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Abstract

In the exact matching problem we are given a graph G, some of whose edges are colored
red, and a positive integer k. The goal is to determine if G has a perfect matching, exactly k
edges of which are red. More generally if the matching number of G is m = m(G), the goal
is to find a matching with m edges, exactly k edges of which are red, or determine that no
such matching exists. This problem is one of the few remaining problems that have efficient
randomized algorithms (in fact, this problem is in RNC), but for which no polynomial time
deterministic algorithm is known.

Our first result shows that, in a sense, this problem is as close to being in P as one can get. We
give a polynomial time deterministic algorithm that either correctly decides that no maximum
matching has exactly k red edges, or exhibits a matching with m(G) − 1 edges having exactly k
red edges. Hence, the additive error is one.

We also present an efficient algorithm for the exact matching problem in families of graphs for
which this problem is known to be tractable. We show how to count the number of exact perfect
matchings in K3,3-minor free graphs (these include all planar graphs as well as many others)
in O(n3.19) worst case time. Our algorithm can also count the number of perfect matchings in
K3,3-minor free graphs in O(n2.19) time.

1 Introduction

The exact matching problem, which is a generalization of the maximum matching problem, is defined
as follows. Given a graph G with some edges colored red, and an integer k, determine if G has a
maximum matching that consists of exactly k red edges. A special case is to determine whether there
is a perfect matching with exactly k red edges. This problem was first introduced by Papadimitriou
and Yannakakis in [17].

The exact matching problem is one of the few remaining natural problems that are not known
to be in P, but for which there exists a polynomial time randomized algorithm, namely it is in the
complexity class RP. In fact, following Karp, Upfal, and Wigderson [10] who proved that a maximum
matching can be found in RNC, it has been shown by Mulmuley, Vazirani, and Vazirani that the
exact matching problem is in RNC [16].

Our first result is a deterministic polynomial time algorithm that solves the exact matching
problem with an additive error of 1. More formally, let m(G) denote the cardinality of a maximum
matching of G.
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Theorem 1.1 There is a polynomial time algorithm that given a graph G with some edges colored
red, and an integer k, either correctly asserts that no matching of size m(G) contains exactly k red
edges, or exhibits a matching of size at least m(G)− 1 with exactly k red edges.

Thus, in a sense, exact matching is an example of a problem that is as close as one can get to P,
without showing membership in P. As far a we know, the exact matching problem is now the only
example of a natural problem in RP (and in RNC) with such an additive approximation error of 1.
The proof of Theorem 1.1 is given is Section 2.

A large class of graphs for which the exact matching problem can be solved in polynomial time
is the class of K3,3-minor free graphs (this class includes all planar graphs and many others). This
follows, with certain additional effort, from a result of Little [14] showing that K3,3-minor free graphs
have a Pfaffian orientation (see Section 3 for a definition). In fact, Vazirani has given in [19] an NC
algorithm for deciding whether a K3,3-minor free graph has a perfect exact matching. Although
these results yield polynomial time algorithms, their sequential running times are far from optimal.
Already for the (easier) perfect matching problem they require O(n3.5) time (Theorem 2 in [19]),
and for the perfect exact matching problem they can be made to run in O(n4.5) time. Our next
result is an efficient deterministic algorithm for computing the number of perfect exact matchings
in K3,3-minor free graphs. In the following theorem, ω < 2.376 denotes the exponent of fast matrix
multiplication [4].

Theorem 1.2 Given a K3,3-minor free n-vertex graph G with some edges colored red, and an integer
k, there is an algorithm whose running time is Õ(n2+ω/2) < O(n3.19), that computes the number of
perfect matchings with exactly k red edges. If k = 0 the running time is only Õ(n1+ω/2) < O(n2.19).

The algorithm is based upon several recent (and also not so recent) results concerning the compu-
tation of determinants of adjacency matrices of powers of fixed minor-free graphs. We note that the
case k = 0 in Theorem 1.2 (counting perfect matchings in K3,3-minor free graphs) follows from a
similar results of Mucha and Sankowski [15] and the author and Zwick [20] that count the number
of perfect matchings in planar graphs and graphs with bounded genus in Õ(n1+ω/2) time.

