H-Factors in Dense Graphs

Noga Alon *
and
Raphael Yuster
Department of Mathematics
Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv, Israel

Abstract

The following asymptotic result is proved. For every $\epsilon>0$, and for every positive integer h, there exists an $n_{0}=n_{0}(\epsilon, h)$ such that for every graph H with h vertices and for every $n>n_{0}$, any graph G with $h n$ vertices and with minimum degree $d \geq\left(\frac{\chi(H)-1}{\chi(H)}+\epsilon\right) h n$ contains n vertex disjoint copies of H. This result is asymptotically tight and its proof supplies a polynomial time algorithm for the corresponding algorithmic problem.

1 Introduction

All graphs considered here are finite, undirected and simple. If H is a graph on h vertices and G is a graph on $h n$ vertices, we say that G has an H-factor if it contains n vertex disjoint copies of H. Thus, for example, a K_{2}-factor is simply a perfect matching, whereas a C_{4}-factor is a spanning subgraph of G every connected component of which is a cycle of length 4.

Let H be a graph on h vertices and let G be a graph on $h n$ vertices. There are several known results that show that if the minimum degree $d=d(G)$ of G is sufficiently large, then G contains an H-factor. Indeed, if H is a path of length $h-1$ then, by Dirac's Theorem on Hamiltonian cycles (cf. [4]), $d \geq h n / 2$ suffices for the existence of an H-factor. Corrádi and Hajnal [5] proved that for $H=K_{3}, d=2 n$ suffices and Hajnal and Szemerédi [7] proved that for $H=K_{h}, d=(h-1) n$ guarantees an H-factor. All these results are easily seen to be best possible.

A conjecture of Erdös and Faudree [6] asserts that $d=2 n$ suffices for a C_{4}-factor. If true, this value is clearly optimal. In this paper we come close to proving the conjecture, and show that a

[^0]minimum degree of $d=(2+o(1)) n$ suffices. In fact, we prove a much more general result, that shows that $d=(1-1 / \chi(H)+o(1)) h n$ suffices for the existence of an H-factor, for any fixed graph H. (As usual, $\chi(H)$ denotes the chromatic number of H). The exact statement of the result is the following.

Theorem 1.1 For every $\epsilon>0$ and for every positive integer h, there exists an $n_{0}=n_{0}(\epsilon, h)$ such that for every graph H with h vertices and for every $n>n_{0}$, any graph G with hn vertices and with minimum degree $d(G) \geq(1-1 / \chi(H)+\epsilon)$ hn has an H-factor.

The proof of Theorem 1.1 is based on an asymptotic result proved in [3], as well as on some probabilistic arguments, and various combinatorial ideas. In section 2 we introduce the necessary lemmas that are used in the proof. A short outline of the proof is presented in section 3. The proof itself is described in detail in section 4. The tightness of the results, their algorithmic aspects and some concluding remarks and open problems are discussed in the final section.

2 Preliminary lemmas

In order to prove our theorems, we require an asymptotic result obtained in [3] which enables us to cover almost all of the vertices of a (large) graph L with vertex disjoint copies of a (small) graph S.

Lemma 2.1 ([3]) For every $\delta>0$ and for every integer s_{0}, there exists an $l_{0}=l_{0}\left(\delta, s_{0}\right)$ such that for every graph S with $s \leq s_{0}$ vertices and chromatic number $\chi(S)$ and for every $l>l_{0}$, any graph L with l vertices and minimum degree $d \geq \frac{\chi(S)-1}{\chi(S)} l$ contains at least $(1-\delta) l / s$ vertex disjoint copies of S.

The following probabilistic lemma is used in order to partition a dense graph M into three dense induced subgraphs. The (simple) proof uses a large deviation result of Chernoff.

Lemma 2.2 Let $\gamma>0$. There exists an $m_{0}=m_{0}(\gamma)$ such that for every $m>m_{0}$, if $m_{1}+m_{2}+m_{3}=$ m and M is a graph with m vertices and minimum degree $d=d(M)$, then its vertices can be partitioned into three pairwise-disjoint sets M_{1}, M_{2}, M_{3} whose sizes are m_{1}, m_{2}, m_{3} respectively, such that every vertex has at least $m_{i} d / m-\gamma m$ neighbors in M_{i} for $i=1,2,3$.

Proof Let m_{0} be chosen such that for all $m \geq m_{0},(3 m+6) e^{-\gamma^{2} m / 2}<0.5$. Let M be a graph on $m \geq m_{0}$ vertices. Let $M=M_{1}^{\prime} \cup M_{2}^{\prime} \cup M_{3}^{\prime}$ be a random partition of M into three subsets obtained by letting each vertex, independently, be a member of M_{i}^{\prime} with probability m_{i} / m. Let X_{i} be the
number of vertices in M_{i}^{\prime}. Clearly, $E\left[X_{i}\right]=m_{i}$. By the large deviation result of Chernoff (see, e.g., [2], Appendix A, Theorem A.4) we have

$$
\operatorname{Prob}\left(\left|X_{i}-m_{i}\right|>\gamma m / 2\right)<2 e^{-\gamma^{2} m / 2}
$$

For a vertex v, Let X_{i}^{v} be the number of neighbors of v in M_{i}^{\prime}. Clearly, $E\left[X_{i}^{v}\right] \geq d m_{i} / m$. Once again, by the Chernoff estimates:

$$
\operatorname{Prob}\left(X_{i}^{v}<d m_{i} / m-\gamma m / 2\right)<e^{-\gamma^{2} m / 2}
$$

By our choice of m_{0}, with probability at least 0.5 we have that

$$
\left|X_{i}-m_{i}\right| \leq \gamma m / 2
$$

and

$$
X_{i}^{v} \geq d m_{i} / m-\gamma m / 2
$$

for all vertices $v \in M$ and for $i=1,2,3$. We can therefore transfer at most $\gamma m / 2$ vertices to or from each M_{i}^{\prime} such that the adjusted sets, denoted by M_{i}, have m_{i} vertices for $i=1,2,3$ and clearly, every vertex has at least $m_{i} d / m-\gamma m$ neighbors in M_{i}.

