−1)2−1
8 > r − b. Indeed,

(2b − 1)2 − 1

8
= b2

2
− b

2
=

(
b + 1

2

)
− b > r − b.

Hence x0 is the largest integer for which the minimum is attained, as required. 
�
Substituting the value x0 obtained in Lemma 8 and using Theorem 7 we obtain the

following easily verified corollary:

Corollary 9 Let b, r ∈ N such that 3 ≤ b < r ≤ (b+1
2

) − 1. Then

h(b, r) ≤ 2

(
r + b + 1 −

⌊
5 + √

1 + 8(r − b)

2

⌋) ⌊
5 + √

1 + 8(r − b)

2

⌋
.

Notice that for the case b = r − 1, valid for all r ≥ 4, the minimum is obtained
at x0 = r − 4. The flip graph G = K2r−4,2r−4 � K4 outlined in Theorem 7 is an
(r , r − 1)-flip graph with 16r − 32 vertices. Even so, (r − 1, r)-flip graphs exist with
fewer than 16r − 32 vertices as seen from the (3, 4)-flip graph in Fig. 1.

3.2 Weak flip graphs

While (2, r)-flip graphs do not exist, weakening the flip constraint from e1[v] > e2[v]
to e1[v] ≥ e2[v] (yet still requiring r > b), an admissible colouring can be found such
that E(1) spans a b-regular subgraph and E(2) spans an r -regular subgraph. We term
such graphs (b, r)-weak-flip graphs.
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v

N [v]

Fig. 5 Smallest known (2, 3)-weak-flip graph having 12 vertices, with the subgraph induced by the closed
neighbourhood of any vertex v on the right

The CCP graph K3,3 � K3, with K3,3 coloured red and K3 coloured blue, is a
(2, 3)-weak-flip graph on 18 vertices. Figure5 illustrates the existence of a smaller
(2, 3)-weak-flip graph, having just 12 vertices.

Likewise, (1, r)-flip graphs do not exist. However, not even (1, r)-weak-flip graphs
exist.

Proposition 10 Let r ∈ N such that r > 1. There is no (1, r)-weak-flip graph.

Proof Consider first the case r > 2. Suppose that a (1, r)-weak-flip graph G exists.
Let v be a vertex in such a graph. Then e1[v] ≤ 1 + � r

2� < r ≤ e2[v] since r > 2. In
the case when r = 2, suppose that a (1, 2)-weak-flip graphG exists. Then by the above
argument, it follows that e1[v] = e2[v] = 2. Consider a vertex v with neighbours u, w

and x such that {v,w} and {v, u} are coloured 2 and {v, x} is coloured 1. Clearly {u, w}
must be coloured 1 since e1[v] = e2[v] = 2. But then u has some neighbour y different
from v and w, such that {u, y} is coloured 2. Hence e2[u] ≥ 3, a contradiction. 
�

4 Flipping with three or more colours

Unlike the case of two colourswhere (b, r)-flip sequences are completely characterised
in Theorem 4, for k ≥ 3 colours we do not have a full characterisation of all k-flip
sequences. Our first result, nonetheless, establishes a necessary condition for 3-flip
sequences.

Theorem 11 If (a1, a2, a3) is a 3-flip sequence, then a3 < 2(a1)2.

Proof Suppose on the contrary that (a1, a2, a3) is a flip sequence realised by some
graph G, but that 2a21 ≤ a3. We shall prove that for some vertex v of G, e1[v] ≤ e2[v]
or e1[v] ≤ e3[v].

123



  106 Page 12 of 24 Graphs and Combinatorics           (2024) 40:106 

For i ∈ {1, 2, 3}, let Ni (v) = {u ∈ V : {u, v} ∈ E(i)}. Clearly, there is a set of
(at least) e1[v] − (a1)2 edges of N [v] coloured 1, having both of their endpoints in
N2(v) ∪ N3(v). We may assume e1[v] − (a1)2 ≥ 0, otherwise we are done.

Now each of these e1[v] − (a1)2 edges forms a unique triangle with v, where only
one edge of the triangle is coloured 1. The other two edges of such a triangle contribute
two edges coloured using either 2 or 3, to some open neighbourhood. This means that
the total number of edges coloured using 2 or 3 in all open neighbourhoods is at least∑

v∈V 2
(
e1[v] − (a1)2

)
. Hence there is some vertex v with at least 2

(
e1[v] − (a1)2

)

edges coloured using 2 or 3 in its open neighbourhood. Therefore,

e2[v] + e3[v] ≥ a3 + a2 + 2e1[v] − 2(a1)
2.