2 Proof of Theorem 1.1

For convenience, we shall assume that the non-red edges of G are blue.
We start with a short outline of our algorithm. To find an exact k-matching, we first find a

maximum red matching MR (a maximum matching with the largest number of red colors) and a
maximum blue matching MB and consider the components of the subgraph spanned by MR ∪MB.
We then show that these components contain only even cycles and even length paths. In each
component S, the counts of the number of red edges in MR and MB restricted to S are considered.
It is then shown how to choose edges from MR and MB from each component S to get a total of
m(G)− 1 independent edges, k of which are red, if possible.

The algorithm proving Theorem 1.1 is given in Figure 1. The following is a detailed explanation
of each step of the algorithm.

A maximum matching M is called red-maximum if every other maximum matching contains at
most as many red edges as M . A blue-maximum matching is defined accordingly.

Lemma 2.1 Finding a red-maximum matching and a blue-maximum matching can be done in poly-
nomial time.
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algorithm almost-exact-matching(G, k)

1. Compute a red-maximum matching MR and a blue-maximum matching MB.

2. if |MR| < k or |MB| < m− k then return false.

3. U = MR ∪MB is a disjoint union of even paths and even cycles {S1, . . . , St}.

4. for i = 1, . . . , t assign to Si a type (xi, yi, zi) where:

|Si| = 2zi, and xi ≤ yi count red edges in the two perfect matchings Xi and Yi of Si.

5. Let fi =
∑i

j=1
yj +

∑t
j=i+1

xj .

6. if some fi = k then M = Y1 · · · ∪ Yi ∪Xi+1 ∪ · · · ∪Xt. return M .

7. Let i be the unique index for which fi−1 < k and fi > k.

8. Let pi be such that xi < pi < yi and y1 + · · ·+ yi−1 + pi + xi+1 + · · ·+ xt = k.

9. Let Pi be zi − 1 independent edges of Si, exactly pi of which are red.

10. M = Y1 · · · ∪ Yi−1 ∪ Pi ∪Xi+1 ∪ · · · ∪Xt. return M .

Figure 1: Algorithm for computing an almost exact matching with k red edges.

Proof: We can find a red-maximum matching by using a weighted matching algorithm, such as
the algorithm of Gabow and Tarjan [5]. Assign to each blue edge the weight m and to each red
edge the weight m + 1, where m = m(G) is the size of the maximum matching. Notice that every
maximum weighted matching must contain m edges. Indeed, if not, then its weight is at most
(m + 1)(m − 1) = m2 − 1, while every maximum matching in the unweighted graph has weight at
least m2 in the weighted graph. Now, since the weight of red edges is larger that the weight of blue
edges, every maximum weighted matching maximizes the number of red edges in it.

Let, therefore, MR and MB be a red-maximum matching and a blue-maximum matching, respec-
tively. If MR contains less than k red edges, we are done. We correctly assert that no maximum
matching contains k red edges. Similarly, if MB contains less than m− k blue edges, we are done.

Consider the union of MR and MB. It is a subgraph U of G (considered as a multigraph with
edge multiplicity 2) having maximum degree 2. Each component of U is either a path (possibly a
singleton vertex which is not matched in neither MR nor MB) or an even cycle. Cycles of length 2
in U are multiple edges having the same color (they are formed by edges that appear in both MR

and MB).
It is also easy to see that U has no odd length paths. Indeed, an odd length path of size 2k + 1

is an augmenting path of the matching that contributes k edges to the path, contradicting the fact
that the latter is a maximum matching.