The next simple lemma gives a minimum degree bound which guarantees that a bipartite graph contains a perfect star-matching. We note that although the lemma can easily be proved by Hall's Theorem, we prefer the following proof since it can be implemented efficiently.

Lemma 2.3 Let B be a bipartite graph with c vertices in the first vertex class and cr vertices in the second vertex class. Suppose also that every vertex is connected to at least half of the vertices of the opposite class. Then B contains c vertex-disjoint stars on $r+1$ nodes, where the root of each star is a vertex of the first vertex class.

Proof We reduce this problem to a perfect matching problem. Replace each vertex v of the first vertex class by r copies, and connect each copy to the original neighbors of v. The new graph is bipartite, has $c r$ vertices in each vertex class and minimum degree at least $r c / 2$. It clearly suffices to show that this new graph has a perfect matching. Let F be a maximum matching in it. If $|F|=r c$ we are done. Otherwise let u and v be two unmatched vertices, that lie in distinct vertex classes. Let $N(u)$ and $N(v)$ be the neighbor sets of u and v respectively. Since F is maximal, every vertex of $N(u) \cup N(v)$ is matched. Since $N(u) \geq r c / 2$ and $N(v) \geq r c / 2$ we must have an edge $f=\left(u^{\prime}, v^{\prime}\right) \in F$ with $u^{\prime} \in N(u)$ and $v^{\prime} \in N(v)$. This, however, contradicts the maximality of F since we can replace f with the two edges $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$, and obtain a larger matching.

The final lemma in this section is a somewhat technical variant of the previous lemma.

Lemma 2.4 Let F be a bipartite graph on the classes of vertices C and B, where $|C|=c,|B|=$ $b \geq r c$, and r is a positive integer. If the degree of each B-vertex is at least a, and the degree of each C-vertex is at least rc then F contains a spanning subgraph F^{\prime} consisting of a union of stars which satisfies the following.

1. The degree of each B-vertex in F^{\prime} is precisely 1 .

2. The degree of each C-vertex in F^{\prime} is at least r and at most $(b+r c) / a$.
3. The degrees in F^{\prime} of all but at most $(r-1) c /(a+r-2) C$-vertices are $0 \bmod r$.

Proof We begin by greedily assigning to each C-vertex $r B$-vertices among its neighbors. This can be done since the degree of each C-vertex is at least $r c$. We are now left with a set B^{\prime} of unassigned B-vertices, where $\left|B^{\prime}\right|=b-r c$. Pick an assignment of the elements of B^{\prime} to their neighbors, so as to maximize the number of C-vertices to which $0 \bmod r B$-vertices have been assigned. If there is more than one such assignment, we pick the one having the maximum possible number of B-vertices assigned to good C-vertices, i.e., to C-vertices to which $0 \bmod r B$-vertices have been assigned. Let d_{0} denote the number of good C-vertices, which we denote by $C_{1}, \ldots, C_{d_{0}}$ and let the other C-vertices be $C_{d_{0}+1}, \ldots, C_{c}$. The maximality of d_{0} implies that each non-good C_{i} has been assigned at least one B-vertex B_{i} that is not adjacent to any other non-good C-vertex. Therefore, B_{i} is adjacent to at least $a-1$ good C-vertices, for $i=d_{0}+1, \ldots, c$. Hence, there exists a good C-vertex which is adjacent to at least $\left(c-d_{0}\right)(a-1) / d_{0}$ of the B_{i} 's. By the maximality of the number of B-vertices assigned to good C-vertices we must have $\left(c-d_{0}\right)(a-1) / d_{0} \leq r-1$ which implies $c-d_{0} \leq(r-1) c /(a+r-2)$.
It remains to show that it is possible to ensure that less than $(b+r c) / a B$-vertices will be assigned to any C-vertex. Put $x=(b+r c) / a$. Assume that there exists a C-vertex C_{i} to which x or more B-vertices have been assigned. We will show how to transfer exactly $r B$-vertices from C_{i} to another C-vertex C_{j} to which less than $x-r B$-vertices have been assigned. We may then repeat this process until there are no more C-vertices to which x or more B-vertices have been assigned. Let t denote the number of C-vertices to which $x-r$ or more B-vertices have been assigned. Clearly $t(x-r) \leq b$, so $t \leq b /(x-r)$. Each B-vertex assigned to C_{i} can be assigned to at least $a-t C$-vertices to which less than $x-r B$-vertices have been assigned. Hence there is a C-vertex among these, which is adjacent to at least $(a-t) x /(c-t) B$-vertices of C_{i}. It remains to show that $(a-t) x /(c-t) \geq r$. Since $c \geq a$, we can replace t with its upper bound $b /(x-r)$ and hence we must show that $(a-b /(x-r)) x /(c-b /(x-r)) \geq r$. This, indeed, is always true for $x=(b+r c) / a$.

