
Finding Even Cycles Even Faster ∗

Raphael Yuster † and Uri Zwick †

July 21, 1994
Revised: March 18, 1996

Abstract

We describe efficient algorithms for finding even cycles in undirected graphs. Our main results
are the following: (i) For every k ≥ 2, there is an O(V 2) time algorithm that decides whether an
undirected graph G = (V,E) contains a simple cycle of length 2k and finds one if it does. (ii) There
is an O(V 2) time algorithm that finds a shortest even cycle in an undirected graph G = (V,E).

1 Introduction

Throughout this work, the term cycle refers to a simple closed walk and the term path refers to a
simple non-closed walk. An even (odd) cycle is a cycle whose length is even (odd). An even (odd)
path is a path whose length is even (odd).

The problem of finding cycles of a given length, and of finding a shortest, a shortest even, and
a shortest odd cycle in undirected and directed graphs are among the most basic and natural
algorithmic graph problems. These problems were considered by many researchers, see [10] for a
survey.

In this work we consider (almost exclusively) the undirected versions of these problems. The directed
versions of some of them are believed to be much harder. The problem, “does a given directed
graph G = (V,E) contain a directed cycle of an even length?”, for example, is not known to be in P,
nor is it known to be NP-complete (see [9]). Though we do not shed any new light on the directed
versions of the problems, we obtain surprisingly fast algorithms for some of the undirected versions.

Monien [7] presented an O(VE) algorithm for finding all pairs of vertices that are connected by paths
of length k − 1, where k ≥ 2 is a fixed integer. (Note that if k is part of the input, the problem
is NP-Hard). A simple consequence of his algorithm is an O(VE) algorithm for finding a cycle of
length k, if one exists. In [1], an O(M(V) log V) algorithm is obtained for the same problem, where
M(n) = O(n2.376) is the complexity of Boolean matrix multiplication. This algorithm is more efficient
when G is dense. Both algorithms work on directed as well as undirected graphs. In this work we

∗Work supported in part by THE BASIC RESEARCH FOUNDATION administrated by THE ISRAEL ACADEMY
OF SCIENCES AND HUMANITIES. A preliminary version of this paper had appeared in the Proceedings of the 21st
International Colloquium on Automata, Languages and Programming, Jerusalem, Israel, 1994, pages 532–543.

†Department of Computer Science, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, ISRAEL.
E-mail addresses of authors: {raphy,zwick}@math.tau.ac.il

1

show that if k is even and if the graph is undirected, then both these bounds can be improved. We
obtain an O(V 2) algorithm for finding cycles of a given even length in undirected graphs. An O(V 2)
algorithm for finding quadrilaterals (cycles of length four) is part of the folklore (cf. [8]) but all other
cases are new. To obtain this O(V 2) algorithm we utilize a combinatorial theorem of Bondy and
Simonovits [4] that states, roughly, that dense enough undirected graphs contain many even cycles.
We also prove a constructive version of their theorem.

The O(V 2) algorithm for finding cycles with a given even length leads to the following strange
state of affairs: Deciding whether a given undirected graph contains a cycle of length, say, 100,
is asymptotically faster than deciding, using any known algorithm, whether this graph contains
a triangle (a cycle of length 3)! The term ‘asymptotically’ above should be stressed, as our O(V 2)
bound, as well as Monien’s O(VE) bound, hides huge multiplicative factors that depend exponentially
on k. This exponential dependence on k is probably unavoidable as the problem is NP-hard if k is
part of the input.

A shortest cycle in a directed or undirected graph G = (V,E) can be easily found in O(VE) time by
conducting a BFS (breadth first search) from each vertex. Itai and Rodeh [5] show that a shortest
cycle can also be found in O(M(V)) time in the undirected case, and in O(M(V) log V) time in the
directed case. They also notice that by halting the BFS conducted from each vertex in the O(VE)
algorithm when the first non-tree edge is found (this implies an O(V) running time for each BFS),
an almost shortest cycle (a cycle whose length exceeds the length of a shortest cycle by at most one)
in an undirected graph can be found in O(V 2) time.

Monien [6] described a sophisticated O(V 2α(V)) algorithm for finding shortest even cycles (SELCs
for short) in undirected graphs, where α(n) = α(n, n) is the functional inverse of Ackermann’s
function. His algorithm uses the fast Union-Find data structure. We describe an O(V 2) algorithm
for finding SELCs. Our algorithm is somewhat simpler and it does not use any sophisticated data
structure. At the heart of our algorithm lies a combinatorial lemma which is of interest in its own
right. The lemma states that if C is a shortest even cycle in a graph, then there exists a vertex v on
C from which the paths, on the cycle, to all the other vertices on the cycle are almost the shortest
possible. In fact, each of these paths is of length at most one greater than the distance between the
endpoints of the path.

each path on the cycle from v to a vertex u is either a shortest path or exceeds the length of the
shortest path from almost the shortest possible.

We also describe a simple O(M(V) log V) algorithm for finding a shortest odd cycle (SOLC for short)
in an undirected graph G = (V,E) and a simple O(VE) algorithm for finding a SOLC in a directed
or undirected graph G = (V,E). Monien [7] described an O(VE) algorithm for the undirected case.

This paper is organized as follows. In Section 2 we present the algorithm for finding fixed length
even cycles in undirected graphs. In Section 3 we investigate the combinatorial structure of SELCs.
In Section 4 we describe the algorithm for finding a SELC and prove its correctness. In Section 5
we describe the simple algorithms for finding SOLCs in directed and undirected graphs. We end, in
Section 6 with some concluding remarks.

2

2 Finding Even Cycles of a Given Length

Throughout this section we use Cl to denote a cycle of length l. The main result of this section is
the following theorem:

Theorem 2.1 For every k ≥ 2, there is an O((2k)! ·V 2) time algorithm that decides whether an
undirected graph G = (V,E) contains a C2k and finds one if it does.

