
All feedback arc sets of a random Turán tournament have

bn/kc − k + 1 disjoint k-cliques (and this is tight) ∗

Safwat Nassar † Raphael Yuster ‡

Abstract

What must one do in order to make acyclic a given oriented graph? Here we look at the

structures that must be removed (or reversed) in order to make acyclic a given oriented graph.

For a directed acyclic graph H and an oriented graph G, let fH(G) be the maximum number

of pairwise disjoint copies of H that can be found in all feedback arc sets of G. In particular,

to make G acyclic, one must at least remove (or reverse) fH(G) pairwise disjoint copies of H.

Perhaps most intriguing is the case where H is a k-clique, in which case the parameter is denoted

by fk(G). Determining fk(G) for arbitrary G seems challenging.

Here we essentially answer the problem, precisely, for the family of k-partite tournaments.

Let s(G) denote the size of the smallest vertex class of a k-partite tournament G. It is not

difficult to show that fk(G) ≤ s(G)− k + 1 (assume that s(G) ≥ k − 1).

Our main result is that for all sufficiently large s = s(G), there are k-partite tournaments for

which fk(G) = s(G) − k + 1. In fact, much more can be said: a random k-partite tournament

G satisfies fk(G) = s(G)− k + 1 almost surely (i.e. with probability tending to 1 as s(G) goes

to infinity). In particular, as the title states, fk(G) = bn/kc − k+ 1 almost surely, where G is a

random orientation of the Turán graph T (n, k).

1 Introduction

All graphs in this paper are finite and simple. An orientation (a.k.a. oriented graph) is obtained by

assigning a direction to each edge of an undirected graph. Important classes of oriented graphs are

tournaments which are orientations of a complete graph and multipartite tournaments which are

orientations of complete multipartite graphs. A multipartite tournament with k parts is a k-partite

tournament. For further results and applications of tournaments and multipartite tournaments see

the textbook [5]. An oriented graph without directed cycles is called a directed acyclic graph. In

this paper acyclic graphs always refers to directed acyclic graphs.
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A natural meta question, studied by various researchers, is the “complexity” of an orientation

in terms of its directed cycles. In other words, what must one do in order to make acyclic a given

orientation? In order to address such questions one must inevitably look at feedback arc sets.

For a directed graph G, a feedback arc set is a set of edges covering every directed cycle.

Equivalently, it is a spanning subgraph whose complement is acyclic. A feedback arc set is minimal

if removing an edge from it results in a non-feedback arc set. Let F (G) be the set of all minimal

feedback arc sets of G and let A(G) denote the set of maximal acyclic subgraphs of G. Observe that

A(G) consists of the complements of the elements of F (G). Another simple property to observe

is that all elements of F (G) are themselves acyclic. Consequently, an element of F (G) has the

property that reversing (instead of removing) its edges also converts G to an acyclic graph.

The combinatorial and computational aspects of F (G) and its complement A(G) have been

studied quite extensively, both for general digraphs as well as for tournaments. Let us just mention

here that for a tournament T , the set F (T ), in general, has a complicated structure; indeed it is

NP-Hard to find an element of F (T ) with minimum size [4]. Similarity, A(T ) has a complicated

structure; while it is trivial that there are elements of A(T ) whose chromatic number is at least√
|T |, it is an open problem to determine (in terms of |T |) the asymptotics of the largest chromatic

number of an element of A(T ) [1, 8, 11]. There are quite a few nontrivial questions on F (T ) and

A(T ) when considering random tournaments. For example, almost surely, the minimum size of a

feedback arc set of a random n-vertex tournament is 0.5
(
n
2

)
− Cn3/2 + o(n3/2) but the exact value

of C is not known [6, 14].

This paper is about a basic problem on the structure of feedback arc sets. For an acyclic graph

H and an oriented graph G, let fH(G) be the maximum number of pairwise disjoint copies of H

that can be found in all feedback arc sets of G (if H is not acyclic then clearly fH(G) = 0 as the

minimal feedback arc sets, being acyclic, do not contain H). In particular, to make G acyclic, one

must always at least remove (or, equivalently, reverse the edges of) fH(G) pairwise disjoint copies

of H. Perhaps most intriguing is the case where H is a very dense object, namely, a k-clique,

in which case the parameter is denoted by fk(G). Notice that an acyclic k-clique is the (unique)

transitive tournament on k vertices. Determining fk(G) for arbitrary G seems challenging.

If G is k-chromatic, then trivially fk+1(G) = 0, but how large can fk(G) be, and are there cases

where it is always very large? To answer this question we must look at the densest k-chromatic

orientations, namely at k-partite tournaments. For a k-partite tournament G, let s(G) denote the

size of its smallest vertex class. As each k-clique of G is a transversal of the vertex classes, obviously

there are at most s(G) vertex-disjoint k-cliques in G, so fk(G) ≤ s(G) is straightforward. But recall

that we are not simply asking for vertex-disjoint k-cliques in G. Rather, we seek a much stronger

requirement: we are asking for vertex-disjoint k-cliques in all feedback arc sets of G. In fact, it is

not difficult to prove that fk(G) ≤ s(G)−k+1 (or fk(G) = 0 if s(G) ≤ k−1). Indeed, suppose that

the vertex classes of G are V1, . . . , Vk, where |Vk| = s(G). Let u1, . . . , uk−1 be k−1 distinct vertices
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of Vk. Consider the spanning subgraph of G obtained by removing all the edges connecting ui to

all the vertices of Vi. It is clearly a feedback arc set as its complement is a forest of stars. Hence,

there is a minimal feedback arc set in which ui does not appear in any k-clique. So, the maximum

number of pairwise disjoint k-cliques we can find in this minimal feedback arc set is s(G)− k + 1.

But does it get any worse than that? Or perhaps the above construction is a “worst example”

in the sense that the obstacle is that there are these k − 1 vertices in the smallest part which are

forced to isolation with another part in some feedback arc set? Indeed, a corollary of our main

result is that for most k-partite tournaments, it cannot get any worse than that. To state our main

result we need to recall the notion of random orientations. Let T (n1, . . . , nk) denote the probability

space of all k-partite tournaments with ni vertices in the ith vertex class. That is, the orientation

of each edge is selected uniformly at random, and each choice is independent of all other choices.

Assume by symmetry that nk = minki=1 ni. Hence, for each G ∼ T (n1, . . . , nk) we have s(G) = nk.

Theorem 1. Let G ∼ T (n1, . . . , nk). With probability 1−onk
(1) it holds that fk(G) = s(G)−k+1.

Hence, not only does there exist a k-partite tournament G with fk(G) = s(G) − k + 1, but,

in fact, most k-partite tournaments are such. Observe also that it is trivially inevitable to speak

about most k-partite tournaments and not all k-partite tournaments. Indeed, to take it to extreme,

if G itself is an acyclic k-partite tournament, then its unique feedback arc set is the empty graph

and fk(G) = 0 is this case. Hence, Theorem 1 is, in this sense, best possible not only in the exact

value fk(G) = s(G)− k + 1, but also in the statement about it holding almost always.

It is worth pointing out the special case where the ni’s are as equal as possible. Indeed, as

the expression s(G) − k + 1 only involves the size of the smallest vertex class, it suffices to prove

Theorem 1 in the most difficult case where all the ni’s are as equal as possible. Let therefore T (n, k)

denote the probability space of all orientations of the Turán graph T (n, k) (such orientations are

called Turán tournaments). So here the total number of vertices is n, each vertex class is of size

bn/kc or dn/ke, and G ∼ T (n, k) has s(G) = bn/kc. So equivalently, it suffices to prove that for

G ∼ T (n, k), with probability 1− on(1) it holds that fk(G) = bn/kc − k + 1.

Perhaps what makes proving Theorem 1 rather involved is that although we are looking at a

random structure (in this case the symmetric probability space of all k-partite tournaments), when

we want to say that some statement holds for all feedback arc sets, we must account for the fact that

surely there are many minimal feedback arc sets that look very far from typical random objects

(for example, for sure there are always these minimal feedback arc sets with isolated vertices).