But a3 + a2 + 2e1[v] − 2(a1)2 ≥ 2e1[v] since a3 + a2 − 2(a1)2 ≥ a3 − 2(a1)2 ≥ 0.
Hence e3[v] + e2[v] ≥ 2e1[v]. But this means that e1[v] ≤ e2[v] or e1[v] ≤ e3[v],

which is a contradiction since G is a flip graph. 
�

In view of Theorem 11, it is of interest to find construction of 3-flip sequences in
which a3 is quadratic in a1. To this end, we use the following proposition.

Proposition 12 Let a1, a2, a3 ∈ N such that a1 < a2 < a3.

1. If H is an (a2, a3)-flip graph for which e2[v] <
(a1+1

2

)
for each vertex v, then

(a1, a2, a3) is a 3-flip sequence.
2. Suppose that H1, H2 and H3 are, respectively, a1, a2 anda3 regular. If for i ∈ {1, 2},

we have that

max
u∈V (Hi+1)

e[u] < min
v∈V (Hi )

e[v]

then (a1, a2, a3) is a 3-flip sequence.

Proof To prove (i), consider the CCP graph G = H � Ka1+1 where H is coloured
using 2 and 3, and Ka1+1 is coloured using 1. Then G is a graph with colour degrees
ai for colour i ∈ {1, 2, 3}. Moreover, e3[v] < e2[v] <

(a1+1
2

) = a1[v]. Hence G is an
(a1, a2, a3)-flip graph and we are done.

For (ii), consider the CCP graph G = H1 � H2 � H3, where Hi is coloured using
i for i ∈ {1, 2, 3}. The result immediately follows by the conditions necessitated in
(ii). 
�

Constructing 3-flip sequences (a1, a2, a3) using Proposition 12 is relatively easy
when a2 and a3 are not too far apart. For example, through Theorem 7, we have seen
the existence of (r − 1, r)-flip graphs with e1[v] = r + 2 and e2[v] = r . Hence with
a2 = r − 1, a3 = r and a1 < a2 such that r + 2 <

(a1+1
2

)
, it follows that (a1, a2, a3)

is a 3-flip sequence. Note that we can take a1 = �√2r� for r ≥ 9. This shows hat we
can have a3 ≈ 0.5(a1)2, so Theorem 11 is tight up to a constant factor.

123



Graphs and Combinatorics           (2024) 40:106 Page 13 of 24   106 

4.1 Unbounded gap k-flip sequences

We have seen that for two or three colours, the largest element in a flip sequence must
be bounded above quadratically in the smallest element. A natural question is whether
this extends to four or more colours. We shall see that the answer is negative—indeed,
we shall see constructions where the smallest element is constant and yet the largest
element may be arbitrarily large.

We must first recall another handy graph product, the strong product, along with a
way to inherit an edge colouring from its factors.

Definition 2 (Strong product)The strong product H �K of two graphs H and K is the
graph such that V (H � K ) = V (H) × V (K ) and there is an edge

{
(u, v), (u′, v′)

}

in H � K if and only if either u = u′ and vv′ ∈ E(K ), or v = v′ and uu′ ∈ E(H),
or uu′ ∈ E(H) and vv′ ∈ E(K ).

Let H and K be two graphs with an edge-colouring from a set of colours C . We
extend the edge-colourings of H and K to an edge-colouring of H � K as follows.
Consider edge e = {

(u, v), (u′, v′)
}
in H � K ; if u = u′ then e inherits the colouring

of the edge vv′ in K , otherwise if u 	= u′ the colouring of the edge vv′ in H is inherited.
Note that the inherited colourings of H � K and K � H are different, even though
the two uncoloured graphs are isomorphic.

We are now in a position to prove the main result of this section.

Theorem 13 Let k ∈ N, k > 3. Then there is some constant m = m(k) ∈ N such that
for all N ∈ N, there exists a k-flip sequence (a1, a2, . . . , ak) such that a1 = m and
ak > N.

Proof Let K be the complete graph K2n where n >
k(k2 − 2k + 1)

4(k − 3)
. Since K is a

complete graph on an even number of vertices, K has a 1-factorisation. For 1 < i < k,
let k − i 1-factors be coloured using colour i and let the remaining edges be coloured
1. It follows then that every vertex v in K2n has

degK1 (v) = 2n − 1 −
(
k − 1

2

)

incident edges coloured 1 and degKi (v) = k − i incident edges coloured i for
1 < i < k. For convenience, define degKk (v) = 0. Observe that the sequence
degK1 (v), . . . , degKk (b) is strictly decreasing, noting that by the choice of n,

degK1 (v) − degK2 (v) >
k(k − 1)

k − 3
> 0.