We also obtain the following result which is an algorithmic version of a result by Bondy and
Simonovits [4].

Theorem 2.2 Let l ≥ 2 be an integer and let G = (V,E) be an undirected graph with |E| ≥
100l · |V |1+1/l. Then G contains a C2k for every k ∈ [l, l · |V |1/l]. Furthermore, such a C2k can be
found in O(k·V 2) time. In particular, a cycle of length exactly ⌊l·|V |1/l⌋ can be found in O(V 2+1/l)
time.

It is interesting to comment on the relation between these two theorems. In any undirected graph
G = (V,E) and any k ≥ 2, we can find a C2k, if one exists, in O((2k)!·V 2) time. This running time
is O(V 2) for every fixed k ≥ 2. The running time is exponential, however, if k is part of the input.
If the graph G = (V,E) is dense enough, i.e., if it contains Ω(V 1+1/k) edges, then it does contain a
C2k, and such a C2k can be found in O(k·V 2). Note that this is now polynomial in both V and k. In
dense enough graphs, we can therefore find extremely long cycles efficiently. In a graph containing
Ω(V 3/2) edges, for example, we can find, in O(V 2.5) time, a cycle of length Θ(V 1/2). This should
be compared with the fact that the problem of deciding whether an undirected graph G = (V,E)
contains a cycle (or an even cycle) of length Ω(V 1/2) is NP-hard.

The first ingredient used in the proofs of Theorems 2.1 and 2.2 is a combinatorial lemma of Bondy
and Simonovits [4] (see also [3]). Their proof of the Lemma is non-constructive. By slightly altering
their arguments we obtain a constructive version of their Lemma which is required in the proof of
Theorem 2.2. Before stating the Lemma we need the following definition.

Definition 2.3 A coloring of the vertices of an undirected graph G = (V,E) is said to be t-periodic
if the endpoints of every path of length t are colored by the same color.

Note the coloring in the definition above is not required to be proper, i.e., adjacent vertices may be
colored by the same color. We can now state the Lemma of Bondy and Simonovits [4] and present
an algorithmic proof of it.

Lemma 2.4 Let t be a positive integer, and let G = (V,E) be a connected undirected graph with
|E| ≥ 2t · |V |. Then, any coloring of the vertices of G that uses at least three distinct colors is not
t-periodic. Furthermore, if G is non-bipartite, then any coloring of the vertices of G that uses at
least two distinct colors is not t-periodic. In both the bipartite and non-bipartite cases, two vertices
of distinct colors and a path of length t connecting them can be found in O(E) time.

Proof: We begin by showing that G contains two adjacent vertices joined by two vertex-disjoint
paths, each of length at least t, and that such a subgraph, called a Θ-graph, can be found in O(E)
time. It is easy to see that G contains a subgraph G′ whose minimal degree is at least 2t. Such a
subgraph can be easily found in O(E) time by sequentially removing from G vertices whose degrees

3

are less than 2t. Let v1, v2, . . . , vm be a maximal path in G′, i.e., a path that cannot be further
extended. Such a path can be greedily constructed in O(E) time. The vertex v1 is then adjacent
to at least 2t vertices vi1 , vi2 , . . . , vi2t on this path, where 2 = i1 < i2 < . . . < i2t. The path
v1, v2, . . . , vi2t along with the edges (v1, vit) and (v1, vi2t) form the desired Θ-graph.

The Θ-graph found contains three distinct cycles L1, L2, L3 of lengths l1, l2, l3 respectively, such that
l1, l2, l3 > t and l1 + l2 − l3 = 2. Every vertex v of the Θ-graph has at most four distinct paths of
length t in the Θ-graph that start at v. We can easily check in O(V) time whether, for each v, the
endpoints of these paths are colored by the same color of v. If this is not the case then we are done,
since we have found two vertices colored by distinct colors and a path of length t connecting them.

Assume therefore that the Θ-graph is t-periodic. It is easy to see that if one of the cycles L1, L2 or
L3 is t∗-periodic then the other cycles, and therefore the Θ-graph, must also be t∗-periodic. Let t∗

be the smallest integer for which the Θ-graph is t∗-periodic. It follows that t∗ is also the smallest
period of the cycles L1, L2 or L3 and as a consequence t∗|l1, l2, l3. As l1 + l2 − l3 = 2, we get that
t∗|2. Thus t∗ = 1 or t∗ = 2 and the number of colors used to color the Θ-graph is at most 2.

Every vertex of G is connected by a simple path whose length is a multiple of t to a vertex of, say,
L1. If a vertex v ∈ V is colored by color not appearing on L1, then a simple path t whose endpoints
are colored by distinct colors can be easily found in O(V) time.

Finally, note that a 2-periodic coloring of a graph G = (V,E) that uses two colors is necessarily a
proper coloring. Any graph G = (V,E) that has a 2-periodic coloring that uses only two colors must
therefore be bipartite. 2

The second ingredient used in the proof of Theorem 2.1 is the following result of Monien [7].

Lemma 2.5 There is an O(k! ·E) time algorithm that given a (directed or undirected) graph
G = (V,E), an integer k ≥ 2 and a vertex s ∈ V , finds all vertices v ∈ V connected to s by
paths of length k, and exhibits one such path for each such v.

The following are immediate consequences of Lemma 2.5.

Corollary 2.6 Let G = (V,E) be a (directed or undirected) graph and let k ≥ 3 be an integer. There
is an O((k−1)!·E) time algorithm that given a vertex s ∈ V decides whether there is a Ck that passes
through s and finds such a Ck if one exists.