Also, there are many examples in extremal graph theory where although some obvious obstacles

for containing a spanning subgraph (say, isolated vertices) are simple to identify, it is not easy to

prove that these are the only obstacles [3, 9, 12].

The case k = 2 of Theorem 1 has a fairly routine proof, which we present in Section 3 as a

warm-up. However, the proof for k ≥ 3 is by far more involved and its proof comprises Sections
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4,5,6. In Section 4 we set up some particular properties that are guaranteed to exist with high

probability in a random Turán tournament. Sections 5 and 6 assume, therefore, that a Turán

tournament is given with all these properties. In Section 5 we build (using probabilistic arguments)

an absorber that will help us to gradually build the k-cliques from smaller r-cliques for r = 2, . . . , k

without “getting stuck” in the process. The iterative process itself is described in Section 6. The

next section sets up some preliminaries used throughout the paper.

2 Some preliminaries

As mentioned in the introduction, it suffices to prove Theorem 1 for the probability spae of Turán

tournaments, namely when each vertex class is of size bn/kc or dn/ke. Furthermore, it suffices to

prove it in the case where k|n. Indeed, if not, then we can just remove a single vertex from each part

with dn/ke vertices so that all parts have size bn/kc. Equivalently, instead of repeatedly using n/k

each time, it is slightly more convenient to assume that each part has size n and there are k parts.

We therefore let R(n, k) = T (nk, k) denote the probability space of all k-partite tournaments with

n vertices in each part. An equivalent formulation of Theorem 1 which will be more convenient to

prove is therefore the following:

Theorem 2.1. Asymptotically almost surely, T ∼ R(n, k) has the property that every element of

F (T ) has n− k + 1 pairwise disjoint k-cliques.

The following are some standard notations that will be repeatedly used. Edges of directed

graphs are denoted by ordered pairs (u, v) where v is called an out-neighbor of u and u is called an

in-neighbor of v. Edges of undirected graphs are denoted as uv. If G is a (directed or undirected)

graph, V (G) and E(G) denote its vertex set and edge set, respectively. For T ∼ R(n, k), we let

N+(v) denote the out-neighbors of v and let N−(v) denote the in-neighbors of v. If we wish to

consider out-degrees and in-degrees in some subgraph H, we will use the notations N+
H (v) and

N−H (v).

We will require a few large deviation inequalities of random variables. The proof of each of

them can be found in the book [2]. The first one is the Chernoff bound on the concentration of the

binomial distribution B(m, p) where p is fixed.

Lemma 2.2. Let 0 < p < 1. Suppose X ∼ B(m, p), then for every a > 0,

Pr[|X −mp| > a] < 2e−a
2/m .

The second one is a special case of Janson’s inequality.

Lemma 2.3. Let X1, . . . , Xm be indicator random variables, each Xi corresponding to the event

that a certain subset Vi of vertices of a random graph induces some fixed subgraph. Suppose that
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the success probability of each Xi is p. Let ∆ be the number of ordered pairs (Xi, Xj) such that

|Vi ∩ Vj | ≥ 2. Then for every γ > 0,

Pr

[
m∑
i=1

Xi ≤ (1− γ)mp

]
< e
−γ2mp/(2+ ∆

mp
)
.

The third one is Azuma’s inequality.

Lemma 2.4. Let Y0, . . . , Ym be a martingale with |Yi+1 − Yi| ≤ 1 for all 0 ≤ i < m. Then for all

λ > 0,

Pr
[
Ym < Y0 − λ

√
m
]
< e−λ

2/2 .

3 The bipartite case

In this section we prove the case k = 2 of Theorem 1, stated in its equivalent formulation Theorem

2.1 that a random element of R(n, 2) has the property that all of its feedback arc sets have a

matching of size n− 1. Specifically we prove:

Proposition 3.1. Asymptotically almost surely, T ∼ R(n, 2) has the property that every element

of F (T ) has a matching of size n− 1.

Before presenting the proof we establish some notation. We denote the vertex parts of elements

of R(n, 2) by A1 and A2 where |A1| = |A2| = n. Let SV denote the set of permutations of a set V .

Let π ∈ SV (T ) denote a permutation of the vertices V (T ) = A1 ∪A2 of T ∼ R(n, 2).

Recall from the introduction that if H ∈ F (T ) is a minimal feedback arc set, then H is acyclic.

In particular, there is a topological sort of its vertices, namely, a permutation π ∈ SV (T ) such that

(u, v) ∈ E(T ) has the property that π(u) < π(v) if and only if (u, v) ∈ E(H). Hence, we can

associate with each H ∈ F (T ) a permutation π as above (observe that π is not necessarily unique,

as a topological sort is not necessarily unique). More conveniently,

Definition 3.2 (Lπ(T )). for π ∈ SV (T ) let Lπ(T ) be the spanning ordered acyclic subgraph of T

where the vertices are ordered according to π and which consists of all the edges (u, v) ∈ E(T ) with

π(u) < π(v) (edges that go from “left to right”).

Then, by the above, there is an onto correspondence from the set of all |V (T )|! possible Lπ(T ) to

F (T ). It will be more convenient to prove Theorem 2.1 as well as Proposition 3.1 by considering all

possible Lπ(T ). So, in particular, proving proposition 3.1 amounts to proving that for T ∼ R(n, 2)

it holds a.a.s. that for all π ∈ SV (T ) the graph Lπ(T ) has a matching of size n− 1.

One minor difficulty in proving this is that, although it is very easy to prove that for any given

π ∈ SV (T ), an element T ∼ R(n, 2) has with very high probability the property that Lπ(T ) has a
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matching of order n − 1 (in fact, in most cases, a perfect matching), this probability is not high

enough so as to apply the union bound of the complement event for all (2n)! permutations. In fact,

it is not difficult to show that a.a.s. T ∼ R(n, 2) has |F (T )| of order 2Θ(n logn) so we cannot “save

much” by just considering a representative π for each minimal feedback arc set.

To overcome this obstacle, we need to first establish a few properties that are guaranteed to

exist in T ∼ R(n, 2) with high probability. To state these properties we require further notation.

Let R ⊆ A1 and let S ⊆ A2. For a permutation π let X(T, π,R, S) denote the event that in

Lπ(T ), there is no edge between R and S.

Definition 3.3 (D-consistency). For a vector D ∈ {+,−}d and for a sequence A′ of d distinct

vertices of T , let CD(A′) be the subset of vertices of T that are D-consistent with A′. Namely, the

jth vertex of A′ has all the vertices of CD(A′) as its out-neighbors in T if D(j) is plus and has all

the vertices of CD(A′) as its in-neighbors in T if D(j) is minus.

For example, if D = (+,−) then CD((u, v)) is N+(u) ∩N−(v).

Lemma 3.4. For all n sufficiently large the following holds for T ∼ R(n, 2).

1.

Pr

 ⋃
R⊆A1,|R|≥n/20

⋃
S⊆A2,|S|≥n/20

⋃
π∈SV (T )

X(T, π,R, S)

 ≤ 1

n
.

2. Let D ∈ {+,−}2 and let (u, v) be an ordered pair of two distinct vertices.

Pr [|CD((u, v))| ≥ 1.1n/4] ≤ 1

n3
.

Proof. As the orientation of each edge of T connecting a vertex of R with a vertex of S is chosen

uniformly and independently at random, we have for any given π that Pr[X(T, π,R, S)] = 2−|R||S|.

As there are at most 2n choices for S, at most 2n choices for R, and (2n)! choices for π we have that

for n sufficiently large, the union event in the first statement of the lemma holds with probability

at most

2n · 2n · (2n)!2−n
2/400 ≤ 1

n
.