If S is an even cycle or even path, we say that S is of type (x, y, z) for x ≤ y ≤ z if the length of
S is 2z, and one of the maximum matchings with z edges (it does not contain both end-edges in case
S is an even path) in S has x red edges and the complimentary maximum matching has y red edges.
See Figure 2 for an example; the path in the figure has 8 edges, there are only two odd-numbered red
edges (counting from the left) and three even-numbered red edges. Hence, the the path in the figure
is of type (2, 3, 4), and similarly the cycle is of type (2, 3, 4). We let min(S) = x, max(S) = y and

3



length(S) = 2z. We enumerate the connected components of U by S1, . . . , St, and let xi = min(Si),
yi = max(Si) and length(Si) = 2zi for i = 1, . . . , t.

Since the number of edges of U is 2m (an edge forming a cycle of length 2 is counted twice) we
have that

∑t
i=1

zi = m. Also notice that in each component Si, one of the matchings is a subset of
MR and the complimentary matching is a subset of MB, and hence

t
∑

i=1

xi ≤ k ≤
t

∑

i=1

yi.

Our goal is to find m− 1 independent edges, exactly k of which are red.
For i = 0, . . . , t, let fi =

∑i
j=1

yj +
∑t

j=i+1
xj . In particular, notice that f0 ≤ k and ft ≥ k, and

that f is monotone nondecreasing.
If some fi = k, then we are done. From the first i components S1, . . . , Si we will take the

maximum matching with max(Sj) = yj red edges, and from the remaining components we will take
the maximum matching with min(Sj) = xj red edges. Altogether we obtain a matching of size m
consisting of exactly k red edges.

Otherwise, let i be the unique index for which fi−1 < k and fi > k. This means that there is a
unique integer pi so that xi < pi < yi and so that

y1 + · · ·+ yi−1 + pi + xi+1 + . . .+ xt = k.

From each Sj for j = 1, . . . , i − 1 we take the maximum matching with max(Sj) = yj red edges.
From each Sj for j = i + 1, . . . , t we take the maximum matching with min(Sj) = xj red edges. It
remains to show that in Si we can select zi−1 independent edges, exactly pi of which are red. More,
generally, we show the following:

Lemma 2.2 If S is an even cycle or even path of type (x, y, z) and x < p < y, we can find in S a
set of z − 1 independent edges, exactly p of which are red. If S is an even path we can actually find
a matching of size z with exactly p red edges.

Proof: Suppose the vertices of S are v0, . . . , v2z, and assume, without loss of generality, that the
matching (v2i, v2i+1) for i = 0, . . . , z−1 is the one with x red edges and the complementary matching
is the one with y red edges. For q = 0, . . . , z, consider the matching Pq obtained by taking the edges
(v2i−2, v2i−1) for i = 1, . . . , q and taking the the edges (v2i−1, v2i) for i = q+1, . . . , z. Clearly, P0 has
y red edges and Pz has x red edges. The crucial point to observe is that the difference in the number
of red edges between Pq and Pq+1 is at most one, since they differ in at most one edge. Thus, there
must be a q for which Pq has exactly p red edges. The proof for even cycles is similar. Since x 6= y,
the cycle is not completely red nor completely blue. Thus, there is a vertex incident with a red and
a blue edge. Deleting this vertex, we obtain a path of even length of type (x− 1, y, z − 1) or of type
(x, y − 1, z − 1). If p = y − 1 we are done. Otherwise we can use the proof for the path case, this
time, however, we only find a matching with z − 1 edges, exactly p of which are red.
This completes the proof of correctness of the algorithm. As all steps take polynomial time, Theorem
1.1 follows.

Two additional heuristics can be added to the algorithm of Theorem 1.1. In the proof we order
the connected components S1, . . . , St of U arbitrarily. Every ordering yields different values for the
fi’s. There may be a specific order for which fi = k for some i, in which case we can actually find a
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Figure 2: An even path and an even cycle of type (2, 3, 4)

maximum matching with k red edges. We can determine, in polynomial time, if such an order exists,
as this is just a subset-sum problem on the set of values max(Si) − min(Si) for i = 1, . . . , t where
we wish to find a subset sum of value k −

∑t
i=1

min(Si). This subset sum problem can be solved in
polynomial time, since the integers involved are polynomial in the size of the graph.