Since K is a complete graph and each vertex v has the same number of incident edges
coloured i , then eKi [v] = n degKi (v) for 1 ≤ i ≤ k.
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We now show that for every vertex v in K , (k − 1)(eK1 [v] − eK2 [v]) > 4n2. Rear-
ranging and substituting for eK1 [v] and eK2 [v] in terms of n and k, we must show that

n >
k(k2 − 2k + 1)

4(k − 3)
. This follows by our choice of n.

Consider t ∈ N such that

t ≥ 4n2

(k − 1) min
1<i<k

{eKi [v] − eKi+1[v]} = 4n

k − 1
.

Let ρ = (k − 1)(2t + k − 2)

2
and let H be a ρ-regular bipartite graph. For 0 ≤ i ≤

k − 2, let t + i matchings of H be coloured using colour 2 + i .
Let G be the graph H � K , inheriting the edge-colourings of H and K respec-

tively. For a vertex u in H , let Gu be the subgraph of G induced by the vertices
{(u, w) : w ∈ V (K )} in G; note that Gu is isomorphic to K .

If an edge ux in H is coloured i , then all the edges in G between V (Gu) and
V (Gx ) are coloured i , by the inherited edge-colouring. Hence, if u in H and v in K
have degHi (u) and degKi (v) incident edges coloured i , respectively, then the vertex
(u, v) in G has degKi (u) + |V (K )| degHi (v) incident edges coloured i . Consequently,
by construction each vertex (u, v) in G has:

degGi
(
(u, v)

) =
{
2n − 1 − (k−1

2

)
i = 1

(k − i) + 2n(t + i − 2) 2 ≤ i ≤ k

which is strictly increasing.
Now, consider the vertex (u, v) in G. Let u1, . . . , uρ be the neighbours of u in H .

In G we have that every vertex in Gu has a neighbour in Gui for 1 ≤ i ≤ ρ, but for
1 ≤ i < j ≤ ρ, we have that there are no edges between Gui and Gu j in G, since H
is bipartite and ui and u j belong to the same partite set. Therefore, the edges coloured
i in the closed neighbourhood of (u, v) are:

1. those edges coloured i in the closed neighbourhood of v in each of the ρ +1 copies
of K (namely Gu,Gu1 , . . . ,Guρ ), totalling (ρ + 1)eKi [v] edges,

2. and a further eHi [u]|V (K )|2 edges from the matchings coloured i in H .

This is clearly exemplified in Fig. 6. By construction of H and K , it follows that
for any vertex (u, v) of G,

eGi [(u, v)] =
{

(ρ + 1)eK1 [v] i = 1

(ρ + 1)eKi [v] + 4n2(t + i − 2) 2 ≤ i ≤ k

which we now show to be strictly decreasing.
Firstly note that since ρ + 1 = (k − 1)t + (k−1

2

) + 1, then there exists κ ∈ R

such that κ > 1 and ρ + 1 = (k − 1)tκ . Now, recall that K has the property that
(k − 1)(eK1 [v] − eK2 [v]) > 4n2.
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Fig. 6 Illustration of the
edge-colouring inheritance in
K2,2 � K3 from its factors,
where K2,2 has red and blue
coloured 1-factor, and K3 is
coloured green. The edges in the
closed neighbourhood of (u, v)

are highlighted

Since κ > 1, it follows that

(ρ + 1)
(
eK1 [v] − eK2 [v]

)
= (k − 1)

(
eK1 [v] − eK2 [v]

)
(tκ) > 4n2t

and therefore since eK1 [v] > eK2 [v], we have that (ρ+1)eK1 [v] > (ρ+1)eK2 [v]+4n2t .
Consequently, eG1 [(u, v)] > eG2 [(u, v)] as required.

Now consider 2 ≤ i ≤ k − 1. By the choice of t and κ > 1, we have that

(ρ + 1)
(
eKi [v] − eKi+1[v]

)
= (k − 1)

(
eKi [v] − eKi+1[v]

)
(tκ)

> 4n2

= 4n2(t + i − 1) − 4n2(t + i − 2)

and therefore eGi [(u, v)] > eGi+1 [(u, v)].
It follows that G is a flip graph on k > 3 colours, such that for any vertex (u, v),

deg1
(
(u, v)

)
is only dependent on k and degk

(
(u, v)

)
increases with t . Since t is not

bounded from above in the construction, then given any N ∈ N, a sufficiently large t
can be found such that degk

(
(u, v)

)
> N . 
�

5 (r, c)-Constant graphs, long flipping intervals, and sufficient
conditions for k-flip sequences

This section explores the notion of (r , c)-constant graphs, first introduced in Sect. 2,
and their use in constructing long flipping intervals. This will then allow us to deduce
a sufficient condition for k-flip sequences.