For the second statement of the lemma, fix D ∈ {+,−}2 and fix the ordered pair (u, v). We may

assume that u, v are either both in A1 or both in A2 as otherwise CD((u, v)) = ∅. Therefore,

|CD((u, v))| is a random variable which is the sum of n independent indicator random variables

with success probability 1/4. Hence, its distribution is B(n, 1/4). By Lemma 2.2, |CD((u, v))|
satisfies the claimed bound with probability at most 1/n3.

Notice that the number of events corresponding to Item 2 in Lemma 3.4 is only O(n2) as there

are only 4 choices for D and at most n2 choices for (u, v) where u, v are distinct vertices both from
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the same part. Now, since 1− 1/n−O(n2)/n3 ≥ 1− on(1) it follows that an element T ∼ R(n, 2)

satisfies both properties that correspond to the items of Lemma 3.4 with probability 1− on(1):

Property 1: X(T, π,R, S) does not occur for each π and for each choice of R ⊆ A1 and S ⊆ A2

satisfying |R| ≥ n/20, |S| ≥ n/20.

Property 2: |CD((u, v))| ≤ (1.1)n/4 for each choice of D ∈ {+,−}2 and for each ordered pair

(u, v) of two distinct vertices of T .

Consider any T ∼ R(n, 2) satisfying these two properties. We will prove that for every π ∈
SV (T ), the graph Lπ(T ) has a matching of size n−1. Observe that this is a completely deterministic

claim. So, from now until the end of this section, fix π and fix T ∼ R(n, 2) satisfying Properties 1

and 2.

Lemma 3.5. There is at most one vertex a ∈ A1 whose degree in Lπ(T ) is less than n/18. Similarly,

there is at most one vertex b ∈ A2 whose degree in Lπ(T ) is less than n/18.

Proof. As both claims are analogous, we prove the first one. Assume otherwise, that there are

two distinct vertices a, a′ ∈ A1 each with less than n/18 neighbors in Lπ(T ). Let B∗ be the set

of vertices of A2 that are non-neighbors of both a and a′ in Lπ(T ). Then, by our assumption,

|B∗| ≥ n− n/9 = 8n/9.

Suppose without loss of generality that π(a′) < π(a). Each vertex of A2 is positioned in π either

before a′, between a′ and a or after a. Let B1 be those vertices of A2 positioned before a′, B2 be

those positioned between a′ and a, and B3 be those positioned after a.

What can we say about B1 ∩B∗? The reason for a vertex b ∈ A2 positioned in π before a and

before a′ to be a non-neighbor of both of them in Lπ(T ) is that (a′, b) ∈ E(T ) and (a, b) ∈ E(T )

(observe: these edges point from “right to left” so are not in Lπ(T )). In other words, B1 ∩ B∗ ⊆
N+(a′) ∩ N+(a). But by Property 2 with the ordered pair (a′, a) and D = (+,+) we have that

|B1 ∩ B∗| ≤ 1.1n/4. Similarly, |B2 ∩ B∗| ≤ 1.1n/4 using Property 2 with D = (−,+), and

|B3 ∩ B∗| ≤ 1.1n/4 using Property 2 with D = (−,−). But this implies that |B∗| = |B∗ ∩ (B1 ∪
B2 ∪B3)| ≤ 3.3n/4 < 8n/9, a contradiction.

By Lemma 3.5, we can remove from Lπ(T ) one vertex of A1 and one vertex of A2 such that the

bipartite induced subgraph L′π(T ) of Lπ(T ) obtained after removal has minimum degree at least

t ≥ n/18− 1 ≥ n/19. We next prove the following:

Lemma 3.6. L′π(T ) has a perfect matching.

Proof. We prove the lemma using Hall’s Theorem. Let A′1 and A′2 be the sides of L′π(T ) and observe

that |A′1| = |A′2| = n − 1. We must therefore show that for all R ⊆ A′1, |NA′2
(R)| ≥ |R| where

NA′2
(R) are the set of vertices of A′2 for which there is an edge of Lπ(T ) connecting them to a

vertex of R.
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Suppose first that |R| ≤ t. In this case we have |NA′2
(R)| ≥ t ≥ |R| as the minimum degree of

L′π(T ) is t.

If t < |R| ≤ n − 1 − t then set S = A′2 \NA′2
(R), so there is no edge in Lπ(T ) between R and

S. Observe that |R| ≥ n/19 since |R| > t. Since X(T, π,R, S) holds, we must have by Property 1

that |S| < n/20. But this implies that |NA′2
(R)| > (n− 1)− n/20 ≥ n− 1− t ≥ |R|.

Finally, if |R| > n− 1− t then NA′2
(R) = A′2 since the minimum degree is t.

Observe that since L′π(T ) has a perfect matching, Lπ(T ) has a matching of size n− 1. As this

holds for all π ∈ SV (T ) for a T satisfying properties 1-2, and as T ∼ R(n, 2) satisfies Properties 1

and 2 with probability 1− on(1), Proposition 3.1 follows.

4 Establishing properties

In the remaining sections we prove the cases k ≥ 3 of Theorem 2.1 (which, recall, is equivalent

to Theorem 1). In this section we establish several properties, some are quite delicate, that are

possessed with high probability by T ∼ R(n, k). In Sections 5 and 6, we prove that T ∼ R(n, k)

which possesses these properties, has n − k + 1 pairwise disjoint k-cliques in each of its feedback

arc sets.

We require some generalization of notations introduced in the previous section. As each element

of R(n, k) is k-partite, we denote the parts by A1, . . . , Ak where |Ai| = n. Let T ∼ R(n, k) and let

π be a permutation of the vertices V (T ) = ∪ki=1Ai of T , hence π ∈ SV (T ). Recall from the previous

section that proving Theorem 2.1 amounts to proving that for T ∼ R(n, k), it holds a.a.s. that for

all π ∈ SV (T ), the graph Lπ(T ) has a n− k + 1 pairwise disjoint k-cliques.

Definition 4.1 (Perfect r-set). Let 1 ≤ r ≤ k. A perfect r-set is a set P of n pairwise disjoint

r-tuples where the i’th element of each r-tuple is from Ai. The set of all (n!)r−1 perfect r-sets is

denoted by Pr.

Note: while each element of a perfect r-set P induces an r-clique in T , we do not require in the

definition that such an element induces an r-clique in any given Lπ(T ).

Definition 4.2 (Lπ(P, T )). Let 1 ≤ r < k. Given a perfect r-set P and given π ∈ SV (T ), define the

(undirected) bipartite graph Lπ(P, T ) as follows. One part of Lπ(P, T ) is P and the other part is

Ar+1. Observe that each part has n vertices. The edges of Lπ(P, T ) are defined as follows. Consider

some pair (p, v) where p = (a1, . . . , ar) ∈ P and v ∈ Ar+1. Then pv is an edge of Lπ(P, T ) if and

only if for all i = 1, . . . , r, {v, ai} induces an edge of Lπ(T ) (the orientation of each of these r edges

in Lπ(T ) is not important).

Definition 4.3 (The event X(T, π, P,R, S)). Let 1 ≤ r < k. For π ∈ SV (T ), for a perfect r-set P ,

for R ⊆ P , for S ⊆ Ar+1 and for T ∼ R(n, k) let X(T, π, P,R, S) denote the event that in Lπ(P, T )

there are less than |R||S|/2r+1 edges between R and S.
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Lemma 4.4. Let ε > 0 be given and let 1 ≤ r < k. For all sufficiently large n as a function of ε, k

the following holds for T ∼ R(n, k):

Pr

 ⋃
P∈Pr

⋃
R⊆P,|R|≥εn

⋃
S⊆Ar+1,|S|≥εn

⋃
π∈SV (T )

X(T, π, P,R, S)

 ≤ 1

kn
.