3 Outline of the proof

Given graphs H and G as in the theorem, we first omit several vertex disjoint copies of H from G (which exist by some standard results from Extremal Graph Theory), in order to make sure that the number of missing copies of H is divisible by some large integer, chosen appropriately. Let $k=\chi(H)$ denote the chromatic number of H and let K denote the complete k-partite graph with h-vertices in each color class. Let S denote the complete k-partite graph with h / ϵ^{4} vertices in each color class. Note that K contains an H-factor and hence it suffices to show that the remainder of G contains a K-factor. The existence of such a K-factor is proven by covering almost all the remainder of G by pairwise vertex disjoint copies of S to which we carefully connect the remianing vertices in a way that enables us to split each copy of S together with the vertices attached to it into vertex disjoint copies of K.

In order to obtain the above mentioned required copies of S we apply Lemma 2.2 to split the remaining vertices of G into three parts M_{1}, M_{2} and M_{3} of specified sizes, where each vertex has sufficiently many neighbors in each part. Applying Lemma 2.1 to the large part M_{1}, we cover most of this part by vertex-disjoint copies of S. Let these copies be denoted by S_{1}, \ldots, S_{c}. The vertices of M_{1} that do not lie in any of the S_{i} 's are transferred to M_{2}. Next, we assign the vertices of (the adjusted) M_{2} (considered as B-vertices in the language of Lemma 2.4) to the copies of S found in M_{1} (which play the role of the C-vertices) using Lemma 2.4, where a vertex is adjacent to a copy S_{i} in the bipartite graph considered in the lemma if it has sufficiently many neighbors in each color class of S_{i}. By Lemma 2.4 (with $r=(k-1) k h$) almost all the copies are assigned $0 \bmod (k-1) k h$ vertices of M_{2}. Finally we assign the vertices of M_{3} to the S_{i} 's in such a way that each vertex of M_{3} assigned to S_{i} has sufficiently many neighbors in all color classes of S_{i} but at most one. This is done using Lemma 2.3, where the specific choice of the vertices of M_{3} which are being assigned to each S_{i} is chosen carefully in order to guarantee that the total number of vertices assigned to each S_{i} is divisible by $k h$ and that the vertices from M_{3} have enough neighbors in the required color classes of S_{i}.

To complete the proof we show that each S_{i} together with the vertices assigned to it from M_{2} and M_{3} contains a K-factor. To do so we repeatedly remove copies of K from S_{i} and the vertices assigned to it by picking such an assigned vertex together with h of its neighbors in all color classes of S_{i} but one, and together with $h-1$ vertices of S_{i} in this remaining color class. The vertices of M_{2} assigned to S_{i} are helpful in performing this task successfully, as they have enough neighbors in all color classes of S_{i}. Therefore, we can choose from which class to take $h-1$ vertices in order to guarantee that the remaining part of S_{i}, after removing the copies of K containing all vertices that have been attached to it, will contain the same number of vertices in each color class and will
thus contain a K-factor.
The final required H-factor of G consists of the intial copies of H omitted from G together with all the H-factors of the K-factor of the remainder of G.

The detailed proof requires a careful choice of various parameters and some tedius computation, and is described in the next section.

4 The proof of the main result

Let $h>1$ be an integer and let $\epsilon>0$ be a small real number satisfying $\epsilon<1 /(800 h)$. We may clearly assume that $1 / \epsilon$ is an integer. Let $\delta=\epsilon^{6} / 2, \gamma=\epsilon^{5} / 16$. Let $m_{0}=m_{0}(\gamma)$ be chosen as in Lemma 2.2, let $l_{0}=l_{0}\left(\delta, h^{2} / \epsilon^{4}\right)$ be chosen as in Lemma 2.1 and denote

$$
g=\frac{1}{\epsilon^{4}}+1+\frac{8}{\epsilon} .
$$

We prove the theorem with

$$
\begin{equation*}
n_{0}=n_{0}(\epsilon, h)=\max \left\{\frac{4 l_{0}}{h}, \frac{m_{0}}{h}+\frac{2 h}{\epsilon} g, \frac{512 h^{3}}{\epsilon^{6}}\right\} . \tag{1}
\end{equation*}
$$

Let H be a graph with h vertices and $\chi(H)=k \leq h$. Let G be a graph with $h n$ vertices, $n>n_{0}$, and minimum degree $d=d(G) \geq\left(\frac{k-1}{k}+\epsilon\right) h n$. We must show that G contains an H-factor.

We denote by K the complete k-partite graph consisting of h vertices in each color class. Note that K has an H-factor. We denote by S the complete k-partite graph consisting of h / ϵ^{4} vertices in each color class. Note that S contains a K-factor, and thereby also an H-factor. Let $s=k h / \epsilon^{4}$ be the number of vertices of S. Let $p=n \bmod (k g)$.
Claim 1: G contains p vertex disjoint copies of H.
Proof Since S contains k / ϵ^{4} pairwise-disjoint copies of H, it suffices to show that G contains two disjoint copies of S. Note that $h n>h n_{0}>l_{0}$. We may therefore apply Lemma 2.1 with $L=G$ and obtain that G contains at least $(1-\delta) h n / s>0.5 h n / s \geq 0.5 n \epsilon^{4} / k>1$ copies of S. This concludes the proof of the claim. (Note that the claim can also be deduced from the known Turán type results since the graph G contains enough edges, much more than the number needed to guarantee two disjoint copies of S).