Another observation is that, in case the algorithm finds a matching with m− 1 edges, k of which
are red, then the blue subgraph induced by the vertices not incident with these k red edges already
contains a matching with m− 1− k blue edges. Since m = m(G) it cannot contain a matching with
more than m− k blue edges. We therefore need to find just one additional augmenting path in this
subgraph. We can do that using any maximum matching algorithm (we may fail, however, since it
may be the case that this blue subgraph might indeed have maximum matching size m− 1− k).

Finally, we note that a more recent paper [3] uses a similar technique as our proof of Theorem
1.1 in order to solve a related problem.

3 Exact matching in K3,3-minor free graphs

In this section we prove Theorem 1.2. As the proof and the resulting algorithm rely heavily on
the theory of Pfaffian orientations, we start this section with the required overview of Pfaffians.
An important ingredient of the algorithm relies on the ability to compute determinants of certain
matrices whose underlying nonzero structure corresponds to a bounded degree minor-free graph.
Subsection 3.2 provides the necessary details required for this task. The proof of Theorem 1.2 is
given in Subsection 3.3.

3.1 The Pfaffian of an F -distinguishing Tutte matrix

Let G = (V,E) be an undirected graph with V = {1, . . . , n}, and suppose that F ⊂ E. With each
edge e ∈ E we associate a variable xe. Define the F -distinguishing Tutte matrix of G, denoted
AF (G), by:

aij =























+xij , if ij ∈ E \ F and i < j;
−xji, if ij ∈ E \ F and i > j;
+yxij , if ij ∈ F and i < j;
−yxji, if ij ∈ F and i > j;
0, otherwise.

Notice that if F = ∅, then the indeterminate y is not needed and A∅(G) is just the usual Tutte
matrix of G. Notice also that AF (G) is skew-symmetric, and hence its determinant det(AF (G)) is
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always a square of a polynomial in the matrix entries. This polynomial (determined uniquely up to
a sign) is the Pfaffian of AF (G), denoted Pf(AF (G)).

For M ⊂ E, let x(M) =
∏

e∈M xe. Tutte proved [18] that there is a bijection between the terms
in Pf(A∅(G)) and the perfect matchings of G. Namely each term in Pf(A∅(G)) (no matter what
its sign is) equals some x(M) where M is a perfect matching. In particular, Pf(A∅(G)) 6= 0 if and
only if G has a perfect matching. Tutte’s argument immediately generalizes to show that there is a
bijection between the perfect matchings of G containing exactly k edges from F , and the terms of
the form ykx(M) in Pf(AF (G)) [6]. Although Tutte’s result is an important combinatorial insight,
it is not computationally attractive, as we cannot compute the determinant of a symbolic matrix
(with |E|+ 1 symbols, in fact) efficiently.

The theory of Pfaffian orientations was introduced by Kasteleyn [11] to solve some enumeration
problems arising from statistical physics. These orientations can be used in order to replace the
variables xe in the Tutte matrix with +1 and −1 so that each positive term in the determinant of the
Tutte Matrix equals +1 after the assignment of values to the variables, and each negative term in the
determinant of the Tutte Matrix equals −1 after the assignment. So each term in the resulting matrix
now contributes +1 to the determinant and, thereby, perfect matchings can be efficiently counted
in Pfaffian orientable graphs. Kasteleyn [11] proved that all planar graphs are Pfaffian orientable.
This result was extended by Little [14] who proved that all K3,3-minor free graphs (these include all
planar graphs, by Kuratowski’s and Wagner’s Theorems) are Pfaffian orientable.

Let G = (V,E) be an undirected graph, C an even cycle in G, and ~G an orientation of G. We
say that C is oddly oriented by ~G if, when traversing C in either direction, the number of co-oriented
edges (i.e., edges whose orientation in ~G and in the traversal is the same) is odd.