Proof. Fix π, P,R, S and let T ∼ R(n, k). Consider some pair (p, v) with p = (a1, . . . , ar) ∈ P and

v ∈ Ar+1. The probability that pv is an edge in Lπ(P, T ) is 1/2r as it depends on the orientation

of the r edges of T connecting v with a1, . . . , ar. As for any two distinct pairs (p, v) and (p′, v′) we

have either v 6= v′ or else p∩ p′ = ∅, the event that pv is an edge of Lπ(P, T ) is independent of any

other combination of events of the form p′v′. So, the number of edges between R and S in Lπ(P, T )

has distribution B(|R||S|, 2−r). By Lemma 2.2, the probability that this random variable falls by a

constant factor below its expectation, in particular falls below |R||S|/2r+1, is exponentially small in

|R||S|. Hence, by the assumption on the sizes of R and S being at least εn in the stated expression,

the probability of the event X(T, π, P,R, S) is 2−Θ(n2).

There are (kn)! choices for π, (n!)r−1 choices for P , and at most 2n choices for each of R and

S. Altogether, the number of choices of the 4-tuple (π, P,R, S) is only 2Θ(n logn). Hence, for n

sufficiently large as a function of ε and k, the union event in the statement of the lemma holds with

probability at most 1/(kn).

Definition 4.5. [Friendly r-clique] Let 1 ≤ r < k. Suppose that {v1, . . . , vr} induce an r-clique in

Lπ(T ) where vi ∈ Ai. We say that this r-clique is friendly if for every r < t ≤ k, and for every

1 ≤ r′ ≤ r the number of vertices of At that are common neighbors of v1, . . . , vr′ in Lπ(T ) is at

least n/2r
′+1. Otherwise, the r-clique is unfriendly.

Definition 4.6 (The event Y (T, π, S1, . . . , Sr)). Let 1 ≤ r < k. For π ∈ SV (T ), for subsets Si ⊆ Ai
for i = 1, . . . , r of size at least n/18 each, and for T ∼ R(n, k) let Y (T, π, S1, . . . , Sr) denote the

event that in Lπ(T ) there are less than 0.5(1/18)rnr2−(r2) friendly r-cliques induced by ∪ri=1Si.

Lemma 4.7. Let 1 ≤ r ≤ k − 1. For all sufficiently large n as a function of k the following holds

for T ∼ R(n, k):

Pr

 ⋃
π∈SV (T )

r⋃
i=1

⋃
Si⊆|Ai|,|Si|≥n/18

Y (T, π, S1, . . . , Sr)

 ≤ 1

kn
.

Proof. Let µ = 1/18. Fix π, S1, . . . , Sr where |Si| ≥ µn and let T ∼ R(n, k). As Y (T, π, S1, . . . , Sr)

implies Y (T, π, S∗1 , . . . , S
∗
r ) if S∗i ⊆ Si, we may assume |Si| = µn. Consider some r-tuple of ver-

tices (a1, . . . , ar) with ai ∈ Si. The probability that {a1, . . . , ar} induces an r-clique in Lπ(T )

is 2−(r2). Hence if Z denotes the set of (not necessarily friendly) r-cliques in Lπ(T ) induced by
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∪ri=1Si, then |Z| is the sum of µrnr indicator variables, each with success probability 2−(r2). Thus,

E[|Z|] = µrnr2−(r2). Each indicator variable corresponding to (a1, . . . , ar) is independent of a vari-

able corresponding to (b1, . . . , br) if they intersect in at most one vertex (have no pair in common).

Hence each such variable is independent of all other variables but at most r2µr−2nr−2. Hence, by

Lemma 2.3 with p = 2−(r2), m = µrnr, ∆ ≤ r2µr−2n2r−2, γ = 1/4, the probability that |Z| is less

than 0.75µrnr2−(r2) is at most e−Θ(n2).

Given that |Z| ≥ 0.75µrnr2−(r2), what is the probability that less than 0.5µrnr2−(r2) of the

elements of Z are friendly? If this has occurred, then there are are at least 0.25µrnr2−(r2) unfriendly

r-cliques. In particular, as each vertex can only be in Θ(nr−1) r-cliques, there are Θ(n) pairwise

disjoint unfriendly r-cliques. What is the probability of an r-clique induced by {a1, . . . , ar} to be

unfriendly? Let r < t ≤ k and let 1 ≤ r′ ≤ r. The number of common neighbors of a1, . . . , ar′

in At is distributed B(n, 2−r
′
) hence, by Lemma 2.2, the probability that this number falls below

n/2r
′+1 is e−Θ(n). So, the probability of being unfriendly is at most k2e−Θ(n) = e−Θ(n). Hence, the

probability of Θ(n) pairwise disjoint r-cliques to be all unfriendly is e−Θ(n2). As the number of sets

of pairwise disjoint r-cliques is less than nn, the probability that Z has more than 0.25µrnr2−(r2)

unfriendly r-cliques remains e−Θ(n2). So, the probability of the event Y (T, π, S1, . . . , Sr) occurring

is e−Θ(n2).

There are (kn)! choices for π and at most 2n choices for each Si. Altogether, the number of

choices of the tuple (π, S1, . . . , Sr) is only 2Θ(n logn). Hence, for n sufficiently large as a function of

k, the union event in the statement of the lemma holds with probability at most 1/(kn).

We recall, and then extend, the notion of consistency from the previous section. Let 1 ≤ r < k.

For an r-tuple p = (a1, . . . , ar) with ai ∈ Ai, a vertex v ∈ At with r < t ≤ k and a vector

W ∈ {+,−}r we say that v is W -consistent with p if the following holds for each i = 1, . . . , r:

(v, ai) ∈ E(T ) if and only if W (i) is plus (otherwise (a, vi) ∈ E(T )). If v is not W -consistent with

p, it is W -inconsistent with p. Clearly, for T ∼ R(n, k), given p, W , and v, the probability that v

is W -inconsistent with p is 1 − 1/2r. We need to extend the notion of W -inconsistency to higher

dimensions as follows.

Definition 4.8 (Ŵ -inconsistent with p̂). Let 1 ≤ r < k. For a sequence p̂ = (p1, . . . , pd) of d

pairwise-disjoint r-tuples as above and for a sequence Ŵ = (W1, . . . ,Wd) of d vectors each from

{+,−}r, a vertex v ∈ At where r < t ≤ k is Ŵ -inconsistent with p̂ if for all 1 ≤ i ≤ d, v is

Wi-inconsistent with pi. Let IŴ (p̂, t) be the subset of vertices of At that are Ŵ -inconsistent with p̂.

Clearly, since the pi in p̂ are pairwise disjoint, given p̂, Ŵ , and v ∈ At, we have that for

T ∼ R(n, k) the probability that v is Ŵ -inconsistent with p̂ (or, equivalently, v ∈ IŴ (p̂, t)) is

(1− 1/2r)d.
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Lemma 4.9. Let d be a positive integer, let 1 ≤ r < k and let r < t ≤ k. Let Ŵ = (W1, . . . ,Wd)

be as above and let p̂ = (p1, . . . , pd) be as above. For all sufficiently large n as a function of k, d the

following holds for T ∼ R(n, k):

Pr
[
|IŴ (p̂, t)| ≥ n(1− 1/2r)d + n2/3

]
≤ 1

nkd+1
.

Proof. Notice that |IŴ (p̂, t)| is a random variable which is the sum of n independent indicator

random variables with success probability (1−1/2r)d. The independence follows from the fact that

for each v ∈ At, the probability that v ∈ IŴ (p̂, t) is independent of all other events corresponding

to other vertices of At as it depends only the orientations of edges of T incident with v. Hence

|IŴ (p̂, t)| is distributed B(n, (1 − 1/2r)d). Thus, by Lemma 2.2, the probability that it deviates

from its expected value, which is linear in n, by more than an additive term of n2/3 is exponentially

small in a polynomial in n (recall: d, k are fixed and r, t ≤ k). In particular, |IŴ (p̂)| satisfies the

claimed bound with probability at most n−kd−1.

We may merge Lemmas 4.4, 4.7, and 4.9 together with the notion of D-consistency from Defi-

nition 3.3 into the following lemma.