By the last claim, we may delete from G a set of p vertex-disjoint copies of H, together with their vertices. We denote the remaining graph by M. Clearly, it suffices to prove that M contains a K-factor. M contains

$$
\begin{equation*}
m=h n-h p=h(n-p)=c h k g \tag{2}
\end{equation*}
$$

vertices, for some positive integer c. We claim that the minimum degree of M satisfies $d(M) \geq$ $\left(\frac{k-1}{k}+\epsilon / 2\right) m$. Indeed, by our choice of n_{0},
$d(M) \geq\left(\frac{k-1}{k}+\epsilon\right) h n-h p>\left(\frac{k-1}{k}+\epsilon\right) h n-h k\left(\frac{1}{\epsilon^{4}}+1+\frac{8}{\epsilon}\right) \geq\left(\frac{k-1}{k}+\frac{\epsilon}{2}\right) h n \geq\left(\frac{k-1}{k}+\frac{\epsilon}{2}\right) m$.
We also note that $m>h n-h k g>h\left(m_{0} / h+k g\right)-h k g=m_{0}$. We may therefore apply Lemma 2.2 to the graph M. The values of m_{1}, m_{2} and m_{3} that we use are:

$$
\begin{gathered}
m_{1}=\left\lceil\frac{c k h}{\epsilon^{4}}\left(1+\epsilon^{6}\right)\right\rceil \\
m_{2}=\left\lfloor\frac{8 c k h}{\epsilon}\left(1-\frac{\epsilon^{3}}{8}\right)\right\rfloor \\
m_{3}=c k h .
\end{gathered}
$$

We obtain a partition of the vertices of M into three disjoint sets, M_{1}, M_{2} and M_{3} as guaranteed by the lemma. Replacing $d(M)$ with the lower estimate of $\left(\frac{k-1}{k}+\epsilon / 2\right) m$, and γ with $\epsilon^{5} / 16$ we have

$$
\begin{gather*}
d_{M_{1}}(v) \geq \frac{m_{1} d(M)}{m}-\gamma m \geq\left(1+\epsilon^{6}\right) \frac{c k h}{\epsilon^{4}}\left(\frac{k-1}{k}+\epsilon / 2\right)-\frac{\epsilon^{5}}{16} m> \tag{3}\\
\frac{c k h}{\epsilon^{4}}\left(\frac{k-1}{k}+\epsilon / 2\right)-\frac{\epsilon^{5}}{16} m \geq \frac{c k h}{\epsilon^{4}}\left(\frac{k-1}{k}+\epsilon / 4\right)+\frac{c k h}{4 \epsilon^{3}}-\frac{\epsilon^{5}}{16} c k h\left(\frac{1}{\epsilon^{4}}+1+\frac{8}{\epsilon}\right) \geq \\
\frac{c k h}{\epsilon^{4}}\left(\frac{k-1}{k}+\epsilon / 4\right)+\frac{c k h}{4 \epsilon^{3}}-\frac{\epsilon^{5}}{8} \frac{c k h}{\epsilon^{4}} \geq \frac{c k h}{\epsilon^{4}}\left(\frac{k-1}{k}+\epsilon / 4\right)+c k h
\end{gather*}
$$

Similar computations show that

$$
\begin{gather*}
d_{M_{2}}(v)>\frac{8 c k h}{\epsilon}\left(\frac{k-1}{k}+\epsilon / 4\right)+c k h, \tag{4}\\
d_{M_{3}}(v) \geq c k h\left(\frac{k-1}{k}+\epsilon / 4\right) . \tag{5}
\end{gather*}
$$

Note that $d_{M_{i}}(v)$ denotes the number of neighbors of a vertex v of M in M_{i}, for $i=1,2,3$. Let L be the subgraph of M induced on M_{1}. Our first goal is to obtain c vertex disjoint copies of S in L. This will be done by applying Lemma 2.1 to L. In order to do so we need to show that $m_{1}>l_{0}$ and that $d(L) \geq \frac{k-1}{k} m_{1}$. Indeed, by our choice of n_{0},

$$
m_{1}>\frac{c k h}{\epsilon^{4}}>m / 2>h n / 4>h n_{0} / 4>l_{0} .
$$

By (3) we have

$$
d(L) \geq \frac{c k h}{\epsilon^{4}}\left(\frac{k-1}{k}+\epsilon / 4\right)+c k h \geq \frac{c k h}{\epsilon^{4}} \frac{k-1}{k}+\left(\epsilon^{2} c k h+1\right) \frac{k-1}{k} \geq \frac{k-1}{k} m_{1}
$$

Having shown the above, we obtain by Lemma 2.1 that L contains at least $(1-\delta) m_{1} / s$ disjoint copies of S. We need to show that $(1-\delta) m_{1} / s \geq c$. By our choice of δ, we know that $(1-\delta)(1+2 \delta)>1$. Hence,

$$
(1-\delta) m_{1} / s \geq(1-\delta) \frac{c k h}{\epsilon^{4}}\left(1+\epsilon^{6}\right) / s=(1-\delta) c\left(1+\epsilon^{6}\right)=(1-\delta) c(1+2 \delta)>c
$$

Having obtained at least c disjoint copies of S in L, we pick c such copies denoted by S_{1}, \ldots, S_{c}. We denote the vertex classes of S_{i} by S_{i}^{j} for $j=1, \ldots, k$. Let C_{1} be the set of vertices of all these copies. Note that $C_{1} \subset M_{1}$ and $\left|C_{1}\right|=c s=c k h / \epsilon^{4}$. Put $C_{2}=M_{2} \cup\left(M_{1} \backslash C_{1}\right)$. Clearly, $\left|C_{2}\right|=8 c k h / \epsilon$. For the sake of completeness, we put $C_{3}=M_{3}$. We claim that for every vertex v :

$$
\begin{equation*}
d_{C_{i}}(v) \geq\left(\frac{k-1}{k}+\epsilon / 4\right)\left|C_{i}\right| \tag{6}
\end{equation*}
$$

for $i=1,2,3$. To see this, note first that for $i=3$, this follows from (5). For $i=1$, this follows from (3) and from the fact that $\left|M_{1} \backslash C_{1}\right|=\left\lceil c k h \epsilon^{2}\right\rceil<c k h$. For $i=2$ this follows from (4) and from the fact that $\left|C_{2} \backslash M_{2}\right|=\left\lceil c k h \epsilon^{2}\right\rceil<c k h$.