5.1 Existence of (r, c)-constant graphs

We recall that an (r , c)-constant graph H is an r -regular graph such that for every
vertex v ∈ V (H), e(v) = c. We have already seen, as summarised in Fig. 3, that many
familiar classes of graphs are subclasses of (r , c)-constant graphs.
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An inevitable problem regarding (r , c)-constant graphs is: given a positive integer
r , for which integers c, 0 ≤ c ≤ (r

2

)
, does there exist an (r , c)-constant graph?

The spectrum of r , denoted by spec(r), is the set of all such integers c such that
an (r , c)-constant graph exists. The following theorem shows that spec(r) contains
nearly all c in the interval

[
0,

(r
2

)]
.

Theorem 14 (Existence of (r , c)-constant graphs) Let r ∈ N.

1. For every integer c such that 0 ≤ c ≤ r2

2
− 5r

3
2 , c ∈ spec(r).

2. Suppose k ∈ N and r ≥ 3k. Then
(r
2

) − k /∈ spec(r).

Proof First recall that for every r , c ∈ N such that 0 ≤ c ≤ r2/2 − 5r3/2, there are
positive integers a1, . . . , as summing to r such that

∑s
j=1

(a j
2

) = c; see [15] and [16],
Lemma 3.4. Consider the Cartesian product G = �s

j=1Kaj+1. Then G is r -regular

with r = ∑s
j=1 a j , and e(v) = ∑s

j=1

(a j
2

) = c, so (i) follows.
We proceed to prove (ii). Suppose the contrary, and let H be an r -regular graph

where each vertex v has e(v) = (r
2

) − k. Then every vertex in N (v) has at least r − k
neighbours in N [v].

Let x be a vertex in N (v) with at most r − 1 neighbours in N [v]. Observe that the
k non-edges in the subgraph induced by N [v] span at most 2k vertices. Hence there
are r + 1 − 2k ≥ k + 1 vertices in N [v], including v, whose r neighbours are all in
N [v] and therefore they are all neighbours of x .

Now consider N [x], which contains some vertexw not in N [v], since x has at most
r − 1 neighbours in N [v]. Then this vertex w is not adjacent to at least k + 1 vertices
in N [x] ∩ N [v] (those having degree r in N [v]). Therefore w has at most r − k − 1
neighbours in N [x]. Consequently, e(x) ≤ (r

2

) − k − 1, a contradiction. 
�

5.2 Flipping intervals and k-flip sequences

The usefulness of (r , c)-constant graphs stems from the fact that together with CCP,
they serve as the building blocks for long interval flips. In particular, we obtain a
sufficient condition for k-flip sequences.

Theorem 15 Let b ∈ N.

1. If b ≥ 101 then
[
b, b +

⌊
1
4

(
b2 − 10b

3
2
)⌋]

is a flipping interval.

2. If b ≥ 3 then [b, 2b − 2] is a flipping interval.

Proof For (i), consider the interval [b, b + k] where k = �(b2 − 10b
3
2 )/4�. Since

b ≥ 101, we have k ≥ 12. Set M1 = �b2/2 − 5b3/2�. For 1 ≤ j ≤ k, set Hj to be a
(b + j − 1, M1 − 2( j − 1))-constant graph which exists by Theorem 14 and observe
M1 ≥ 2k ≥ 2( j − 1) for 1 ≤ j ≤ k. Consider the CCP graph G = �k

j=1Hj where
Hj is coloured using colour j . Then by Lemma 2, G is a (b, b + 1, . . . , b + k)-flip
graph and therefore (i) follows.

We now prove (ii). Consider the triple (b+ j, b+ 1− j, 2 j) where 0 ≤ j ≤ b− 2.
Consider a regular bipartite graph H of degree

∑b−2
j=1 2 j = (b − 1)(b − 2), where a

2 j-factor of H is coloured j for 1 ≤ j ≤ b − 2.
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Wemay take H to be Kn,n where n = (b−1)(b−2). Now consider the CCP graph

G = H �
(
�b−2

j=1Kb+1− j

)
where Kb+1− j is coloured j for 1 ≤ j ≤ b − 2.

In every vertex v of G, for 1 ≤ j ≤ b−2, deg j (v) = b+ j which is increasing and

e j [v] = (b+1− j
2

) + 2 j , which is decreasing. Hence G is a (b, b + 1, . . . , 2b − 2)-flip
graph. 
�

We note that for b ≤ 107 the interval [b, 2b−2] contains [b, b+�(b2−10b
3
2 )/4�].

