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Abstract

Suppose the edges of the complete r-graph on n vertices are weighted with real values. For

r ≤ k ≤ n, the weight of a k-clique is the sum of the weights of its edges. Given the largest gap

between the weights of two distinct edges, how small can the largest gap between the weights

of two distinct k-cliques be? We answer this question precisely.
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1 Introduction

All hypergraphs considered in this paper are uniform, i.e. they are r-graphs for some r ≥ 2. The

complete r-graph on n vertices is denoted by Kr
n. For an r-graph H, let E(H) denote its edge set

and V (H) denote its vertex set. We assume that V (Kr
n) = [n]. Let

([n]
k

)
denote the set of k-cliques

of Kr
n where r ≤ k ≤ n. We are interested in weighings of the edges of Kr

n and their effect on the

weights of larger cliques in Kr
n.

A weighing of Kr
n is a function w :

(
[n]
r

)
→ R. Observe that any weighing of Kr

n induces a

weighing of its subgraphs, where the weight of a subgraph is the sum of the weights of its edges.

Trivially, if w is constant, then the weight of any two subgraphs with the same number of edges

is the same. Now suppose that w is far from constant, what can be said about the weights of all

subgraphs with the same number of edges and how far are they from being constant? In particular,

what can be said about the weights of the k-cliques? We state this basic question more formally

as follows.

Given w :
(
[n]
r

)
→ R, and r ≤ k ≤ n, let

disck(w) = max
A,B∈([n]

k )
|w(A)− w(B)| .

Notice that disc(w) = discr(w) is just the maximum discrepancy between the weights of any two

edges, i.e. the maximum gap between two values of w. The extremal question which emerges is to
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determine:

disc(r, k, n) = min
w

disck(w)

disc(w)

where r < k ≤ n and the minimum is taken over all non-constant weighings w of Kr
n.

Our main motivation for this question (besides being natural on its own right) is that it is closely

related to inclusion matrices and their generalized inverses. Inclusion matrices (see Section 2 for

a definition) have been introduced by Gottlieb [3] and have since been well studied, mainly with

respect to their rank, with applications in several areas such as quasi-randomness, see [1, 2, 4, 5, 8].

Our approach computes their generalized inverse, which, as it turns out, gives additional information

and in particular assists in determining disc(r, k, n).

One can easily determine disc(r, k, n) when k > n − r. Indeed, trivially, discn(w) = 0 so

disc(r, n, n) = 0. More generally, if k > n− r, then the number of elements in
([n]
k

)
is smaller than

the number of edges so the system of linear equations indexed by
([n]
k

)
where each equation is just

the sum of all variables corresponding to the edges contained in the k-set corresponding to that

equation, has a nontrivial solution. Namely, we can have all weights of k-cliques 0 while w is not

constant. Thus, disc(r, k, n) = 0 for k > n − r. This ceases to be the case when k ≤ n − r. Our

main result determines disc(r, k, n) for all relevant values of k.

To state our result, define for 0 ≤ t ≤ r < k:

q(t, r, k) = (−1)t
(
k−r+t−1

t

)(
r
t

)(
k
r

) .

Theorem 1 For integers 2 ≤ r < k ≤ n−r we have disc(r, k, n) = disc(r, k, k+r) and furthermore,

disc(r, k, n) =
2

maxr
s=0

(∑r
x=0

∑r
y=0

(∑min{x,y}
j=0

(
s
j

)(
r−s
x−j
)(

r−s
y−j
)(

k−r+s
r−y−x+j

))
|q(x, r, k)− q(y, r, k)|

) .
For every fixed r, we have that for all k sufficiently large the maximum in the last equality is

obtained for s = 0 hence for k sufficiently large

disc(r, k, n) =
2∑r

x=0

∑r
y=0

(
r
x

)(
r
y

)(
k−r

r−y−x
)
|q(x, r, k)− q(y, r, k)|

.