For the rest of the proof, let $q=100 h^{2} k / \epsilon^{2}$. We say that a vertex $v \in C_{2}$ is strongly assignable to S_{i} if v has at least q neighbors in each vertex class of S_{i}. We say that v is weakly assignable to S_{i} if v has at least q neighbors in each vertex class of S_{i}, but at most one.
Claim 2: Every vertex $v \in C_{2}$ is strongly assignable to at least ck $\epsilon / 8$ of the S_{i} 's in C_{1}. Furthermore, for each $S_{i}, i=1, \ldots, c$ there is a set of at least $c k^{2} h$ vertices of C_{2} that are strongly assignable to it.
Proof Let $v \in C_{2}$, and let x denote the number of S_{i} 's in C_{1} to which v is strongly assignable. v has at most $x s=x k h / \epsilon^{4}$ neighbors in the S_{i} 's to which it is strongly assignable. It has at most $(c-x)\left((k-1) h / \epsilon^{4}+q\right)$ neighbors in the other S_{i} 's. By (6) we have

$$
x \frac{k h}{\epsilon^{4}}+(c-x)\left[\frac{(k-1) h}{\epsilon^{4}}+\frac{100 k h^{2}}{\epsilon^{2}}\right] \geq\left(\frac{k-1}{k}+\frac{\epsilon}{4}\right) \frac{c k h}{\epsilon^{4}} .
$$

This inequality is equivalent to

$$
x \geq c \frac{k \epsilon / 4-100 k h \epsilon^{2}}{1-100 \epsilon^{2} k h}
$$

This, in turn, implies that $x \geq c k \epsilon / 8$ since $\epsilon<1 /(800 h)$.
For the second part of the claim, fix S_{i} and denote by y the number of vertices $v \in C_{2}$ that are strongly assignable to S_{i}. Once again, by (6), for $i=2$, we have

$$
y \frac{k h}{\epsilon^{4}}+\left(\frac{8 c k h}{\epsilon}-y\right)\left[\frac{(k-1) h}{\epsilon^{4}}+\frac{100 k h^{2}}{\epsilon^{2}}\right] \geq\left(\frac{k-1}{k}+\frac{\epsilon}{4}\right) \frac{8 c k h}{\epsilon} \frac{k h}{\epsilon^{4}} .
$$

As before, we obtain $y \geq c k^{2} h$ for $\epsilon<1 /(800 h)$. This completes the proof of the claim.

We may now apply Lemma 2.4 where the C-vertices are S_{1}, \ldots, S_{c}, the B-vertices are the vertices of $C_{2}, r=(k-1) k h$ and $a=c k \epsilon / 8$. Here a member of C_{2} is connected to an S_{i} if it is strongly assignable to it. Note that by the last claim, the degree of each B-vertex is at least a, and the degree of each C-vertex is at least $c k^{2} h \geq r c$. By Lemma 2.4 we obtain an assignment of the vertices of C_{2} to the graphs S_{1}, \ldots, S_{c} with the following properties (a_{i} denotes the number of vertices of C_{2} that are assigned to S_{i}):

$$
\begin{gather*}
(k-1) k h \leq a_{i} \leq \frac{c(k-1) k h+8 c k h / \epsilon}{c k \epsilon / 8} \leq \frac{72 h}{\epsilon^{2}} . \tag{7}\\
a_{i}=0 \bmod (k-1) k h, \text { for } i=t+1, \ldots, c . \tag{8}\\
t \leq \frac{((k-1) k h-1) c}{c k \epsilon / 8+(k-1) k h-2} \leq \frac{8 k h}{\epsilon} . \tag{9}
\end{gather*}
$$

Note that $c-t$ denotes the number of C-vertices to which $0 \bmod (k-1) k h B$-vertices have been assigned, and that without loss of generality we assume here that S_{1}, \ldots, S_{t} are the C-vertices that have not been assigned $0 \bmod (k-1) k h$ vertices of C_{2}.

Our next mission is to assign the vertices of C_{3} to the graphs S_{i}. This will be done in three stages. Put $u_{i}=a_{i} \bmod k h, w_{i}=k h-u_{i}, z_{i}=w_{i} \bmod k$ for $i=1, \ldots, t$. We say that a vertex $v \in C_{3}$ is l-assignable to S_{i} if v has at least q neighbors in each vertex class of S_{i} except, maybe, S_{i}^{l}.