Corollary 16 (Sufficient condition for k-flip sequences) Suppose that k ≥ 2. Let 3 ≤
a1 < a2 < · · · < ak be a sequence of integers such that either ak ≤ 2a1 − 2 or

ak ≤ a1 +
⌊
1
4

(
(a1)2 − 10(a1)

3
2

)⌋
, then (a1, . . . , ak) is a k-flip sequence.

Proof In both cases, the sequence (a1, . . . , ak) is a subsequence of a flipping interval
in Theorem 15 and hence a k-flip sequence, as we can consider from the construction
of (i) or (ii) in Theorem 15 the edge-induced subgraph by the colours corresponding
to the subsequence. 
�

Observe that the existence of (r , c)-constant graphs can be used to construct a wider
class of graphs than just flip graphs. Namely k-edge coloured graphs, with prescribed
colour degrees and edge-coloured neighbourhood sizes, in which for all vertices v,
deg j (v) = r j and e j [v] = m j for some positive integers r j ,m j satisfying m j ≥ r j ,
1 ≤ j ≤ k. To achieve this, we only need to assure the existence of (r j , c j )-constant
graphs Hj such that m j = r j + c j for 1 ≤ j ≤ k, and then consider the CCP graph
�k

j=1Hj .

6 Existence of t-neighbourhood flip graphs

Wehave so far considered flip colouringswith regards to the immediate neighbourhood
of a vertex. A natural extension of this problem, as outlined in Problem 5 in the
introduction, is to consider the neighbourhood consisting of all vertices at a distance
(at most) t from v.

Before proceeding further, we require an adaptation of our existing notation. Let
k ∈ N and let G be a graph with an edge-coloring from {1, . . . , k}. As before, E( j) is
the set of edges coloured j ∈ {1, . . . , k} in G.

1. For two vertices u and v, d(u, v) is the distance between u and v, i.e., the length
of a shortest path between the two vertices.

2. For a vertex v and t ∈ N, Nt (v) = {u ∈ V (G) : 1 ≤ d(u, v) ≤ t} is its open
t-neighbourhood.

3. For a vertex v and t ∈ N, Nt [v] = Nt (v) ∪ {v} is its closed t-neighbourhood.
4. For a vertex v and t ∈ N, e j,t (v) = |E( j) ∩ E (Nt (v))|.
5. For a vertex v and t ∈ N, e j,t [v] = |E( j) ∩ E (Nt [v])|.

By �(G) and g(H) we shall denote, as usual, the maximum degree of G and
the girth (shortest cycle length) of G, respectively. We now extend our general flip
colouring problem to t-neighbourhoods: Given a graph G = (V , E), and k, t ∈ N
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such that k ≥ 2, does there exist an edge-colouring f : E(G) → {1, . . . , k} such that
for every vertex v

• deg j (v) > degi (v) for 1 ≤ i < j ≤ k (forcing global majority e j (G) > ei (G)),
• for 1 ≤ s ≤ t , e j,s[v] < ei,s[v] for 1 ≤ i < j ≤ k (forcing opposite majority
order up to a distance t from v, with respect to the global e j (G) and the local
deg j (v)).

If such a colouring exists, then G is said to be a ([t], k)-flip graph (with respect to
f ). When we do not concern ourselves with the number of colours used, we simply
say that G is a [t]-flip graph.

As before, we shall mostly consider amore restricted version of this problem,where
for every j ∈ {1, . . . , k}, the edge set E( j) spans a regular subgraph of degree a j ,
where a1 < a2 < · · · < ak and resulting in a ([t], (a1, . . . , ak))-flip graph.

We shall restrict to the case of two colours, demonstrating the existence of ([t], 2)-
flip graphs from twodifferent perspectives, namely throughCayley graphs and packing
arguments.

6.1 Constructing
([t], 2)-flip graphs through Cayley graphs

This subsection is devoted to constructingof ([t], 2)-flip graphs throughCayleygraphs.
Let � be an abelian group and let S be a subset of � such that S is inverse-closed

and does not contain the identity element. Recall that the Cayley graph Cay (�; S) is
a graph with vertex set � and edge set {{g, gs} : g ∈ �, s ∈ S}. The set S is often
termed as the connecting set of the Cayley graph.