Lemma 4.10. Let d be a positive integer and let ε be a positive real. Then with probability 1−on(1)

the following properties hold for T ∼ R(n, k):

Property 1: For all 1 ≤ r < k, X(T, π, P,R, S) does not occur for all π ∈ SV (T ), for all

P ∈ Pr, for all R ⊆ P with |R| ≥ εn and for all S ⊆ Ar+1 with |S| ≥ εn.

Property 2: For all 1 ≤ r < k, Y (T, π, S1, . . . , Sr) does not occur for all π ∈ SV (T ), and for

all r-tuples (S1, . . . , Sr) with Si ⊆ Ai and |Si| ≥ n/18.

Property 3: For all 1 ≤ r < k, for all r < t ≤ k, for all Ŵ = (W1, . . . ,Wd) where

Wi ∈ {+,−}r and for all p̂ = (p1, . . . , pd) where the pj are pairwise disjoint r-tuples pj =

(aj,1, . . . , aj,r) with aj,i ∈ Ai, it holds that |IŴ (p̂, t)| ≤ n(1− 1/2r)d + n2/3.

Property 4: For all 1 ≤ s ≤ k, for all 1 ≤ ` ≤ k, for all sequences A′ = (v1, . . . , vq) of q ≤ d
distinct elements of A`, and for all D ∈ {+,−}q, it holds that |CD(A′)∩As| ≤ n(1/2)q+n2/3.

Proof. By Lemma 4.4, Property 1 does not hold with probability at most 1/(kn) for each r, hence

it does not hold with probability at most 1/n for all r. By Lemma 4.7, Property 2 does not

hold with probability at most 1/(kn) for each r, hence it does not hold with probability at most

1/n for all r. As for Property 3, the number of possible Ŵ is 2rd. The number of possible p̂

is less than nrd. As the probability that |IŴ (p̂, t)| ≥ n(1 − 1/2r)d + n2/3 is at most n−kd−1 by

Lemma 4.9, Property 3 does not hold with probability O(1/n). For Property 4, observe that for

a given sequence (v1, . . . , vq) of distinct elements of A` and for a given D ∈ {+,−}q, the random

11



variable |CD(A′) ∩ As| is distributed B(n, (1/2)q) (the case s = ` is trivial). By Lemma 2.2, it

does not satisfy the claimed bound with probability exponentially small in n1/3, in particular with

probability smaller than n−d−1. As there are k choices for s, k choices for `, less than nd choices

for a sequence (v1, . . . , vq) from A`, and 2q choices for D, Property 4 does not hold with probability

O(1/n). Hence, all four properties simultaneously hold with probability 1−O(1/n).

By Lemma 4.10, in order to complete the proof of Theorem 2.1, it remains to prove the following

(completely deterministic) lemma.

Lemma 4.11. There exists a positive integer d and a real ε > 0 such that the following holds for

all n sufficiently large. For every tournament T ∼ R(n, k) satisfying properties 1-4 of Lemma 4.10

and for every π ∈ SV (T ), Lπ(T ) has a set of at least n− k + 1 pairwise disjoint k-cliques.

We next define a series of constants that will be used in the remainder of the proof, in particular,

we define the required d, ε for which Lemma 4.11 holds.

Definition 4.12 (The constants).

(i) µ = 1/18.

(ii) ρ = 0.25µk2−(k2).

(iii) Let d be the smallest integer satisfying for all r = 1, . . . , k

µ− d1−2r

dr + 1
> (1− 2−r)d and

d2−2r − d1−2r

d+ 1
>

1

2d
.

(iv) δ = min{ρ/k2 , 1/(2kd2k)}.
(v) ε = δρ/5.

From here until the end of Section 6, we fix π and fix T ∼ R(n, k) satisfying Properties 1-4

of Lemma 4.10. Hence, we omit π and T in the definitions and notations that follow (previous

definitions and notations that use π and T remain the same). In the various claims that follow

we will always assume that n is sufficiently large as a function of the constants in Definition 4.12,

hence as a function of d, ε, k (and, therefore, in fact, as a function of k). To prove Lemma 4.11 we

need to prove that Lπ(T ) has a set of at least n− k + 1 pairwise disjoint k-cliques.

Definition 4.13 (Friendly vertex). A vertex v ∈ Ar is a friendly vertex if for all i = 1, . . . , k,

i 6= r, the number of vertices of Ai that are neighbors of v in Lπ(T ) is at least n/17.

The following is a generalization of Lemma 3.5.

Lemma 4.14. For every 1 ≤ r ≤ k, there are at most k − 1 vertices of Ar that are not friendly

vertices.
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Proof. Suppose v1, . . . , vk are k non-friendly vertices from Ar. Then for each vi, there is some j 6= r

such that the number of vertices of Aj that are neighbors of vi in Lπ(T ) is less than n/17. Hence,

there are two distinct vertices, say v1, v2, and some j 6= r such that in Lπ(T ), each of them has

fewer than n/17 neighbors from Aj . Let B∗ ⊆ Aj be the non-neighbors in Lπ(T ) of both of them.

Then, |B∗| ≥ 15n/17.

Suppose π(v1) < π(v2). Each vertex of Aj is positioned in π either before v1, between v1 and

v2 or after v2. Let B1 be those vertices of Aj positioned before v1, B2 be those positioned between

v1 and v2, and B3 be those positioned after v2. What can we say about B1 ∩ B∗? The reason for

a vertex b ∈ Aj positioned in π before v1 and before v2 to be a non-neighbor of both of them in

Lπ(T ) is that (v1, b) ∈ E(T ) and (v2, b) ∈ E(T ). But by Property 4 with the sequence (v1, v2) and

D = (+,+) we have that |B1 ∩B∗| ≤ n/4 + n2/3. Similarly, |B2 ∩B∗| ≤ n/4 + n2/3 using Property

4 with D = (−,+), and |B3∩B∗| ≤ n/4 +n2/3 using Property 4 with D = (−,−). But this implies

that |B∗| = |B∗ ∩ (B1 ∪B2 ∪B3)| ≤ 3n/4 + 3n2/3 < 15n/17, a contradiction.

For 1 ≤ r ≤ k, fix A∗r to be a set of n−k+1 friendly vertices of Ar. The process of constructing

the n − k + 1 pairwise disjoint k-cliques proceeds as follows. We will, in fact, construct a perfect

k-set P . This k-set will have the property that all but k − 1 of its elements induce k-cliques.

Furthermore, the n− k + 1 vertices from each Ar that belong the k-cliques of P are precisely A∗r .

So, we can view the n− k+ 1 pairwise disjoint k-cliques that we construct as a perfect matching in

the k-uniform k-partite hypergraph H, whose parts are A∗1, . . . , A
∗
k and whose “edges” are the k-

cliques they induce. Notice however that since π is arbitrary, this hypergraph can be quite far from

resembling a random k-partite k-uniform hypergraph. Different vertices can have very different

degrees (the difference can be Θ(nk−1)) in this hypergraph. We therefore cannot directly employ

existing results on hypergraph matching in random uniform hypergraphs to deduce that H has a

perfect matching. We can also not use extremal results for this purpose as the degrees in H are

not large enough (the density of H is a very small constant). The construction of P is performed

in two stages. The first stage is a randomized stage, which we call the absorber stage. It consists

of k− 2 iterative steps. We will show that with positive probability, the absorber stage “succeeds”.

In terms of the hypergraph H, this absorber consists of a subgraph of H and of subgraphs of the

r-partite r-uniform hypergraph projected by H to ∪ri=1A
∗
i . It has the property that whenever we

want to extend an already found set of n − k + 1 r-cliques to a set of n − k + 1 (r + 1)-cliques,

we can use the absorber to match any remaining vertices of A∗r+1 that become “dangerous” and

are difficult to match. So, it is an absorber in the sense defined by Rödl, Ruciński, and Szemerédi

[13] (see also [10, 7] for earlier papers implicitly using this concept). Given that the absorber

construction succeeded, the second stage is a deterministic, k − 1 steps process which we call the

gradual matching stage. Note that for the case k = 2, there is only a single step in the second

stage part, and no first stage part, and this amounts to the simple proof for the case k = 2 given

in Section 3. In Section 5 we describe the absorber stage. In Section 6 we describe the gradual
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matching stage.