We now proceed with the first stage. In this stage we assign vertices of C_{3} to the S_{i} 's as follows. For all $i=1, \ldots, t$ and for all $l=1, \ldots, k$ if $l \leq z_{i}$ we pick a set of $\left\lceil w_{i} / k\right\rceil$ vertices of C_{3} that have not yet been assigned and that are l-assignable to S_{i}. If $l>z_{i}$ we pick $\left\lfloor w_{i} / k\right\rfloor$ such vertices. Note that the total number of vertices that are assigned in this process is $\sum_{i=1}^{t} w_{i} \leq t k h \leq 8 k^{2} h^{2} / \epsilon$, where the last inequality follows from (9). Therefore, in order to show that this process can be completed it is enough to show that there are at least $8 k^{2} h^{2} / \epsilon$ vertices of C_{3} that are l-assignable to S_{i}, for $i=1, \ldots, t$ and $l=1, \ldots, k$. Indeed, let x be the number of vertices of C_{3} having this property. Then by (6) we have

$$
x \frac{k h}{\epsilon^{4}}+(c k h-x)\left[(k-1) \frac{h}{\epsilon^{4}}+q\right] \geq\left(\frac{k-1}{k}+\frac{\epsilon}{4}\right) c k h \frac{k h}{\epsilon^{4}}
$$

which implies, as in the proof of Claim 2, that $x \geq c k^{2} h \epsilon / 8$. However, by our choice of n_{0},

$$
c=\frac{m}{k h g}>\frac{n \epsilon^{4}}{4 k h} \geq \frac{128 h}{\epsilon^{2}} .
$$

Hence, $x \geq 16 k^{2} h^{2} / \epsilon$. (Note that $8 k^{2} h^{2} / \epsilon$ vertices suffice here, but the remaining ones will be used in the second stage.)

Having assigned $\sum_{i=1}^{t} w_{i}$ vertices of C_{3} to the graphs $S_{1}, \ldots S_{t}$ in the first stage, we now proceed to the second stage. Note that $\sum_{i=1}^{t} w_{i}=0 \bmod k h$. This is true since, clearly, $\left|C_{2}\right|=8 c k h / \epsilon=$ $0 \bmod k h$ and hence $\sum_{i=1}^{t} a_{i}=0 \bmod k h$ which, in turn, implies that $\sum_{i=1}^{t} u_{i}=0 \bmod k h$. Put $t^{\prime}=\frac{\sum_{i=1}^{t} u_{i}}{k h}$. Since $u_{i} \leq k h$ for all $i, t^{\prime} \leq t$. For all $i=1, \ldots, t^{\prime}$ and all $l=1, \ldots k$ we assign exactly h vertices of C_{3} that have not yet been assigned and that are l-assignable to S_{i}. The total number of vertices we need to assign in this second stage is $\sum_{i=1}^{t} u_{i}=t^{\prime} k h \leq t k h \leq 8 k^{2} h^{2} / \epsilon$. We have already shown that the number of vertices x of C_{3} that are l-assignable to S_{i} is at least $x \geq 16 k^{2} h^{2} / \epsilon$, and that at most $8 k^{2} h^{2} / \epsilon$ of them have been assigned in the first stage. Hence, the second stage can be completed successfully.

The total number of vertices of C_{3} that have been assigned until now is $\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)=t k h$. In the third and final stage we assign the remaining $(c-t) k h$ vertices of C_{3} (denoted by C_{3}^{\prime}) to the graphs S_{t+1}, \ldots, S_{c}. We will assign exactly $k h$ vertices to each S_{i} for $i=t+1, \ldots c$, where each assigned vertex has the property that it is weakly assignable to S_{i}. In order to show that this is possible it is enough to show that each vertex of C_{3}^{\prime} is weakly assignable to at least $(c-t) / 2$ of the graphs S_{t+1}, \ldots, S_{c} and that each such graph has at least $(c-t) k h / 2$ vertices of C_{3}^{\prime} that are weakly assignable to it. This will enable us to apply Lemma 2.3 and obtain the desired assignment. (One side of the bipartite graph is C_{3}^{\prime} and the other side are the graphs S_{t+1}, \ldots, S_{c}, its edges denote weak-assignability.) In fact we will show something slightly stronger; namely, that every $v \in C_{3}$ is weakly assignable to at least $(c+t) / 2$ of the graphs S_{1}, \ldots, S_{c} and that each such graph has at least $(c+t) k h / 2$ vertices in C_{3} that are weakly assignable to it.

For $v \in C_{3}$ let x denote the number of graphs S_{i} to which v is weakly assignable. By (6) we have:

$$
x \frac{k h}{\epsilon^{4}}+(c-x)\left[(k-2) \frac{h}{\epsilon^{4}}+2 q\right] \geq\left(\frac{k-1}{k}+\frac{\epsilon}{4}\right) \frac{k h c}{\epsilon^{4}} .
$$

This implies that $x \geq c(0.5+\epsilon k / 10) \geq c / 2+t / 2$. Similar calculations show that if y is the number of vertices that are weakly assignable to S_{i} then $y \geq(c+t) k h / 2$.