By 0 we shall denote the all-zeros vector in Z
n
2. Given any i ∈ {1, . . . , n}, let ei

be the vector in Z
n
2 which is 1 at the i th position, and 0 everywhere else. Given any

1 ≤ s ≤ n and 0 ≤ j ≤ n − s, we denote by Ws, j the set of all binary vectors with
the first s entries all zero and exactly j nonzero subsequent entries, namely

Ws, j =
{

w ∈ Z
n
2 : w ·

(
s∑

i=1

ei

)

= 0 ∧ w ·
(

n∑

i=s+1

ei

)

= j

}

.

Having established our working notation, we proceed to prove our main result for
this subsection.

Theorem 17 Let s, t ∈ N, t < s. There exists a ([t], (2s − 1, 2s))-flip graph.

Proof Let n = 2s + s. Consider B = span{e1, . . . , es}\{0} and notice that |B| =
2s − 1. Let R = {es+1, . . . , en}; by our choice of n, we have that |R| = 2s . Consider
Cay

(
Z
n
2; R ∪ B

)
with the edge-colouring f : E → {1, 2} such that given v ∈ Z

n
2 and

α ∈ R ∪ B:

f ({v, αv}) =
{
1, α ∈ B

2, α ∈ R

Note that R ∪ B spans Zn
2, R ∪ B is inverse-closed, and R ∩ B = ∅. Hence, f is

well-defined.
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Since a Cayley graph is vertex-transitive, it suffices to consider a single vertex.
Consider 0 ∈ Z

n
2; by the edge-colouring f , we have that

deg1(0) = 2s − 1 < 2s = deg2(0).

Now, N1(0) = R ∪ B; we will add each of R and B to N1(0) so that we find the
vertices in N2(0). Since B∪{0} is a vector space, then in particular B+B = B. On the
other hand, adding B to R results in the set B+Ws,1. Hence, (R∪B)+B = B+Ws,1.
Since neither R nor B includes 0, it follows that (R ∪ B) ∩ (B + Ws,1) = ∅ and
therefore B +Ws,1 ⊆ N2(0). Likewise, adding R to B gives B +Ws,1 once more and
R + R = Ws,2. Therefore,

N2(0) = (
B + Ws,1

) ∪̇ Ws,2

and repeating the above argument for 1 ≤ j < t , we get that:

N j+1(0) = (
B + Ws, j

) ∪̇ Ws, j+1.

Note that for w ∈ Ws, j , B + w is a clique isomorphic to K2s−1 since w is not
in the span of B. More so, for w1,w2 ∈ Ws, j such that w1 	= w2, we have that

(B +w1) ∩ (B +w2) = ∅. Therefore, (2s − 1)
(n−s

j

) = (2s − 1)
(2s
j

)
edges coloured 1

arise between Ws, j and B + Ws, j . Observe also that (R + N j (0)) ∩ N j (0) = ∅, and
therefore the subgraph induced by N j (0) contains no edges coloured 2.

The edges coloured 1 between N j (0) and N j+1(0) arise by adding B to Ws, j and

therefore by our previous remark there are (2s − 1)
(2s
j

)
such edges. Meanwhile, the

edges coloured 2 between N j (0) and N j+1(0) arise by adding R to N j (0). Adding R

to Ws, j results in (2s − j)|Ws, j | = (2s − j)
(2s
j

)
edges coloured 2 between N j (0) and

N j+1(0). On the other hand, adding R to B+Ws, j−1 maps each clique in B+Ws, j−1
to a total of 2s − j + 1 cliques in B + Ws, j , with a perfect matching between every

such pair of cliques. Therefore, there are an additional (2s −1)(2s − j+1)
( 2s

j−1

)
edges

coloured 2 between N j (0) and N j+1(0).
By our previous remark, the subgraph induced by N j+1(0) contains no edges

coloured 2 and hence it follows that:

e2, j+1[0] = e2, j [0] + (2s − 1)(2s − j + 1)

(
2s

j − 1

)
+ (2s − j)

(
2s

j

)
(1)

while between the vertices in N j+1(0) there are
(n−s

j

) = (2s
j

)
cliques coloured 1 which

are isomorphic to K2s−1 and therefore:

e1, j+1[0] = e1, j [0]+
(
2s − 1

2

)(
2s

j

)
+ (2s − 1)

(
2s

j

)
= e1, j [0]+

(
2s

2

)(
2s

j

)
. (2)
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Now,

(2s − 1)(2s − j + 1)

(
2s

j − 1

)
+ (2s − j)

(
2s

j

)
= (2s − 1) j

(
2s

j

)
+ (2s − j)

(
2s

j

)

≤ (2s − 1)( j + 1)

(
2s

j

)

<

(
2s

2

)(
2s

j

)

where the last inequality follows from j + 1 ≤ t ≤ s − 1 < 2s
2 . Consequently, from