5 Absorber stage

The purpose of this section is to construct sets Q∗r for 2 ≤ r < k such that Q∗r is a set of pairwise-

disjoint r-cliques in ∪ri=1A
∗
i (and no vertex appears in a Q∗j and a Q∗` if ` 6= j). Q∗r will have some

nice properties that guarantee that vertices of A∗r+1 that become “problematic” during the r’th

step of the iterative construction of the n−k+1 disjoint cliques, can still be matched to an element

of Q∗r to form an (r + 1)-clique. Hence, we call ∪k−1
r=2Q

∗
r the absorber.

The construction process proceeds in k− 2 steps. We describe Step r for r = 2, . . . , k− 1 (there

is no “Step 1”) in which we construct Q∗r . From here onwards, let m = dδne.
We first describe Step 2, which is the first step. Let Q2 denote the set of all edges of Lπ(T )

with one endpoint in A∗1 and the other in A∗2 and which form a friendly 2-clique (recall definition

4.5). Pick at random precisely m pairwise disjoint elements of Q2, and denote the set of selected

edges by Q∗2. At a general step r, we consider the set Qr of all friendly r-cliques of Lπ(T ) induced

by ∪ri=1A
∗
r . We remove from Qr all the cliques containing vertices that appear in ∪r−1

i=2Q
∗
i (note:

there are 2m + 3m + · · · + (r − 1)m = (
(
r
2

)
− 1)m such vertices), and denote the resulting set by

Q′r. We pick at random precisely m pairwise disjoint elements of Q′r, and denote the set of selected

r-cliques by Q∗r . Our main lemma in this section is the following:

Lemma 5.1. With positive probability the following holds for all 2 ≤ r < k. For each v ∈ A∗r+1

there are at least δρn/4 elements of Q∗r such that each of them, together with v, induces an (r+ 1)-

clique in Lπ(T ).

Proof. There are at most (k− 2)(n− k+ 1) < nk vertices in ∪ki=3A
∗
i so it suffices to prove that for

a given vertex v ∈ A∗r+1, the probability that it does not have δρn/4 elements of Q∗r as stated in

the lemma is less than 1/(kn), and then the result follows by the union bound.

Let, therefore, v ∈ A∗r+1 and recall that v is a friendly vertex. For i = 1, . . . , r, let Si ⊆ A∗i
be the set of neighbors of v in Lπ(T ). Since v is friendly, it has at least n/17 vertices in Ai, so

|Si| ≥ n/17− (k− 1) ≥ n/18 = µn. Let M denote the set of friendly r-cliques in Lπ(T ) induced by

∪ri=1Si. By Property 2, Y (T, π, S1, . . . , Sr) does not occur, hence |M | ≥ 0.5µrnr2−(r2). As trivially,

each vertex of ∪ri=1Si appears in at most nr−1 cliques of M , and since the number of vertices
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appearing in ∪r−1
i=2Q

∗
i is only (

(
r
2

)
− 1)m, there is a subset M∗ ⊆M of size at least

|M∗| ≥ |M | − (

(
r

2

)
− 1)mnr−1

≥ nr(0.5µr2−(r2) − 2(

(
r

2

)
− 1)δ)

≥ nr0.25µr2−(r2)

≥ nr0.25µk2−(k2)

= ρnr (1)

where each clique of M∗ does not contain vertices of ∪r−1
i=2Q

∗
i , so M∗ ⊆ Q′r. In the last displayed

equation we have used that m = dδne ≤ 2δn and the definitions of ρ and δ in 4.12.

Consider the random selection process of Q∗r from Q′r. It consists of m stages where at each

stage we pick at random an element of Q′r out of all elements that do not intersect elements

selected at previous stages. We want to prove that with high probability, a constant fraction of

the selected elements are from M∗. This, of course, is plausible since M∗ amounts to a constant

fraction of the elements of Q′r. To formalize this, it is convenient to use a martingale. Let Xi be

the indicator variable which equals 1 if at the i’th stage, an element of M∗ has been picked. Then

Ym = X1 + · · ·+Xm is the number of elements of M∗ that have been picked. Let Y0 = E[Ym] and

for i = 1, . . . ,m, let Yi = E[Ym|X1, . . . , Xi]. Then Y0, . . . , Ym is a Doob martingale by definition,

and observe also that since Xi is an indicator variable, |Yi+1 − Yi| ≤ 1 for i = 0, . . . ,m− 1. Hence,

by Lemma 2.4 for λ > 0,

Pr[Ym < Y0 − λ
√
m] < e−λ

2/2 .

We next estimate Y0 = E[Ym]. Clearly, E[X1] = |M∗|/|Q′r| ≥ ρnr/nr = ρ where we have used (1).

To lower bound E[Xi], we lower bound it conditioned on X1 +· · ·+Xi−1. As X1 +· · ·+Xi−1 ≤ i−1,

there are at most (i−1)rnr−1 elements of M∗ which contain vertices of previously selected elements,

and therefore E[Xi|X1 + · · ·Xi−1] ≥ (ρnr − (i − 1)rnr−1)/nr. Since i − 1 ≤ m − 1 ≤ δn we have

that

E[Xi|X1 + · · ·+Xi−1] ≥ ρnr − (i− 1)rnr−1

nr
≥ ρ− δr ≥ ρ

2

where we have used that δr ≤ δk ≤ ρ/k ≤ ρ/2. As the lower bound ρ/2 does not depend on

X1 + · · ·+Xi−1 we have that E[Xi] ≥ ρ/2. Therefore,

Y0 = E[Ym] =
m∑
i=1

E[Xi] ≥
mρ

2
≥ δρn

2
.
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Hence, for λ =
√
mρ/5 we have that

Pr[Ym < δρn/4] = Pr[Ym < δρn/2− δρn/4]

≤ Pr[Ym ≤ Y0 − δρn/4]

≤ Pr[Ym ≤ Y0 −mρ/5]

= Pr[Ym ≤ Y0 − λ
√
m]

< e−λ
2/2

≤ e−Θ(n)

<
1

nk
.

So, from here onwards we fix the absorber ∪k−1
r=2Q

∗
r . It has the property that for all 2 ≤ r < k,

and for each vertex v ∈ A∗r+1 there are at least δρn/4 elements ofQ∗r such that each of them, together

with v, induces an (r + 1)-clique in Lπ(T ). Furthermore, each element of Q∗r is a friendly r-clique

and no vertex appears more than once in the absorber. Finally, |Q∗r | = m for all 2 ≤ r ≤ k − 1.

6 Gradual matching stage

This stage proceeds in k− 1 steps. Starting with r = 1, in step r we construct a perfect (r+ 1)-set

Pr+1 which induces n − k + 1 disjoint (r + 1)-cliques and furthermore, Pr+1, when restricted to

∪ri=1Ai, is Pr.

Before describing the steps, we need to specify certain subsets, which depend on the absorber.

Let B1 ⊂ A∗1 be the set of vertices that do not appear in ∪k−1
i=2Q

∗
i (namely the vertices of A∗1

that do not appear in any element of the absorber). For r = 2, . . . , k, let Br ⊆ A∗r be the set of

vertices that do not appear in ∪k−1
i=r Q

∗
i . Observe that Bk = A∗k, and since |Q∗i | = m, we have that

|B1| = n − k + 1 − (k − 2)m and for 2 ≤ r ≤ k we have that |Br| = n − k + 1 − (k − r)m. In

particular, |B1| = |B2| and

|Br| ≥ n− k + 1− (k − 2)m ≥ n− k(m− 1) ≥ n(1− δk) (2)

for 1 ≤ r ≤ k as we recall that m = dδne. Also, as every v ∈ Br ⊆ A∗r is a friendly vertex, it has

at least n/17 neighbors (in Lπ(T )) in Aj for j 6= r, so it also has at least n/17− nδk ≥ n/18 = µn

neighbors in Bj .