Proof: Find all the vertices connected to s by paths of length k− 1 and check whether one of them
is also connected to s by an edge. 2

Corollary 2.7 Let G = (V,E) be a (directed or undirected) graph and let k ≥ 1 be an integer. There
is an O((k + 1)!·E) time algorithm that given two disjoint subsets A and B of vertices, determines
whether there is a path of length k connecting a vertex from A and a vertex from B, and finds such
a path, if one exists.

Proof: Assume that the graph is directed (if not, replace each undirected edge by two anti-parallel
directed edges). Add a new vertex s and connect it to all the vertices of A. Now find all the vertices
to which there are directed paths of length k + 1 from s. 2

4

Alon, Yuster and Zwick [1] have recently described a 2O(k) ·E log V time algorithm for performing
the task of Lemma 2.5 and 2O(k)·E expected time algorithms for the tasks of Corollaries 2.6 and 2.7.
The dependency on k in the above complexity bounds can be improved, therefore, from k! to 2O(k)

if randomization, or an extra log V factor are allowed.

We are now ready to prove Theorem 2.1. We prove, in fact, the following slightly stronger result:

Theorem 2.8 Let k > 1 be a fixed integer. There is an O((2k)! ·V) time algorithm that given an
undirected graph G = (V,E) and a vertex s ∈ V either verifies that s is not contained in any C2k,
or finds a C2k in G (not necessarily passing through s).

Proof: The algorithm starts a BFS from the vertex s. For v ∈ V , let d(v) be the distance between s
and v in G. Let Li = {v | d(v) = i} be the set of vertices at level i of the BFS tree. At stage i
the algorithm scans the adjacency lists of the vertices of Li. During this scan, the algorithm keeps
a count of the number of edges found so far inside Li (an edge is inside Li if both its endpoints are
in Li). Similarly, it keeps a count of the number of edges found so far between Li and Li+1. We use
L′
i+1 to denote the set of vertices of Li+1 that were already discovered by the search. The search is

halted when one of the following conditions hold:

1. Stage k − 1 has completed, or the BFS has ended.

2. At least 4k ·|Li| edges were found inside Li.

3. At least 4k ·(|Li|+ |L′
i+1|) edges were found between Li and L′

i+1.

Since the Li’s are disjoint, the total number of edges scanned before the search is halted is at most
12k ·|V |. Hence, the search takes only O(k ·V) time.

As in any BFS, when a vertex v ∈ Li is discovered, we let π(v) be the vertex in Li−1 that discovered it.
In such a way a shortest path tree rooted at s and consisting of all discovered vertices is maintained.

The algorithm continues in one of three possible ways, according to the condition that caused the
BFS to halt.

Case 1: The BFS is halted because stage k − 1 has completed.

In this case, the first k+1 levels L0, L1, . . . , Lk have all been discovered and the subgraph G′ induced
by them (but not containing the edges inside Lk) contains at most 12k ·|V | edges. If s is on a C2k

then this C2k is completely contained in G′. By Corollary 2.6, we can check whether such a cycle
exists in O((2k)!·V) time.

Case 2: The BFS is halted because 4k ·|Li| edges were found inside Li, for some i < k.

Stage i of the search is then left incomplete but all the first i + 1 levels L0, Li, . . . , Li are already
completely discovered. Consider the subgraph of G induced by Li. This subgraph contains at least
one connected component whose vertex set is U ⊆ Li and whose number of edges is at least 4k ·|U |.
Denote the subgraph composed of this connected component by H. Such a subgraph is easily found
in O(k ·Li) = O(k ·V) time. Note that |U | > 1.

Assume at first that H is non-bipartite (this is easily verified in O(k·V) time, since H contains O(k·V)
edges). Let c be the lowest common ancestor in the BFS tree of all the vertices in U . The vertex c is

5

easily found in O(k·U) = O(k·V) time in the following way; let Ui = U and let Uj = {π(v) | v ∈ Uj+1}
for j = i − 1, i − 2 . . . , until a Uh with |Uh| = 1 is reached. Then, Uh = {c}. As |U | > 1, c must
have at least two children in Uh+1. Let d be one of them. Let X1 ⊂ U be the descendents of d in
U and let X2 = U −X1. Color the vertices of X1 red and the vertices of X2 blue. By Lemma 2.4,
the subgraph H cannot be 2(k− i+h)-periodic (as it is non-bipartite, connected and colored by two
distinct colors). There must therefore be a path of length 2(k− i+h) in H between a red vertex and
a blue vertex. As explained in the proof of Lemma 2.4, we can find such a path p in O(k·U) ≤ O(k·V)
time (such a path can also be found using Corollary 2.7 but the running time would be O((2k)!·V)).
The path p can now be extended to a cycle of length 2k by adding the disjoint paths of the BFS tree
from c to the two endpoints of p, each having length i − h. Note that this cycle contains s only if
c = s.

Very similar actions are taken if H is bipartite. Let A and B be the vertex classes of H (i.e., A and
B are disjoint, A ∪ B = U and all the edges in H are between A and B). Assume, without loss of
generality, that |A| > 1. Let c be the lowest common ancestor in the BFS tree of all the vertices
of A. The vertex c is found using the way described above. Assume again that c is in level h. As
|A| > 1, c must have at least two children in level h + 1. Let d be one of them. Let X1 ⊂ A be
the descendents of d in A and let X2 = A − X1. Color the vertices of X1 red, the vertices of X2

blue, and the vertices of B green. By Lemma 2.4, the subgraph H cannot be 2(k − i+ h)-periodic,
as it is connected and colored by three distinct colors. There must therefore be a path p of length
2(k − i+ h) in H between two differently colored vertices. This path must be between a red vertex
and a blue vertex as any path of an even length that starts at a green vertex also ends at a green
vertex. This path can again be found in O(k ·V) time and it can again be extended to a cycle of
length 2k.