Finally, we need to show that for each $i=1, \ldots, c$, the graph S_{i} together with the a_{i} vertices of C_{2} assigned to it and the vertices assigned to it from C_{3} in the three stages, contains a K-factor. Consider first an S_{i} where $1 \leq i \leq t^{\prime}$. S S_{i} has been assigned $a_{i}=u_{i}+y_{i} k h$ vertices of C_{2}, each of these vertices being strongly assignable to S_{i}, and therefore they are also l-assignable to it for all $l=1, \ldots, k$. For each $l=1, \ldots, z_{i}, S_{i}$ has been assigned $\left\lceil w_{i} / k\right\rceil+h$ vertices of C_{3} that are l-assignable to it. (Recall that $\left\lceil w_{i} / k\right\rceil$ vertices have been assigned in the first stage and h in the second stage). For $l=z_{i}+1, \ldots, k, S_{i}$ has been assigned $\left\lfloor w_{i} / k\right\rfloor+h$ vertices of C_{3} that are l assignable to it. Hence the set of assigned vertices to S_{i}, whose size is $a_{i}+w_{i}+k h=\left(y_{i}+2\right) k h$ can be partitioned into k sets $T_{i}^{1}, \ldots, T_{i}^{k}$ each of size $\left(y_{i}+2\right) h$, where each element of T_{i}^{l} is l-assignable
to S_{i}. (Here we used the fact that $\left\lceil w_{i} / k\right\rceil \leq\left(y_{i}+2\right) h$, since $w_{i} \leq\left(y_{i}+2\right) k h$.) We now perform the following process. For each $l=1, \ldots, k$ and for each $v \in T_{i}^{l}$, we select h neighbors of v in S_{i}^{j} that have not yet been selected, for $j=1, \ldots, l-1, l+1, \ldots, k$, and we select $h-1$ vertices of S_{i}^{l} that have not yet been selected (these vertices need not be neighbors of v). Clearly, if we manage to do this, v together with these $k h-1$ selected vertices, form a copy of K. To see that this process can be completed, we note that when we handle v, at most $\left(\left(y_{i}+2\right) k h-1\right) h$ vertices have already been selected from S_{i}^{l}, and, if $v \notin T_{i}^{l}$, we may need to select h neighbors of v in S_{i}^{l} which have not yet been selected. Since v has at least $q=100 h^{2} k / \epsilon^{2}$ neighbors in S_{i}^{l}, it suffices to show that $100 h^{2} k / \epsilon^{2} \geq\left(y_{i}+2\right) k h^{2}$. This, however is true since by (7), $y_{i}+2<a_{i} / h \leq 72 / \epsilon^{2}$. After completing this process, we have selected exactly $\left(k h^{2}-h\right)\left(2+y_{i}\right)$ vertices from S_{i}^{l}. Hence the set of non-selected vertices of S_{i} form a complete k-partite graph with $h / \epsilon^{4}-\left(k h^{2}-h\right)\left(2+y_{i}\right)$ vertices in each color class. Since this number is a multiple of h, we have a K-factor in the remainder of S_{i}.

The case where $t^{\prime}+1 \leq i \leq t$ is similar to the above (and even easier, since S_{i} has only been assigned vertices of C_{3} in the first stage, and hence $y_{i}+2$ should be replaced by $y_{i}+1$ in all of the computations above).

We remain with the case $t+1 \leq i \leq c$. In this case, S_{i} has been assigned a_{i} vertices of C_{2} where $a_{i}=0 \bmod (k-1) k h$ and $a_{i}>0$. Hence it has been assigned $y_{i} k h$ vertices of C_{2} where $y_{i} \geq k-1$ and $y_{i}=0 \bmod (k-1)$, where these vertices are strongly assignable to S_{i}. S_{i} has also been assigned exactly $k h$ vertices of C_{3} that are weakly assignable to it. These $k h$ vertices may be partitioned into k sets $T_{i}^{1}, \ldots, T_{i}^{k}$ where each element of T_{i}^{l} is l-assignable to S_{i}. Note that $\left|T_{i}^{l}\right| \leq k h$. We may now arbitrarily assign the $y_{i} k h$ strongly assignable vertices to the sets T_{i}^{l} in such a way that $\left|T_{i}^{l}\right|=\left(y_{i}+1\right) h \geq k h$. We remain with the property that each element of T_{i}^{l} is l-assignable to S_{i}. We may now proceed as in the two cases above to obtain the K-factor in S_{i} and its assigned vertices.

5 Concluding remarks and open problems

1. Theorem 1.1 is essentially best possible in the sense that the quantity $1-1 / \chi(H)$ appearing there cannot be replaced by any smaller constant. This is easily seen by letting G be a complete k-partite graph with non-equal color classes where H is any uniquely-colorable k-partite graph with equal color classes. Furthermore, some error term is needed in the statement of Theorem 1.1, i.e., the statement of the theorem becomes false if we omit the ϵ. To see this, let G be the graph obtained from two vertex disjoint complete graphs on $h n / 2+1$ vertices each by identifying two vertices of the first with two vertices of the second. Then in
G all the degrees are at least $h n / 2$. Let H be a 3 -connected bipartite graph on $h=2 l$ vertices (e.g., any complete bipartite graph $K_{a, b}$, where $a+b=2 l, a \geq b \geq 3$), and suppose that $n=2 s+1$, for some integer s. Clearly, every copy of H in G must be contained completely in one of the two complete graphs forming G. However, by the assumptions $\frac{h n}{2}=l \bmod h$ and hence h does not divide $h n / 2-1, h n / 2$ or $h n / 2+1$, implying that G does not have an H-factor. Note that in this example H does not have to be a complete bipartite graph and may have color classes of different sizes.

Another example showing that some error term is needed in Theorem 1.1 is the following; let H be the complete bipartite graph $K_{l, l}$, where $l \geq 3$ is odd, and let G be the graph obtained from the complete bipartite graph with color classes of sizes $l(2 s+1)+1$ and $l(2 s+1)-1$ by adding a perfect matching on the vertices of the larger color class. Here, again, the number of vertices of H, which is $h=2 l$ divides the number of vertices of G, which is $(2 s+1) 2 l=h n$, and the minimum degree in G is $h n / 2$. It is, however, easy to check, that G does not have an H-factor. This example can be easily extended to show that some error term is needed in Theorem 1.1 for certain graphs H of any desired chromatic number.
2. By the above remark, some error term is needed in any strengthening of Theorem 1.1. The following strengthening seems true.