We describe the first step as it is simpler since it does not depend on parameters of previous

steps. Consider the induced bipartite graph H1 of Lπ(T ) with one side being B1 and the the other

side being B2. By the previous paragraph, the minimum degree of H1 is at least µn. This, together
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with Property 1 (applied to r = 1) and Hall’s Theorem suffices to guarantee a perfect matching

in H1. But this is not enough. We need to make sure that the matching edges that we choose

will behave “nicely” with respect to future steps. For this, we need to first discard potentially bad

edges of H1.

Definition 6.1 (Friendly H1 edge). An edge uv of H1 is friendly if for all 3 ≤ t ≤ k, the number

of common neighbors of u and v in Bt is at least n/d2. Otherwise, uv is unfriendly.

Lemma 6.2. Every vertex of B1 ∪B2 is incident with less than dk unfriendly edges of H1.

Proof. Suppose some v ∈ B1 is incident with dk unfriendly edges (the argument if v ∈ B2 is

identical). Let these edges be vu1, . . . , vudk where ui ∈ B2. As all these edges are unfriendly, there

is some 3 ≤ t ≤ k such that at least d of them are unfriendly with respect to Bt, namely they

have less than n/d2 common neighbors in Bt. Suppose these are vu1, . . . , vud. Since v has at least

n/18 = µn neighbors in Bt, at least µn−d(n/d2) = µn−n/d of the vertices of Bt are non-neighbors

of all of u1, . . . , ud. Without loss of generality, assume that π(u1) < π(u2) < · · · < π(ud). So there

are at least (µn − n/d)/(d + 1) vertices of Bt, all appearing in π after ui and before ui+1 (or else

all before u1 or else all after ud) and none of them are neighbors of u1, . . . , ud. But according to

Property 4 applied with s = t, ` = 2 and W (j) = (−) if j ≤ i and W (j) = (+) if d ≥ j ≥ i+ 1, the

number of such vertices is at most n2−d + n2/3. But by the definition of d in 4.12,

µn− n/d
d+ 1

>
n

2d
+ n2/3 ,

a contradiction.

Let H∗1 be the spanning subgraph of H1 obtained after removing all unfriendly edges of H1.

Then, by Lemma 6.2, the minimum degree of H∗1 is at least µn − dk ≥ n/19. We can now easily

prove using Hall’s Theorem that H∗1 has a perfect matching. Indeed, for R ⊆ B1, we must show

that |NB2(R)| ≥ |R| where NB2(R) is the set of neighbors (in H∗1 ) of R in B2. This trivially holds

if |R| ≤ n/19 or |R| ≥ |B1| − n/19 by the minimum degree of H∗1 . For |R| within these two values,

let S = B2 \ NB2(R). Then, there is no edge between R and S in H∗1 and since by Lemma 6.2

there are less than dkn unfriendly edges of H1, we have that there are less than dkn = Θ(n) edges

between R and S in H1, thus also in Lπ(T ). But since |R| ≥ n/19 ≥ εn, we must have by Property

1 that |S| ≤ εn. But then,

|NB2(R)| = |B2| − |S| = |B1| − |S| ≥ |B1| − εn ≥ |B1| − n/19 ≥ |R| .

We construct the perfect 2-set P2 as follows. We take a perfect matching in H∗1 . We then take

from each element of the absorber ∪k−1
i=2Q

∗
i the pair of vertices with one endpoint in A∗1 and the

other in A∗2. Observe that since the elements of Q∗i are i-cliques, then each chosen pair is a matching
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edge. Finally, we arbitrarily pair the remaining k − 1 vertices of A1 \A∗1 with the remaining k − 1

vertices of A2 \A∗2. These k− 1 pairs are not necessarily edges of Lπ(T ). Altogether P2 is a perfect

2-set, containing a subset P ∗2 of n− k + 1 elements that are edges of Lπ(T ) matching the vertices

of A∗1 with the vertices of A∗2.

In fact, the P2 that we have just constructed satisfies the case r = 2 of the following definition.

Definition 6.3 (Extendable perfect r-set). Let 2 ≤ r ≤ k. A perfect r-set Pr is called extendable

if the following holds.

1. There is a subset P ∗r ⊂ Pr of order n−k+ 1 such that each element of P ∗r induces an r-clique

in Lπ(T ). Furthermore, each element of P ∗r contain a single vertex from A∗i for i = 1, . . . , r.

2. The first r-vertices of each element of ∪k−1
i=r Q

∗
i , form an element of P ∗r . In particular Q∗r ⊂ P ∗r .

3. For each element p = (a1, . . . , ar) of P ∗r , and for each r < t ≤ k, the number of common

neighbors of a1, . . . , ar in At is at least n/d2r−2.

Observe that in the above definition, if r = k then an extendable perfect k-set just needs

to satisfy the first requirement, as the other two become empty requirements. In particular, an

extendable perfect k-set contains n − k + 1 elements, each of which is a k-clique in Lπ(T ). So, if

we can find an extendable perfect k-set, we have proved Theorem 2.1. Indeed, the following lemma

shows that we can.

Lemma 6.4. Let 2 ≤ r ≤ k− 1. If there is an extendable perfect r-set, then there is an extendable

perfect (r + 1)-set. Consequently, if there is an extendable perfect 2-set, then Theorem 2.1 holds.

Before proving Lemma 6.4, we first need to verify that P2 that we have constructed above, is

an extendable perfect 2-set.

Lemma 6.5. P2 is an extendable perfect 2-set.

Proof. The first two requirements follow immediately from our construction. For the third require-

ment, consider some element of p ∈ P ∗2 where p = (a1, a2). Then there are two cases. Case 1: p is

the prefix of some element p′ ∈ Q∗i where 2 ≤ i ≤ k − 1 (if i = 2 then p = p′ is just an element of

Q∗2). But since p′ is an element of the absorber, it is a friendly i-clique. But this means that for

2 < t ≤ k, the vertices a1, a2 have (in Lπ(T )) at least n/8 > n/d2 common neighbors in At, so the

third requirement is met. Case 2: p is the result of the matching in H∗1 which matched a1 ∈ B1

with a2 ∈ B2. But then, a1a2 is a friendly H1-edge. But this means that if 2 < t ≤ k, the number

of common neighbors of a1, a2 in Bt is at least n/d2 and again the third requirement is met.

Proof of Lemma 6.4. Suppose that we are given an extendable perfect r-set Pr. We wish to use it

and construct an extendable perfect (r + 1)-set Pr+1.
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Consider the graph Lπ(Pr, T ) and recall that, in particular, it is a bipartite graph with one part

being Pr and the other part being Ar+1. Let Hr be the induced bipartite subgraph of Lπ(Pr, T )

where one side is Br+1 and the other side is the set of elements of P ∗r that do not contain vertices

of ∪k−1
i=r+1Q

∗
i . Denote this other side by Jr and observe that all m elements of Q∗r remain elements

of Jr. First observe that both sides are of the same size: |Br+1| = |Jr| = (n−k+ 1)−m(k− 1− r).
Once again we would like to prove that Hr has a perfect matching but also that the matching

edges the we choose are “nice”. For this, we first establish a minimum degree bound for Hr.

Lemma 6.6. The minimum degree of Hr is at least δρn/4.

Proof. Consider first some vertex v ∈ Br+1 (recall that the sides of Hr are Br+1 and Jr). Then,

since all elements of Q∗r are elements of Jr, we have by the property of the absorber that v has

at last δρn/4 neighbors in Hr (in fact, already in Q∗r). Consider next a vertex p ∈ Jr. Then

p = (a1, . . . , ar) and {a1, . . . , ar} induce an r-clique. Since Jr ⊂ P ∗r , we have by the third property

of extendable perfect r-sets, that the number of common neighbors of a1, . . . , ar in Ar+1 is at least

n/d2r−2. But by (2) we have that |Br+1| ≥ n(1 − δk) so the number of common neighbors of

a1, . . . , ar in Br+1 is at least n/d2r−2− δkn. In other words, p has at least n/d2r−2− δkn neighbors

in Hr. Since 1/d2r−2 − δk ≥ 1/d2k − δk ≥ 2δk − δk ≥ δk ≥ δρ/4, the lemma follows.