Case 3: The BFS was halted because 4k ·(|Li|+ |L′
i+1|) edges were found between Li and L′

i+1.

Find a connected subgraph H of the subgraph of G induced by Li and L′
i+1 with a vertex set U and

with at least 4k·|U | edges. Such a subgraph is easily found in O(k·V) time. Note that H is bipartite
with vertex classes A = U ∩Li and B = U ∩L′

i+1. The algorithm can now proceed as in the previous
case.

In any one of these three cases, the running time is O((2k)! ·V). In fact, the running time of the
algorithm in the second and third cases is only O(k ·V). The only case in which a C2k is not found
by the algorithm is when no C2k passes through s. This completes the proof of the Theorem. 2

Theorem 2.1 follows immediately from the above Theorem. All we have to do is to apply the
algorithm described above from each vertex. We now turn to the proof of Theorem 2.2. The proof
of Bondy and Simonovits actually shows that if |E| ≥ 100l ·|V |1+1/l and k ∈ [l, l ·|V |1/l] then there
exists a vertex s ∈ V for which the algorithm of Theorem 2.8 stops before completing stage k − 1.
This immediately leads to the desired O(k·V 2) time algorithm. Theorem 2.8 has another interesting
consequence:

Theorem 2.9 A C2k in an undirected graph G = (V,E) with |E| ≥ 101k ·|V |1+1/k can be found in
O((2k)!·V) expected time.

Proof: Any graph on |V | vertices and at least 100k · |V |1+1/k edges contains a C2k. It follows
immediately, that the number of edges in a graph G = (V,E) which are not contained in any C2k

6

is at most 100k · |V |1+1/k. If G = (V,E) contains at least 101k · |V |1+1/k edges then a randomly
chosen edge has a probability of at least 1/101 of belonging to a C2k. The randomized algorithm
simply chooses a random edge and applies the algorithm of Theorem 2.8 to one of its endpoints. The
expected number of applications before a desired C2k is found is O(1) and the expected running time
is O((2k)!·V). 2

3 The Structure of Shortest Even Length Cycles

Let G be an undirected graph and let C be a SELC (shortest even length cycle) of it. Suppose the
vertices on the cycle are consecutively labeled v0, v1, . . . , v2k−1. We denote by d(x, y) the distance
between two vertices x and y in G. Clearly d(v0, vi), d(v0, v2k−i) ≤ i for every 1 ≤ i ≤ k. If
d(v0, vi) = i and d(v0, v2k−i) = i, for every 1 ≤ i ≤ k, then C, or some other SELC, can be easily
found using a BFS from v0. However, the paths on C between v0 and vi and between v0 and v2k−i

are not necessarily shortest paths in G. As an example, consider K4, the complete graph on four
vertices. All the even cycles in K4 are of length 4 but the distance between any two vertices is 1. It
may be, therefore, that d(v0, vi) < i or d(v0, d2k−i) < i for some 1 ≤ i ≤ k. It is not immediately
clear how to find C, or any other SELC, in such a case.

The main result of this section is the following lemma that states that on every SELC C there is a
vertex v0 from which the paths, on C, to all the other vertices on C are almost shortest paths. An
almost shortest path is a path whose length exceeds the length of a corresponding shortest path by
at most one. Specifically,

Lemma 3.1 Let C be a SELC of G. Then, the vertices on C can be consecutively labeled
v0, v1, . . . , v2k−1 so that i− 1 ≤ d(v0, vi) ≤ i and i− 1 ≤ d(v0, v2k−i) ≤ i for every 1 ≤ i ≤ k.

This lemma is the cornerstone of the O(V 2) algorithm for finding SELCs presented in the next
section. We think, also, that this lemma is of interest in its own right. Before presenting a proof of
Lemma 3.1, we present the following simple but useful lemma.

Lemma 3.2 If p1 and p2 are two distinct (but not necessarily disjoint) shortest paths in G between
x and y, then C contains an even cycle whose length is at most 2d(x, y).

Proof: Let p1 = (a0, a1, . . . , ak−1, ak) and p2 = (b0, b1, . . . , bk−1, bk) be two distinct shortest paths
between x = a0 = b0 and y = ak = bk. Let i ≥ 0 be the minimal index such that ai = bi but
ai+1 ̸= bi+1. Let j be the minimal index j > i such that aj = bj . Then, (ai, . . . , aj) and (bi, . . . , bj)
are two shortest paths connecting ai and aj whose inner vertices are disjoint. We thus obtain a cycle
of length 2(j − i) ≤ 2k. 2

Proof of Lemma 3.1 Let H be a minimal subgraph of G (with respect to containment) containing
C such that dH(x, y) = d(x, y) for every x, y ∈ C (dH(x, y) denotes the distance between x and y
in H). Let e(H) be the edge set of H. If H = C we are done. Otherwise, let P = H \ e(C).

A path p whose two endpoints a and b are on C, but none of its inner vertices are on C, that satisfies
|p| = d(a, b) < dC(a, b), where |p| is the length of p, is called an a ∼ b shortcut . Our first claim is
that P is a collection of vertex disjoint shortcuts.

7

C2aj pj

bj
biC1

pi
C3

ai

C1

C2 C3

p1

p3

c

a b
x

Figure 1: One of the cycles C1, C2 and C3 is even.

p2

a

b

c

d

pi

pj

0

ai v

bi
ps

p1

pi

e

f

ai

biaj

bj

Figure 2: The shortcuts of P .