Definition 3.1 An orientation ~G of G is Pfaffian if the the following condition holds: for any two
perfect matchings M,M ′ in G, every cycle in M ∪M ′ is oddly oriented by ~G.

Note that all cycles in the union of two perfect matchings are even. Not all graphs have a Pfaffian
orientation. For example, K3,3 does not have one.

Given a Pfaffian orientation ~G of a Pfaffian orientable graph G, replace each variable xij where

i < j with +1 if (i, j) ∈ E(~G) and with −1 if (j, i) ∈ E(~G). Denote the resulting F -distinguishing
matrix by AF (~G). Kasteleyn proved the following result [11]:

Lemma 3.2 For any Pfaffian orientation ~G of G, |Pf(A∅(~G))| is the number of perfect matchings
of G (or, stated otherwise, det(A∅(~G)) is the square of the number of perfect matchings.

Kasteleyn’s result immediately generalizes to the F -distinguishing Tutte matrix.

Corollary 3.3 For any Pfaffian orientation ~G of G, the coefficient of yk in Pf(AF (~G)) is the number
of perfect matchings with exactly k edges from F .

3.2 Computing determinants in the minor-free degree bounded setting

In order to prove Theorem 1.2 we need to show that, given an input graph G, we can first efficiently
find a Pfaffian orientation of G (or else determine that G is not K3,3-minor free). Once we do that,

we can compute the determinant of AF (~G) and apply Corollary 3.3, where F is the set of red edges.
Although this can be done in polynomial time (the matrix has only one symbol, y), this will not be
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so efficient (the fastest deterministic algorithm for this problem runs in O(nω+1) time even if k = 0
and the matrix is symbol-free). Thus, we need to use a different approach.

We say that a graph G = (V,E) has a (k, α)-separation, if V can be partitioned into three parts,
A,B,C so that |A ∪ C| ≤ α|V |, |B ∪ C| ≤ α|V |, |C| ≤ k, and if uv ∈ E and u ∈ A, then v /∈ B.
We say that A and B are separated by C, that C is a separator, and that the partition (A,B,C)
exhibits a (k, α)-separation.

By the seminal result of Lipton and Tarjan [13], n-vertex planar graphs have an (O(n1/2), 2/3)-
separation. In fact, they also show how to compute such a separation in linear time. Subsequently,
Alon, Seymour, and Thomas [1] extended the result of Lipton and Tarjan to H-minor free graphs.
The running time of their algorithm is O(n1.5) for every fixed H. Both algorithms do not assume
that the input graph satisfies the conditions. Namely, if the algorithms fail to obtain the desired
separator, they conclude that the graph is nonplanar (in the Lipton-Tarjan algorithm) or contains
an H-minor (in the Alon-Seymour-Thomas algorithm).

When the existence of an (f(n), α)-separation can be proved for each n-vertex graph belonging
to a hereditary family (closed under taking subgraphs), one can recursively continue separating each
of the separated parts A and B until the separated pieces are small enough. This obviously yields a
separator tree. Notice that planarity, as well as being H-minor free, is a hereditary property. More
formally, we say that a graph G = (V,E) with n vertices has an (f(n), α)-separator tree if there
exists a full rooted binary tree T so that the following holds:

(i) Each t ∈ V (T ) is associated with some Vt ⊂ V .
(ii) The root of T is associated with V .
(iii) If t1, t2 ∈ V (T ) are the two children of t ∈ V (T ), then Vt1 ⊂ Vt and Vt2 ⊂ Vt. Furthermore, if
A = Vt1 , B = Vt2 and C = Vt \ (Vt1 ∪ Vt2), then (A,B,C) exhibits an (f(|Vt|), α)-separation of G[Vt]
(the subgraph induced by Gt).
(iv) If t is a leaf, then |Vt| = O(1).

By using divide and conquer, the result of Alon, Seymour, and Thomas mentioned above can be
stated as follows.

Lemma 3.4 For a fixed graph H, an H-minor free graph with n vertices has an (O(n1/2), 2/3)-
separator tree and such a tree can be found in Õ(n1.5) time.