Definition 6.7 (Friendly Hr edge). Let 2 ≤ r ≤ k−1. An edge pv of Hr where p = (a1, . . . , ar) and

v ∈ Br+1 is friendly if for each r + 2 ≤ t ≤ k, the number of common neighbors of {a1, . . . , ar, v}
in Bt is at least n/d2r. Otherwise, pv is unfriendly. Observe that every edge of Hk−1 is friendly.

Lemma 6.8. Let 2 ≤ r ≤ k− 1. Every vertex of Hr is incident with less than dk unfriendly edges

of Hr.

Proof. As the lemma is trivial for r = k−1 (all edges of Hk−1 are friendly), we assume 2 ≤ r ≤ k−2.

The vertices of Hr are Jr ∪Br+1. Assume first that v ∈ Br+1 is incident with dk unfriendly edges

of Hr. Let these edges be p1v, . . . , pdkv where pi ∈ Jr. As they are all unfriendly, there is some

r + 2 ≤ t ≤ k such that at least d of them are unfriendly with respect to Bt. Suppose these are

p1v, . . . , pdv. Let pi = (ai,1, . . . , ai,r) with ai,j ∈ Aj . Since v has at least n/18 = µn neighbors in

Bt, at least µn − dn/d2r = µn − n/d2r−1 of them are not in the common neighborhood of all of

p1, . . . , pd. Let this set be B∗ ⊆ Bt. So, |B∗| ≥ µn − n/d2r−1 and each u ∈ B∗ has the property

that for all i = 1, . . . , d, there is some ai,j such that ai,j and u are not neighbors in Lπ(T ).

Let Z denote the set of dr vertices of p1, . . . , pd. So, there is a B∗∗ ⊆ B∗ with |B∗∗| ≥ |B∗|/(dr+

1) and a partition Z1 ∪ Z2 = Z, such that every u ∈ B∗∗ appears in π after all vertices of Z1 and

before all vertices of Z2 (possibly Z1 = ∅ or Z2 = ∅). Let Wi ∈ {+,−}r be the vector with Wi(j) =

(+) if ai,j ∈ Z2 and Wi(j) = (−) if ai,j ∈ Z1. Let Ŵ = (W1, . . . ,Wd) and let p̂ = (p1, . . . , pd).

Than, every vertex u ∈ B∗∗ is Ŵ -inconsistent with p̂. Hence, B∗∗ ⊆ IŴ (p̂, t). By Property 3,
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|B∗∗| ≤ n(1− 1/2r)d + n2/3. On the other hand, |B∗∗| ≥ |B∗|/(dr + 1) ≥ (µn− n/d2r−1)/(dr + 1).

But by Definition 4.12,
µn− n/d2r−1

dr + 1
> n(1− 1/2r)d + n2/3 ,

a contradiction.

Assume next that p = (a1, . . . , ar) ∈ Jr is incident with dk unfriendly edges of Hr. Let these

edges be pv1, . . . , pvdk where vi ∈ Br+1. As they are all unfriendly, there is some r+ 2 ≤ t ≤ k such

that at least d of them are unfriendly with respect to Bt. Suppose these are pv1, . . . , pvd. Since

p ∈ Jr ⊆ P ∗r , we have by the property of an extendable r-set that there are at least n/d2r−2 common

neighbors of {a1, . . . , ar} in Bt. So, there is a set B∗ ⊆ Bt with |B∗| ≥ n/d2r−2 − d(n/d2r) =

n/d2r−2 − n/d2r−1 such that each u ∈ B∗ is a non-neighbor of each of v1, . . . , vd. Assume that

π(v1) < π(v2) · · · < π(vd). So, there is a subset |B∗∗| ≥ |B∗|/(d+1) such that every u ∈ B∗∗ appears

in π after vi and before vi+1 (or else before v1 or else after vd). But according to property 4 applied

with s = t, ` = r+1 and W (j) = (−) if j ≤ i and W (j) = (+) if d ≥ j ≥ i+1, then number of such

vertices is at most n2−d+n2/3. On he other hand, |B∗∗| ≥ |B∗|/(d+1) ≥ (n/d2r−2−n/d2r−1)/(d+1).

But by Definition 4.12
n/d2r−2 − n/d2r−1

d+ 1
>

n

2d
+ n2/3 ,

a contradiction.

Let therefore H∗r be the spanning subgraph of Hr obtained after removing all unfriendly Hr-

edges. Then, by Lemmas 6.6 and 6.8, the minimum degree of H∗r is at least δρn/4− dk ≥ δρn/5.

We can now easily prove using Hall’s Theorem that H∗r has a perfect matching. Indeed, for R ⊆ Jr,
we must show that |NBr+1(R)| ≥ |R| where NBr+1(R) is the set of neighbors (in H∗r ) of R in Br+1.

This trivially holds if |R| ≤ δρn/5 or |R| ≥ |Br+1| − δρn/5 by the minimum degree of H∗r . For |R|
within these two values, let S = Br+1 \NBr+1(R). Then, there is no edge between R and S in H∗r
and hence by Lemma 6.8 there are less than dkn = Θ(n) edges between R and S in Hr, thus also

in Lπ(Pr, T ). But since |R| ≥ δρn/5 ≥ εn, we must have by Property 1 that |S| ≤ εn. But then,

|NBr+1(R)| = |Br+1| − |S| ≥ |Br+1| − εn ≥ |Br+1| − δρn/5 ≥ |R| .

We construct Pr+1 as follows. We take a perfect matching in H∗r . Each such matching edge

is of the form pv with p ∈ Jr ⊂ P ∗r and v ∈ Br+1, so p ∪ {v} induces an (r + 1)-clique. We

then take from each element of ∪k−1
i=r+1Q

∗
i the (r + 1)-tuple of vertices with one endpoint in A∗i for

i = 1, . . . , r+ 1. Observe that since the elements of Q∗i are i-cliques, then each chosen (r+ 1)-tuple

is an (r+ 1)-clique. Finally, we arbitrarily match the remaining k− 1 vertices of Ar+1 \A∗r+1 with

the k−1 elements of Pr \P ∗r into k−1 additional (r+1)-tuples. These k−1 additional (r+1)-tuples

are not necessarily (r + 1)-cliques of Lπ(T ). Altogether Pr+1 is a perfect (r + 1)-set containing a

subset P ∗r+1 of n − k + 1 elements that are (r + 1)-cliques of Lπ(T ) matching the vertices of A∗i
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for i = 1, . . . , r+ 1. In particular, the first two requirements in the definition of extendable perfect

(r + 1)-sets are satisfied.

To complete the proof of Lemma 6.4 it remains to show that the third requirement in the

definition of extendable perfect (r + 1)-sets is also met. Consider some element of p ∈ P ∗r+1 where

p = (a1, . . . , ar+1). Then there are two cases. Case 1: p is the prefix of some element p′ ∈ Q∗i where

r+1 ≤ i ≤ k−1 (if i = r+1 then p = p′ is just an element of Q∗r+1). But since p′ is an element of the

absorber, it is a friendly i-clique. But this means that for r + 1 < t ≤ k, the vertices a1, . . . , ar+1

have (in Lπ(T )) at least n/2r+2 > n/d2r common neighbors in At, so the third requirement is

met. Case 2: p is the result of the matching in H∗r which matched p′ = (a1, . . . , ar) ∈ Jr with

ar+1 ∈ Br+1. But then, p′ar+1 is a friendly Hr-edge. But this means that if r + 1 < t ≤ k,

the number of common neighbors of {a1, . . . , ar, ar+1} in Bt is at least n/d2r and again the third

requirement is met.
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