To see this, let P ′ be a connected component of P . The minimality of H implies that any edge of P ′

is contained in some shortcut. The component P ′ must therefore contain an a ∼ b shortcut p1 for
some a, b ∈ C. If P ′ is composed solely of this shortcut, we are done. Otherwise, let x be a vertex
on p1 incident to an edge e of P ′ which is not on p1 (x may be a or b). The edge e is contained in
some shortcut p2. The shortcuts p1 and p2 meet only at x. If they had met in some other vertex
y, a shorter even cycle would have existed, by Lemma 3.2, in the graph. Let p3 be a portion of p2
that connects x with some vertex c on C. Consider now the cycles C1, C2 and C3 shown on the
left of Fig. 1. Each of these cycles is of size less than 2k. For C1, this follows from the fact that
|p1| < dC(a, b). We show that |C2| < 2k as follows: Let C4 be the cycle comprised of p1 with the
part of C between a and b containing c. Since |p1| < dC(a, b) we have that |C4| < 2k. As p3 is a
shortest path between c and x, we get that |C2| ≤ |C4| < 2k. The fact that |C3| < 2k follows from
similar arguments. The sum of the lengths of these cycles is 2k + 2|p1| + 2|p3| which is even, and
thus one of them must be even, contradicting the minimality of C. This contradiction shows that P ′

must simply be a shortcut.

We have shown that P = {p1, . . . , ps} is a set of disjoint shortcuts were s ≤ k (as each shortcut
contains two vertices of C). We now claim that every two distinct shortcuts pi and pj must cross
one another, i.e., each of the two paths on C between the endpoints of pi contains an endpoint of pj .
See the left of Fig. 2.

Assume, for contradiction, that the shortcuts pi and pj do not cross one another, as shown on the
right of Fig. 1. The length of each of the cycles C1, C2 and C3 there is less than 2k. The sum of
their lengths is 2k + 2|pi|+ 2|pj |, so one of them must be even, contradicting the minimality of C.

We have shown that the mutual position of pi and pj must be as shown in the middle of Fig. 2.
Let a, b, c, d denote the four segments of C determined by the endpoints of these shortcuts. The

8

minimality of C implies that |pi|+ |a|+ |b|, |pi|+ |c|+ |d|, |pj |+ |b|+ |c|, and |pj |+ |a|+ |d| are all odd,
since these are lengths of cycles smaller than 2k. This, in turn, implies that |pi|+ |pj |+ |a|+ |c| and
|pi|+ |pj |+ |b|+ |d| are even. These two expressions are the lengths of the ‘twisted’ cycles a, pi, c, pj
and b, pi, d, pj . As a consequence, these lengths are at least 2k. In particular,

|pi|+ |pj |+ |a|+ |c| ≥ 2k = |a|+ |b|+ |c|+ |d|. (1)

Our third claim is that for any two vertices x, y on the cycle C there exists a shortest path between
them that uses at most one shortcut. Consider a shortest path between x and y that contains at
least two shortcuts. Let pi and pj be two consecutive shortcuts appearing on the path. Let c be the
portion of the path that connects them, as shown again in the middle of Fig. 2. From (1), we get
that |pi|+ |c|+ |pj | ≥ |b|+ |c|+ |d|. We can therefore replace the portion pi, c, pj of the path by the
path b, c, d without increasing the length. Continuing in this way, we can obtain a shortest path that
uses at most one shortcut. In view of Lemma 3.2, a shortest path that uses more than one shortcut
must connect two antipodal vertices, i.e., two vertices whose distance is k, on the cycle.

It is convenient at this point to fix a consecutive numbering 0, 1, . . . , 2k − 1 of the vertices of the
cycle C and identify the vertices of C with their numbers. We let ai and bi, where ai < bi, be the
two endpoints of the shortcut pi. To every shortcut pi we attach the following interval

Ci =

[
ai + bi − |pi| − 1

2
,
ai + bi + |pi|+ 1

2

]
.

Both endpoints of this interval are integral as bi − ai and |pi| have different parities, otherwise C
would not have been a SELC. As |pi| < bi− ai, we get that Ci ⊆ [ai, bi]. The interval Ci corresponds
to a subset of the vertices of C.

We claim that if v ∈ Ci, then for every vertex u on C, if a shortest path between v and u uses
the shortcut pi as its only shortcut, then the path between v and u along the cycle C is an almost
shortest path between v and u. Recall that an almost shortest path between v and u is a path whose
length is at most d(v, u) + 1. To see this, suppose that v ∈ Ci and that some shortest path from v
to u uses pi as its only shortcut. This shortest path must either go along portion e of the cycle C
from v to ai, then use pi and then go again along C, or go along portion f of the cycle C from v
to bi, then use pi and then go again along C. Both cases are shown on the right of Figure 2. The
definition of Ci implies, however, that

|e| = v − ai ≤ bi − v + |pi|+ 1 = |f |+ |pi|+ 1 ,

|f | = bi − v ≤ v − ai + |pi|+ 1 = |e|+ |pi|+ 1 .

The path e, pi can therefore be replaced by the path f , and the path f, pi can be replaced by the
path e while increasing the length by at most one, as required.

Our final task is to show that the intersection ∩si=1Ci of all these intervals is not empty. If v0 ∈ ∩si=1Ci,
then the paths along C from v0 to all other vertices on the cycle are almost shortest paths, as required.
As all the Ci’s are intervals, it is enough to show that any two of them intersect. Let Ci and Cj be two
such intervals where ai < aj . The fact that pi and pj cross one another implies that ai < aj < bi < bj .
To show that Ci and Cj intersect, we show that

aj + bj − |pj | − 1

2
≤ ai + bi + |pi|+ 1

2
,

9

and
ai + bi − |pi| − 1

2
≤ aj + bj + |pj |+ 1

2
.

The first inequality is equivalent to |pi| + |pj | + (2k − bj + ai) + (bi − aj) + 2 ≥ 2k. But
|pi| + |pj | + (2k − bj + ai) + (bi − aj) is the length of the twisted cycle a, pi, c, pj shown in the
middle of Fig. 2. The length of this cycle is at least 2k by (1) proving the first inequality. The second
inequality follows immediately from the fact that ai < aj < bi < bj . We have shown therefore that
the intervals Ci and Cj , and therefore all the intervals, do intersect.