Conjecture 5.1 For every integer h there exists a constant $c(h)$ such that for every graph H with h vertices, any graph G with $h n$ vertices and with minimum degree $d \geq(1-1 / \chi(H)) h n+$ $c(h)$ contains an H-factor.
3. By the Hajnal-Szemerédi result stated in the introduction, the error term in Theorem 1.1 is not needed in case H is a complete graph. As mentioned in the introduction this is also trivially the case if H is a path. It would be interesting to find additional nontrivial graphs H for which no error term is needed. A possible interesting example is the case $H=C_{4}$, as conjectured by Erdös and Faudree [6].
4. The proof of Theorem 1.1 is algorithmic. That is, for any fixed ϵ and any fixed graph H we can find an H-factor in a graph G with $h n>h n_{0}$ vertices and $d(G) \geq(1-1 / \chi(H)+\epsilon) h n$ in $O\left(n^{2.376}\right)$ time. This is true since it is shown in [1] that Lemma 2.1 is algorithmic. (Lemma 2.1 uses the Regularity Lemma of Szemerédi [10], for which an algorithmic version is described in [1]). In particular, the $(1-\delta) l / s$ copies of S can be found in $O\left(l^{2.376}\right)$ time. Lemma 2.2 clearly has an $O\left(m^{2}\right)$ randomized algorithm, since one needs only to compute the degrees in the resulting $M_{1}^{\prime}, M_{2}^{\prime}$ and M_{3}^{\prime} graphs. The expected number of trials until the conditions
in the Lemma are met is constant. By a standard application of the method of conditional expectations (see, e.g., [9]), it can be shown that the randomized algorithm used in Lemma 2.2 can be derandomized, thereby obtaining an $o\left(m^{2.376}\right)$ deterministic algorithm for Lemma 2.2. Lemma 2.3 can be implemented in linear (that is $O\left((c r)^{2}\right)$) time, with the appropriate data structures. Lemma 2.4 can also be implemented in $O\left(b^{2}\right)$ time, where b is the number of B-vertices. Combining all of these together, the $O\left(n^{2.376}\right)$ algorithm follows.
5. The value of l_{0} in Lemma 2.1 is a rather huge function of δ and s_{0}. (In this case, $\log ^{*} l_{0}$ is a polynomial function of $1 / \delta$ and s_{0}). This is due to the large constants that appear in the proof of the Regularity Lemma [10]. However, in the special case when the graph H in Theorem 1.1 is a tree, one can avoid using Lemma 2.1 in the proof, and hence the dependency of n_{0} on ϵ and h is moderate. (In fact, in this case n_{0} is a polynomial function of $1 / \epsilon$ and $h)$. We omit the details. For trees, however, a result much stronger than Theorem 1.1 can be proved. In [8] it is proved that for every positive integer Δ and any real $\epsilon>0$, there is a constant $n_{0}=n_{0}(\Delta, \epsilon)$ such that every graph G with $n>n_{0}$ vertices and $d(G) \geq(0.5+\epsilon) n$ contains every tree with n vertices and maximum degree Δ as a spanning subgraph. This result cannot, however, be extended to general bounded degree bipartite graphs. Even for $\Delta=3$ this is not true. There are examples of 3 -regular bipartite graphs on n vertices that are not subgraphs of the graph G on n vertices with $d(G) \geq 0.51 n$ that is obtained by identifying $0.02 n$ vertices of two vertex disjoint cliques of size $n / 2+0.01 n$ each. This is because there are 3 -regular expanders (see, e.g., [2]) on n vertices in which for every set Y of $0.49 n$ vertices, the set consisting of all vertices of Y and their neighbors is of cardinality strictly greater than $0.51 n$.

References

[1] N. Alon, R.A. Duke, H. Lefmann, V. Rödl and R. Yuster, The algorithmic aspects of the regularity lemma, Journal of Algorithms 16 (1994), 80-109.
[2] N. Alon and J. Spencer, The Probabilistic Method, John Wiley and Sons Inc., New York, 1991.
[3] N. Alon and R. Yuster, Almost H-factors in dense graphs, Graphs and Combinatorics 8 (1992), 95-102.
[4] B. Bollobás, Extremal Graph Theory, Academic Press, New York 1978.
[5] K. Corrádi and A. Hajnal, On the maximum number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423-439.
[6] P. Erdös, Some recent combinatorial problems, preprint, November 1990.
[7] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdös, In: Combinatorial theory and its applications, Vol. II (P. Erdös, A. Renyi and V.T. Sós eds.), Colloq. Math. Soc. J. Bolyai 4 (1970), 601-623.
[8] J. Komlós, G. N. Sárközy and E. Szemerédi, Proof of a packing conjecture of Bollobás, Combinatorics, Probability and Computing, to appear.
[9] P. Raghavan, Probabilistic construction of deterministic algorithms: approximating packing integer programs, Journal of Computer and System Sciences, 37:130-143, 1988.
[10] E. Szemerédi, Regular partitions of graphs, in: Proc. Colloque Inter. CNRS (J. -C. Bermond, J. -C. Fournier, M. Las Vergnas and D. Sotteau eds.) (1978), 399-401.

[^0]: *Research supported in part by the Fund for Basic Research administered by the Israel Academy of Sciences