Let A be an n× n matrix. The representing graph of A, denoted G(A), is defined by the vertex
set {1, . . . , n} where, for i 6= j we have an edge ij if and only if aij 6= 0 or aji 6= 0.

Generalizing the nested dissection method of George [7], Lipton, Rose, and Tarjan [12] and
Gilbert and Tarjan [8] proved the following.

Lemma 3.5 Let B be a symmetric positive definite n × n matrix. If, for some positive constant
α < 1, G(B) has bounded degree and an (O(n1/2), α)-separator tree, and such a tree is given, then
Gaussian elimination on B can be performed with O(nω/2) arithmetic operations. The resulting LU
factorization of B is given by matrices L and D, B = LDLT , where L is unit lower-triangular and
has Õ(n) nonzero entries, and D is diagonal.

The requirement that B should be positive definite is needed in the algorithm of Lemma 3.5 only
in order to guarantee that no zero diagonal entries are encountered, and hence no row or column
pivoting is needed during the elimination process. This was also observed in [15]. We can easily
modify Lemma 3.5 as follows.
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Lemma 3.6 Let A be an n× n integer matrix where each entry has absolute value at most N , and
each row and column of A contain only a bounded number of nonzero entries. Let B = AAT . If,
for some positive constant α < 1, G(B) has an (O(n1/2), α)-separator tree, and such a tree is given,
then det(B) can be computed in Õ(nω/2+1 logN) time.

Proof: Clearly, B only has a bounded number of nonzero entries in each row or column, and
hence G(B) has bounded degree. Notice also that B = AAT and hence B is a symmetric positive
semi-definite matrix, and, in fact, if A is nonsingular, then B is positive definite. Thus we can
apply Lemma 3.5 to B with the additional observation that if we encounter a zero on the diagonal
during the elimination process we conclude that det(B) = 0. Notice that Lemma 3.5 immediately
yields the determinant, as this is just the product of the diagonal entries of D. The number of
arithmetic operations in Lemma 3.5 is O(nω/2), but this is not the actual time complexity. Notice
that each element of B has absolute value at most Θ(N), and therefore, when performing the
Gaussian elimination, each rational number encountered has its numerator and denominator no
larger in absolute value than n!Θ(N)n (in fact, much smaller), and hence the number of bits of
the numerator and denominator is Õ(n logN). Consequently, each arithmetic operation requires
Õ(n logN) time. Thus, the bit complexity of the algorithm is Õ(nω/2+1 logN).

The requirement that G(A) have bounded degree in Lemma 3.6 is very limiting. Our input graphs
are K3,3-minor free, but may have vertices with very high degree. There is a general technique that
transforms every graph G to another graph G′ so that the latter has maximum degree at most r,
where r ≥ 3, and so that the number of perfect exact matchings ofG andG′ is the same. Furthermore,
there is an easy translation of maximum exact matchings in G to maximum exact matchings in G′

and vice versa.
Suppose G has a vertex u of degree at least r+1. Pick two neighbors of u, say v, w. Add two new

vertices u′ and u′′, add the edges uu′, u′u′′, u′′v, u′′w and delete the original edges uv, uw. Clearly,
this vertex-splitting operation does not change the number of perfect matchings (and increases the
size of the maximum matching by 1). Another thing to notice is that if we do not color the new
edges uu′ and u′u′′ and let the color of u′′v be the same as the color of uv and let the color of u′′w
be the same as the color of uw, then also the number of perfect matchings with exactly k red edges
does not change. Finally, another pleasing property is that if G has a Pfaffian orientation before
the splitting, it also has one after the splitting; just orient uu′ and u′u′′ in the same direction as a
directed path of length 2, orient u′′v the same as uv, and orient u′′w the same as uw. By repeatedly
performing vertex splitting until there are no vertices with degree greater than r, we obtain a desired
vertex split graph G′. Clearly, if G has n vertices and O(n) edges (as do, say, all fixed-minor-free
graphs), then G′ has O(n) vertices and O(n) edges as well.