Any vertex v0 ∈ ∩si=1Ci can play the role of v0 in the statement of the Lemma. This completes the
proof of the Lemma. 2

If a SELC C is edge disjoint from all other SELCs, then a sharp inequality holds in (1). This can be

used to show that all the intervals C ′
i = [ai+bi−|pi|+1

2 , ai+bi+|pi|−1
2] intersect. Every vertex v0 in this

intersection has the property that the shortest paths along the cycle C from v0 to all other vertices
are in fact shortest paths. The intersection ∩si=0C

′
i may however be empty if C is not edge disjoint

from all other SELCs.

Let v0, . . . , v2k−1 be an ordering of C that satisfies the conditions of Lemma 3.1. In view of Lemma 3.2,
it is impossible that d(v0, vk−1) = d(v0, vk+1) = k − 2 as this yields two shortest paths of lengths
k − 1 from v0 to vk. We may assume therefore, without loss of generality, that d(v0, vk−1) = k − 1.
We call v0 a root of C. If d(v0, vk) = k we call C a cycle of type one w.r.t. v0, and if d(v0, vk) = k−1
we call C a cycle of type two w.r.t. v0. Every cycle of type two w.r.t. v0 has a unique 0 < j < k
such that d(v0, v2k−j) = j, and d(v0, v2k−j−1) = j. We call j the index of C w.r.t. the root v0.

Finally, we note that if v0, . . . , v2k−1 is an ordering of C that satisfies the conditions of Lemma 3.1,
then vk, . . . , v2k−1, v0, . . . , vk−1 is also such an ordering, i.e., vk can play the role of v0.

4 An O(V 2) Algorithm for Finding a Shortest Even Cycle

Relying on Lemma 3.1, we obtain an O(V 2) algorithm for finding a SELC in an undirected
graph G = (V,E). The algorithm starts a BFS from every vertex but stops it as soon as an even
cycle is detected. This ensures that the time spent in each such BFS is at most O(V). We show that
the shortest even cycle found in this way by the algorithm is indeed a SELC of the graph.

The BFS performed is an augmented version of the standard BFS capable of detecting even cycles.
Let a be a vertex from which such an augmented BFS is performed (a is called the root of the BFS).
We record for every vertex v, a set of four variables. The first two variables are standard, the other
two are used to detect even cycles. These four variables are:

d(v) – the distance of v from a, i.e., the level of v in the BFS tree; d(v) = ∞ if v has not yet been
discovered.

π(v) – the parent of v in the BFS tree; π(v) = 0 if v = a or if v has not yet been discovered. If
π(v) ̸= 0 then d(v) = d(π(v)) + 1.

10

θ(v) – the match of v; if θ(v) ̸= 0 then θ(v) is a vertex in the same level of v such that (v, θ(v)) ∈ E.
A vertex v is said to be matched if θ(v) ̸= 0. If v is matched then θ(v) will also be matched
and θ(θ(v)) = v. The set of edges {(v, θ(v)) | θ(v) ̸= 0} is therefore a matching.

ρ(v) – the highest proper ancestor of v in the BFS tree that is matched. If v has no matched proper
ancestors then ρ(v) = 0.

We now describe how we process a vertex v that has been popped out of the BFS queue. Before we
start scanning v’s neighbors, we assume that ρ(v), d(v) and π(v) are correctly set (v may or may not
be matched at this point depending on whether it is adjacent to a vertex in its level that has been
processed before it). The action taken for an edge (v, u) depends on the value of d(u), θ(v) and θ(u)
in the following way:

1. If d(u) = d(v)− 1, do nothing (this edge has been processed before, in its opposite direction).

2. If d(u) =∞, let d(u)← d(v) + 1, π(u)← v and enqueue u to the BFS queue.

3. If d(u) = d(v) + 1, halt the BFS as an even cycle was found. Let c be the lowest common
ancestor, in the BFS tree, of v and u. Then the c ∼ v and c ∼ u tree paths and the edge (v, u)
form an even cycle of length 2(d(v) + 1− d(c)). This cycle is shown in Fig. 3.

4. If d(u) = d(v) and θ(v) = u (which also means that θ(u) = v), do nothing (this edge has been
processed before, in its opposite direction).

5. If d(u) = d(v) and θ(v) ̸= u, and θ(v) and θ(u) are not both zero, halt the BFS as an even cycle
was found. Assume, for example, that θ(v) = x ̸= 0. Let c be the lowest common ancestor, in
the BFS tree, of x and u. The c ∼ x and c ∼ u tree paths and the edges (x, v), (v, u) form an
even cycle of length 2(d(v) + 1− d(c)). This cycle is shown in Fig. 3.

6. If d(u) = d(v) and θ(v) = θ(u) = 0, test whether ρ(v) = ρ(u). If they are equal, let θ(v)← u,
θ(u) ← v. If they are not equal, halt the BFS as an even cycle is found as follows. Assume,
for example, that ρ(v) = x ̸= 0 and let y = θ(x). Let c be the lowest common ancestor, in the
BFS tree, of y and u. Then the c ∼ y tree path followed by the edge (y, x) followed by the
x ∼ v tree path followed by the edge (v, u) followed by the u ∼ c tree path closes an even cycle
of length 2(d(v) + 1− d(c)). This cycle is shown in Fig. 3. Note that this is a cycle (i.e., it is
simple) since x is not an ancestor of u.

After we finish scanning all the neighbors of v, we rescan them to set ρ(u) for every u that has become
a child of v. We put ρ(u)← ρ(v) unless ρ(v) = 0 and θ(v) ̸= 0 in which case we put ρ(u)← v. This
completes the description of the algorithm.