(1) and (2), we have for 1 ≤ j < t that if e2, j [0] < e1, j [0], then

e2, j+1[0] < e1, j+1[0] . (3)

Hence, it only remains to show that e1,1[0] > e2,1[0]. By choice of R and B, we
have that the vertices of B in Cay

(
Z
n
2; R ∪ B

)
induce the complete graph K2s−1 and

therefore

e1,1[0] = (2s − 1) +
(
2s − 1

2

)
=

(
2s

2

)

while the the vertices in R are all linearly independent and hence e2,1[0] = 2s . Hence,
indeed, e1,1[0] > e2,1[0]. 
�

6.2 Constructing ([t], 2)-flip graphs through packings

In this subsection we construct ([t], 2)-flip graphs using two classical graph theoretic
results, concerned with the existence of r -regular graphs with large girth, and with
graph packings.

Theorem 18 (Erdős-Sachs [17–19]) Given integers r ≥ 2 and k ≥ 3, there are
infinitely many connected r-regular graphs with girth at least k.

Theorem 19 (Sauer-Spencer-Catlin [20, 21]) Let G and H be two graphs on n ver-
tices, such that 2�(G)�(H) < n. Then there exists a packing of G and H into an n
vertex set, with no overlapping edges.

A rooted tree of is ( j, b)-perfect if every internal vertex has b children and all leaves
are at distance j from the root.

Theorem 20 Let t ∈ N. There exist ([t], 2)-flip graphs.
Proof Let b, r ∈ N such that for some q ∈ N, q ≥ 2, we have that (q + 1)b ≥ r ≥
2b + 1 and b ≥ 2(q + 3)t . We will construct a

([t], (2b, r))-flip graph.
Suppose that G∗ and H∗ are connected graphs such that G∗ is r -regular with girth

g(G∗) > 2((q + 3)b)t , and H∗ is b+ 1 regular with sufficiently large girth. Note that
L(H∗), the line graph of H∗, is 2b-regular. We shall assume subsequently that G∗ and

123



Graphs and Combinatorics           (2024) 40:106 Page 21 of 24   106 

H∗ are as large as necessary. The existence of such graphs G∗ and H∗ is guaranteed
by Theorem 18.

Let p, p′ ∈ N such that 2�(G∗)�(L(H∗)) < p |V (G∗)| = p′ |V (L(H∗))|. Then
let G = pG∗ and H = p′L(H∗). Since G and H are the union of disjoint copies of
G∗ and L(H∗) respectively, we have that �(G) = �(G∗) and �(H) = �(L(H∗)).
Furthermore, g(G) = g(G∗). We will colour the edges of H using 1 and the edges of
G using 2.

Consider the vertex v = {x, y} in H (so xy is an edge of some copy of H∗). Since
the girth of H∗ is sufficiently large, and in particular much larger than t , it follows
that in H∗, x and y are roots of two disjoint copies of a ( j + 1, b)-perfect tree T , for
1 ≤ j ≤ t . Joining these two trees by the edge {x, y}, the line graph of the resulting
graph is two copies of some block graph with (b+ 1)-cliques, coalesced at the vertex
{x, y}. The number of (b + 1)-cliques is, by virtue of T being a ( j + 1, b)-perfect
tree,

2

⎛

⎝
j−1∑

i=0

bi

⎞

⎠ = 2

(
b j − 1

b − 1

)

and consequently, noting that all the edges in H are coloured 1, we have that

eHj,1[v] = 2

(
b j − 1

b − 1

)(
b + 1

2

)
= (b j+1 − b)(b + 1)

b − 1
> b j+1 (4)

for 1 ≤ j ≤ t .
Now, these two graphs G and H can be packed by Theorem 19 into a graph Q with

no overlapping edges, while preserving their edge colourings. By this packing, Q is
r + 2b regular, where every vertex has 2b incident edges coloured 1 and r incident
edges coloured 2. We will show that for any vertex v, e j,1[v] > e j,2[v] in Q for
1 ≤ j ≤ t , and hence Q is a ([t], (2b, r))-flip graph.

We first compute an upper bound for |N j [v]| for any v ∈ V (Q), observing that
as Q is r + 2b regular, and G∗ and H∗ are connected and can be arbitrarily large, it
follows that N j−1[v] is strictly contained in N j [v] for 2 ≤ j ≤ t . Firstly observe that
for an s-regular graph we have that

|N j [v]| ≤ 1 + s
j−1∑

i=0

(s − 1)i < 2s j .