Unfortunately, vertex splitting does not preserve H-minor freeness. We could have that G is
H-minor free, but G′, its vertex splitted counterpart, contains an H-minor. Luckily, however, a
result of [20] (Lemma 2.1 there) shows that G′ still has an (O(n1/2), α)-separator tree, and one can
still use the algorithm of Lemma 3.4 to produce it, in the same running time. We restate Lemma
2.1 from [20] for the special case of K3,3 which is what we need here:

Lemma 3.7 Given a K3,3-minor free graph G with n vertices, there is a vertex-split graph G′ of G
of bounded maximum degree so that G′ has an (O(n1/2), α)-separator tree where α < 1 is an absolute
constant. Furthermore, such a separator tree for G′ can be constructed in O(n1.5) time.
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algorithm count-exact-perfect-matching-in-K3,3-minor-free-graphs(G,F )

1. Find a vertex split graph G′ of G and a separator tree T for G′. Let n′ = |V (G′)|.

2. Find a Pfaffian orientation ~G of G.

3. Construct the corresponding Pfaffian orientation ~G′ of G′.

4. Let A′ = AF ( ~G′) be the resulting F -distinguishing matrix.

5. Let A be obtained from A′ by replacing each occurrence of y with N = (n′)n
′
.

6. Let B = AAT .

7. Use T to construct a separator tree for G(B).

8. Compute det(B).

9. Use det(B) to compute Pf(A).

10. return the k + 1’th least significant digit of Pf(A) written in base (n′)n
′
.

Figure 3: Algorithm for computing the number of perfect exact matchings in K3,3-minor free graphs.

3.3 Proof of Theorem 1.2

The algorithm proving Theorem 1.2 appears in Figure 3. The following is a detailed explanation
of each step of the algorithm. Given the input graph G (assumed to be K3,3-minor free) with F
being its set of red edges, we first apply Lemma 3.7 and obtain a vertex split graph G′ of G and a
separator tree T for G′. The time to produce G′ and T is Õ(n1.5) (notice that if the input graph is
not K3,3-minor free the algorithm of Lemma 3.7 may still succeed, but if it fails we are certain that
our input graph is not K3,3-minor free, so we halt). Let n′ denote the number of vertices of G′ and
notice that n′ = O(n).

Next, we find a Pfaffian orientation for G. This can be done in linear time using the algorithm
of Vazirani [19]. His algorithm is an NC algorithm, but its sequential counterpart is much simpler.
A lemma of Asano [2] asserts that each triconnected component of a K3,3-minor free graph is either
planar or exactly K5. One can compute the triconnected components in linear time using the result
of Hopcroft and Tarjan [9]. Once these are computed, computing the Pfaffian orientation reduces to
the same algorithm for computing Pfaffian orientations in planar graphs, which is a classical linear
time algorithm of Kasteleyn [11].

From the Pfaffian orientation ~G of G we directly construct, in linear time, a Pfaffian orientation
~G′ of G′, as shown in the above description of vertex splitting. Let, therefore, A′ = AF ( ~G′) be the
resulting F -distinguishing matrix. Notice that if F = ∅, then A′ is just a matrix with entries in
{−1, 0, 1}. Otherwise, we shall replace each occurrence of the indeterminate y with N = (n′)n

′
and

denote the resulting matrix by A. If F = ∅, then we simply define A = A′ and N = 1. In either case,
A is an integer matrix with absolute value of each entry at most N , and with each row and column
having a bounded number of nonzero entries.