Theorem 4.1 The augmented BFS scans no more than 3|V |/2 edges and therefore runs in O(V)
time. Furthermore, If C is a SELC of length 2k and v0 is a root of it, then an augmented BFS that
starts from v0 finds an even cycle of length 2k.

Proof: When the BFS halts (either because it has completed, or because an even cycle has been
found), the only edges scanned are the BFS tree edges, the edges between matched vertices (these

11

u

v

c

s s

c

u v x

s

c

u v

x y

Figure 3: The even cycles detected by rules 3,5 and 6

v0

vm

vk−1 vk

v2k−j

v2k−j−1

wm

v2k−r

C1

Figure 4: If ρ(vk) = ρ(vk−1) = vm then |C1| = 2(j − r + 1) < 2k

edges form a matching) and possibly an edge that closes an even cycle. There are at most |V | − 1
tree edges and at most (|V | − 1)/2 edges in the matching (the root of the BFS is never matched).
The total number of edges scanned is therefore at most 3|V |/2. The complexity claim is obvious as
scanning an edge entails only a constant number of operations.

We now prove the second part of the theorem. Consider an augmented BFS that starts at a root
v0 of a SELC C. Note, according to the above six rules, that if the BFS halts while scanning the
neighbors of a vertex v, the even cycle found has a length of at most 2(d(v) + 1).

Suppose that C is a SELC of type one w.r.t. v0 (type one and type two SELCs were defined at the
end of the previous section). Then vk−1 and vk+1 are both in level k − 1 of the BFS. Suppose that
vk+1 is processed after vk−1. If an even cycle is found before the edge (vk+1, vk) is scanned, its length
must be 2k (it cannot be shorter, of course). Otherwise, an even cycle of length 2k is found, using
rule 3, when the edge (vk+1, vk) is scanned.

Suppose that C is a SELC of type two, with index j = k − 1 w.r.t. v0. Then vk−1, vk, vk+1 are all
in level k − 1 of the BFS. If an even cycle of length 2k is not found before processing the vertex vk,
such a cycle is found, using rule 5, when vk is processed as it is adjacent to two vertices in its level.

Finally, suppose that C is a SELC of type two, with j < k − 1. Then, both vk−1 and vk are in level
k − 1 of the BFS (and vk+1 is in level k − 2). We claim that ρ(vk−1) ̸= ρ(vk) and therefore an even
cycle is found, using rule 6, when the edge (vk−1, vk) is scanned, if such a cycle were not found before.
First, note that θ(v2k−j−1) = v2k−j (both are in level j, there is an edge between them, and we did not

12

halt at level j). Second, note that (v0, v1, . . . , vk−1), (v0, v2k−1, . . . , v2k−j) and (vk, vk+1, . . . , v2k−j−1)
are shortest paths in G (refer to Fig. 4). As these shortest paths connect vertices whose distance is
less than k, they must be the unique shortest paths between these vertices (cf. Lemma 3.2). These
paths must therefore be tree paths, i.e., they must be contained in the BFS tree. It follows that
v2k−j−1 is the ancestor of vk at level j. Therefore, ρ(vk) ̸= 0. If ρ(vk−1) = 0 we are done. Otherwise
ρ(vk−1) = vm where 1 ≤ m < k − 1 as v0, v1, . . . , vk−2 are the proper ancestors of vk−1 (and v0 is
unmatched). Assume, for contradiction, that ρ(vk) = vm. Since v2k−j−1 is a matched ancestor of
vk, we have m < j, and vm is an ancestor of v2k−j−1. Let wm = θ(vm) be the match of vm, and
let v2k−r be the lowest common ancestor, in the BFS tree, of wm and v2k−j (v2k−r may be v0). We
obtain the following even cycle (cycle C1 in Fig. 4) in G: vm ∼ v2k−j−1 − v2k−j ∼ v2k−r ∼ wm − vm,
where vm ∼ v2k−j−1, v2k−j ∼ v2k−r and v2k−r ∼ wm denote the tree paths between these vertices,
and v2k−j−1 − v2k−j , wm − vm are the edges matching these vertices. The tree paths vm ∼ v2k−j−1

and vm ∼ vk−1 may coincide initially, this causes no problems. The cycle C1 is indeed a cycle, i.e.,
it is simple, because it is composed of tree paths that cannot interset one another. The length of C1

is 2(j − r + 1) ≤ 2k − 2 contradicting the minimality of C. 2

As a corollary of Theorem 4.1, we get that any graph containing more than 3(V −1)/2 edges contains
an even cycle. A simple example shows that this bound is best possible. Just take any connected
graph whose biconnected components are triangles. Furthermore, checking whether a graph contains
an even cycle and exhibiting one if it does can be done in O(V) time. Just perform one augmented
BFS from an arbitrary vertex.

Finally, we point out that the result of this section is not implied by the results of Section 2. We
cannot afford checking, for k = 1, 2, . . ., whether the graph contains a C2k as the length of the
smallest even cycle may be large.

5 Finding a Shortest Odd Cycle in Undirected and Directed
Graphs

Shortest odd length cycles (SOLCs) can be found in polynomial time in both directed and undirected
graphs. Our objective in this section is to describe very simple, yet efficient, algorithms for both
these problems. Monien [6] obtained a simple O(VE) time algorithm for finding SOLCs in undirected
graphs. Using fast Boolean matrix multiplication algorithms we obtain an O(M(V) log V) algorithm
for the same task. This algorithm is more efficient than Monien’s algorithm for dense graphs.

Theorem 5.1 There is an O(M(V) log V) time algorithm that finds a shortest odd cycle in an
undirected graph G = (V,E).