Since Q is r + 2b regular and r ≤ (q + 1)b, by the inequality it holds for 1 ≤ j ≤ t
that

|N j [v]| < 2(r + 2b) j ≤ 2((q + 3)b) j .
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Due to the girth condition on G, we have that for 1 ≤ j ≤ t , g(G) > |N j [v]|. Hence,
the subgraph in Q induced by the edges coloured 2 in N j [v] is acyclic, and therefore

eQj,2[v] < |N j [v]| < 2((q + 3)b) j ,

while by (4)

eQj,1[v] ≥ eHj,1[v] ≥ b j+1.

Therefore, for 1 ≤ j ≤ t , to flip the majority in the j th neighbourhood of v we
require that 2((q + 3)b) j ≤ b j+1, which simplifies to 2(q + 3) j ≤ b, which is the
case since 2(q + 3)t ≤ b and j ≤ t . Hence Q is a ([t], (2b, r))-flip graph. 
�

7 Concluding remarks and open problems

We have provided an in-depth treatment of most of the problems mentioned in the
introduction, yet, nonetheless, several open problems remain. In particular, the com-
plexity aspect of flip sequences and flip graphs (Problems 6). We next summarise a
few additional open problems.

We have seen a comprehensive treatment of the two-colour case in Sect. 3. However,
with it still remains open the determination of h(b, r), the smallest order of an (b, r)-
flip graph.

Problem Determine h(b, r) or at least obtain a nontrivial lower bound.

For three or more colours, Problem 2 remains entirely open.
Regarding three colors, in Theorem 11 we have seen a necessary condition for a

sequence (a1, a2, a3) to be a 3-flip sequence. In view of this theorem, it is of interest to
find constructions of 3-flip sequences (a1, a2, a3) with as large as possible a constant
c such that a3 = c(a1)2, where we have seen that 1

2 ≤ c ≤ 2.

Problem Determine the supremum over all constants c such that there exist infinitely
many 3-flip sequences (a1, a2, a3) satisfying a3 ≥ c(a1)2.

Whilst for two and three colours we have a necessary condition for flip sequences,
namely that the largest colour-degree is atmost quadratic in the smallest colour-degree,
we have proved in Theorem 13 that there is no such condition for k ≥ 4 colours. In
fact, we have shown that there exists some m(k) ∈ N such that given any N ∈ N,
there is a k-flip sequence (a1, . . . , ak) where a1 = m(k) and ak > N . Explicitly from
our construction we establish a linear upper bound on m(k).

Problem Let k ∈ N, k ≥ 4. What is the minimum value of m(k) ∈ N such that for all
N ∈ N, there is a k-flip sequence (m(k), a2, . . . , ak) where ak > N?

We have explored the relationship between the smallest and largest colour-degrees,
however for four colours and higher, in light of Theorem 13, it is worth exploring
the relationship between the other intermediate colour-degrees and the largest colour-
degree. We pose the following problem.
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Problem For k ≥ 4, what is the largest integer q(k), q(k) < k, such that there exists
some h(k) ∈ N and for all N ∈ N, there is a k-flip sequence (a1, . . . , ak) where
aq(k) = h(k) and ak > N?

Our work in this paper establishes that q(k) ≥ 1 for all k ≥ 4.
Given the demonstrated usefulness of (r , c)-constant graphs, it is of interest to

advance our knowledge concerning spec(r).

Problem Determine spec(r), or at least improve upon the bounds given in Theorem
14 for membership and non-membership in spec(r).

We note that the graphs constructed in the proof of Theorem 15 are substantially
large, as are the graphs constructed to demonstrate the existence of (r , c)-constant
graphs. It is therefore of interest to find smaller (r , c)-constant graphs, especially in
light of Problem 2.

Problem Find lower and upper bounds to

g(r , c) = min {|V (G)| : G is an (r , c)−constant graph} .

Lastly, Sect. 6 dealt with the extension of the flip problem to the t th neighbourhood.
In particular we illustrated two distinct constructions for the case of two colours.
Problems 1–5 naturally extend to this generalisation and remain to be studied. In
particular, define b(t) = min {b : ([t], (b, r))−flip graph exists}. Observe that for t ≥
2, the proof of Theorem 17 gives b(t) ≤ 2t+1 − 1.

Problem For t ∈ N, t ≥ 2 determine b(t).

Another interesting problem is to consider weakening the condition for the t-
neighbourhood flipping to only require the flip to occur at select neighbourhood levels,
rather than for all levels up to some distance t (as was required in Sect. 6). In particular,
once can consider requiring the flip to occur:

• strictly at a select level,
• at alternating levels up to some distance t .

This allows one to consider triangle-free graphs, which cannot be considered for
the flip-colouring problems considered in this paper.
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