Clearly, T is a separator tree for G(A), the representing graph of A. Now, let B = AAT . In order
to apply Lemma 3.6 we need to show that G(B) also has a separator tree, and we must construct

9



such a tree. Notice, however, that the graph G(B) is just the square of the graph G(A) (whose
underlying graph is G′). It was observed in [15] that if we take any separator S of G′ (that is, S
corresponds to a vertex of T ), and replace it with the thick separator S′ consisting of S and all of
its neighbors, we obtain a separator for the square of G′. Since G′ has bounded degree, we have
that |S′| = Θ(|S|) and hence we can immediately construct from T an (O(n1/2, α))-separator tree
for G(B). We can now apply Lemma 3.6 and compute det(B) in Õ(nω/2+1 logN) time, which is
Õ(nω/2+1) if F = ∅ and Õ(nω/2+2) if F 6= ∅.

It remains to show how the number of perfect exact matchings can be retrieved from det(B).
First notice that det(B) = det(AAT ) = det(A)2 and hence we have det(A). Next notice that A is
skew-symmetric and hence we also have Pf(A) =

√

det(A). Now, if F = ∅, then, by Lemma 3.2,
Pf(A) is just the number of perfect matchings of G′, which, in turn, is the same as the number of
perfect matchings of G. If on the other hand, F 6= ∅, then our choice of replacing y with (n′)n

′

enables us to construct Pf(A′) from Pf(A) by considering Pf(A) as a number written in base (n′)n
′

and noticing that there is no “carry”, since the number of perfect matchings is less than n! < (n′)n
′
.

Thus, by Lemma 3.3 the coefficient of yk in Pf(A′) (or, in turn, the k + 1th least significant digit
of Pf(A) written in base (n′)n

′
) is the number of perfect matchings of G′ with exactly k red edges.

This is identical to the number of perfect matchings of G with exactly k red edges.

4 Concluding remarks and open problems

A more general version of exact matching is the following. Given an edge coloring of some of the
edges of a graph G with r colors 1, . . . , r and an integer vector (k1, . . . , kr), is there a maximum
matching with precisely ki edges colored with the color i, for i = 1, . . . , r? Thus, the exact matching
problem treated in this paper is just the case r = 1. Unfortunately, we are unable to extend Theorem
1.1 to the case of multiple colors. In fact, even the extension of Theorem 1.1 to the case r = 2 remains
open. On the other hand, it is possible to extend Theorem 1.2 to this more general case:

Proposition 4.1 Given a K3,3-minor free n-vertex graph G with some edges colored with a color
from 1, . . . , r, and a vector of positive integers (k1, . . . , kr), there is an algorithm whose running time
is Õ(nω/2+r+1) < O(n2.19+r), that computes the number of perfect matchings with exactly ki edges
colored with color i for i = 1, . . . , r.

Indeed, the only modification in the proof of Theorem 1.2 is to introduce other variables in addition
to y. That is, for each color there will be a variable yi for i = 1, . . . , r, and Corollary 3.3 then
generalizes to the statement that for any Pfaffian orientation ~G of G, the coefficient of yk1

1
yk2
2

· · · ykrr
in Pf(AF (~G)) is the number of perfect matchings with exactly ki edges colored i for i = 1, . . . , r.
The time complexity price to pay for the introduction of r variables instead of just one is nr instead
of just n, by using the same argument which replaces a variable with huge integers, as shown in the
final paragraph of Section 3.

Based on the result of Gallucio and Loebl [6], it is shown in [20] that the number of perfect
matchings in graphs with bounded genus can be computed in O(nω/2+1) time. Combining this result
with the proof of Theorem 1.2 it is possible to obtain a similar result for counting the number of
exact matchings in bounded genus graphs in O(nω/2+2) time. As the details are essentially the same,
we omit them.

10



Acknowledgment

We thank the referees for providing constructive comments and help in improving the contents of
this paper.

References

[1] N. Alon, P.D. Seymour, and R. Thomas. A separator theorem for nonplanar graphs. J. Amer.
Math. Soc., 3(4):801–808, 1990.

[2] T. Asano. An approach to the subgraph homeomorphism problem. Theoretical Computer
Science, 38:249–267, 1985.

[3] A. Berger, V. Bonifaci, F. Grandoni, and G. Schäfer. Budgeted matching and budgeted matroid
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