Proof: Let A be the adjacency matrix of G. We assume that G is non-bipartite as otherwise it
contains no odd cycles. Recall that Ak(i, i) = 1 iff there is a closed walk of length k from i to itself
(the multiplications used to obtain Ak are assumed to be Boolean). Since any closed walk of an odd
length contains an odd cycle, the length of the SOLCs of G is the minimal odd k for which there exists
an i such that Ak(i, i) = 1. As G is undirected, At(i, i) = 1 implies At+2(i, i) = 1. We can therefore
look for this minimal k using the following approach. Start computing A,A3, A7, . . . , A2i−1, . . . until
A2s−1(i, i) = 1 for some i. A binary search along the odd numbers between 2s−1 − 1 and 2s − 1 can

13

then be used to find k. The number of Boolean matrix multiplication required is clearly O(log V).
A specific SOLC of length k can be found without increasing the complexity of the algorithm. 2

We turn our attention now to finding shortest odd cycles in directed graphs. Unlike in the undirected
case, subpaths of SOLCs are not necessarily shortest paths, and therefore a simple BFS from every
vertex does not suffice. Let ed(u, v) be the length of a shortest even length directed walk from u to v.
Similarly, let od(u, v) be the length of a shortest odd length directed walk from u to v. If no odd
(even) length walk exists we set od(u, v) = ∞ (ed(u, v) = ∞). Note that the existence of a walk of
length ed(u, v) (od(u, v)) does not imply the existence of a simple walk of length ed(u, v) (od(u, v)).

Lemma 5.2 If C = (v0, v1, . . . , vk−1) is a SOLC of a directed graph G then ed(v0, v2i) = 2i and
od(v0, v2i−1) = 2i− 1 for every 1 ≤ i ≤ k−1

2 .

Proof: Any closed walk of an odd length contains an odd cycle. There is an odd length closed walk
containing v0 whose length is ed(v0, v2i) + k − 2i. The minimality of C implies that ed(v0, v2i) ≥ 2i.
There is however a path of length 2i between v0 and v2i and therefore ed(v0, v2i) = 2i. The second
equality in the statement of the lemma follows using similar arguments. 2

Given a vertex s, we can easily compute ed(s, v) and od(s, v), for every, v ∈ V as follows. Construct
a graph G′ = (V ′, E′) were

V ′ = {ve, vo | v ∈ V }

E′ = {(xe, yo), (xo, ye) | (x, y) ∈ E}

The graph G′ is a directed bipartite graph that contains an even representative ve and an odd
representative vo for every vertex v ∈ V . It is easily seen that ed(u, v) = d′(ue, ve) and that
od(u, v) = d′(ue, vo), for every u, v ∈ V , where d′(u′, v′) denotes the distance between u′ and v′

in G′. By performing a BFS on G′ from se, we can therefore find ed(s, v) and od(s, v), for every
v ∈ V , in O(E) time (we assume the graph contains no isolated vertices).

For every s ∈ V , we can find, in O(E) time, a shortest odd length closed walk that contains s. We
simply compute oc(s) = min{ed(s, v) + 1 | (v, s) ∈ E}. If oc(s) ̸= ∞, then a closed walk of length
oc(s), which is the minimal possible odd length, is easily found by tracing a shortest odd path from s
to any vertex for which the minimum was achieved. The shortest odd length closed walk found in
this way must be a SOLC. We thus obtain the following:

Theorem 5.3 A shortest odd length cycle in a directed graph G = (V,E), if one exists, can be found
in O(VE) time.

6 Concluding Remarks

We have shown that interesting combinatorial properties of even cycles in undirected graphs lead to
very efficient algorithms for finding even cycles of a given length and for finding shortest even cycles.
Note that if the input graph is given using an adjacency matrix then these O(V 2) algorithms are
optimal. It seems plausible to conjecture that O(V 2) is the best possible bound, in terms of V , for
these problems even if the adjacency lists of the graphs are given as input. Note that O(V 2) time is
currently the best known time even for finding quadrilaterals (C4’s).

14

Based on the results of this paper, Alon, Yuster and Zwick [2] have recently obtained an
O(E4/3) algorithm for finding a C4 in undirected graphs. More generally, a C4k can be found in

O(E2−(1
k
− 1

2k+1
)) time. These algorithms are better than the O(V 2) time algorithms presented here

for relatively sparse graphs. It is interesting to note that the hardest cases for the C4 problem, for
example, are graphs with Θ(V 3/2) edges.

Acknowledgemt

The authors would like to thank Noga Alon for many helpful discussions.

References

[1] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42:844–856, 1995. A
preliminary version appeared in Proceedings of the 26th Annual ACM Symposium on Theory of
Computing, Montréal, Canada, pages 326–335, 1994.

[2] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. In Proceedings of
the 2nd European Symposium on Algorithms, Utrecht, The Netherlands, pages 354–364, 1994.
Journal version to appear in Algorithmica.

[3] B. Bollobás. Extremal graph theory. Academic Press, 1978.

[4] J.A. Bondy and M. Simonovits. Cycles of even length in graphs. Journal of Combinatorial
Theory, Series B, 16:97–105, 1974.

[5] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal on Computing,
7:413–423, 1978.

[6] B. Monien. The complexity of determining a shortest cycle of even length. Computing, 31:355–
369, 1983.

[7] B. Monien. How to find long paths efficiently. Annals of Discrete Mathematics, 25:239–254,
1985.

[8] D. Richards and A.L. Liestman. Finding cycles of a given length. Annals of Discrete
Mathematics, 27:249–256, 1985.

[9] C. Thomassen. Even cycles in directed graphs. European Journal of Combinatorics, 6:85–89,
1985.

[10] J. van Leeuwen. Graph algorithms. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume A, Algorithms and Complexity, chapter 10, pages 525–631. Elsevier and The
MIT Press, 1990.

15