Furthermore,

disc(r, k, n) =
1

2r − 1
+ ok(1) .

We see from Theorem 1 that for every fixed r, for k sufficiently large disc(r, k, n) is a rational

function in k. For small r, it is simple enough to state the exact closed form expression.

Corollary 1.1 For r = 2 (graphs), for all n ≥ k + 2 we have disc(2, k, n) = 2
3 for k = 3 and

disc(2, k, n) = k−1
3k−7 for k ≥ 4.

2



Corollary 1.2 For r = 3 (3-graphs), for all n ≥ k + 3 we have disc(3, k, n) = 2
5 for k = 4,

disc(3, k, n) = 6
17 for k = 5, disc(3, k, n) = 20

67 for k = 6, and disc(3, k, n) = (k−1)(k−2)
7k2−42k+65

for k ≥ 7.

The proof of Theorem 1 proceeds as follows. We first establish that disc(r, k, k + r) is at least

the value stated in the theorem. We then construct a weighing of Kr
k+r achieving this value thereby

proving that disc(r, k, k+r) is precisely the claimed value. This construction has the property that

it can be extended to Kr
n for n ≥ k + r thereby proving that disc(r, k, n) is at most the stated

value. But since disc(r, k, n) ≥ disc(r, k, k + r) for n ≥ k + r, equality holds. The fact that

disc(r, k, n) ≥ disc(r, k, k + r) for n ≥ k + r is seen by any Kr
k+r subgraph of Kr

n that contains

two edges with maximum discerpancy. As mentioned earlier, an important ingredient in our proof

is the determination of the generalized inverses of inclusion matrices, which is done in Section 2.

The cases of graphs and 3-graphs are given in Sections 3 and 4, respectively. Section 5 proves the

general case of Theorem 1. In Section 6 we generalize our result in the graph-theoretic case to

graphs that are not necessarily complete.

2 Inclusion matrices

For 2 ≤ r ≤ k ≤ n consider the binary matrix W = W (r, k, n) whose rows are indexed by
([n]
k

)
,

columns are indexed by
(
[n]
r

)
, and W [A,B] = 1 if and only if B ⊆ A. W (r, k, n) is called the

inclusion matrix of r-sets in k-sets of [n]. Gottlieb [3] proved that if k ≤ n − r, then W has full

column rank. In particular, W (r, k, r + k) is non-singular.

We provide here a proof of Gottlieb’s result which is obtained by explicitly constructing a matrix

Q = Q(r, k, n) such that QW = I where W = W (r, k, n) and I is the identity matrix of order
(
n
r

)
.

Recalling that for a matrix X with full column rank, a matrix Y such that Y X = I is called the

left generalized inverse of X, we have that Q(r, k, n) is the left generalized inverse of W (r, k, n).

2.1 Constructing Q(r, k, n)

Throughout this subsection we assume that W = W (r, k, n) and construct a matrix Q = Q(r, k, n)

such that QW = I. The rows of Q are indexed by
(
[n]
r

)
while the columns of Q are indexed by([n]

k

)
. We designate r+ 1 distinct values denoted by q0, . . . , qr. Each entry of Q will be one of these

values.

Let A ∈
(
[n]
r

)
be a row of Q and B ∈

([n]
k

)
be a column of Q. Then it will be the case that

Q[A,B] = q|A∩B|. Notice that since 0 ≤ |A ∩ B| ≤ r the indices are well-defined. It remains to

choose values for the qi so that indeed QW = I.

We start with qr. Consider A ∈
(
[n]
r

)
. Then the product of row A of Q and column A of W is

just the sum over all B ⊇ A of Q[A,B], namely it is qr ·
(
n−r
n−k
)
. As this product must be 1 it follows

that one must choose

qr =
1(

n−r
n−k
) .
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Next consider qr−1. Let A,C ∈
(
[n]
r

)
such that |A ∩ C| = r − 1. Then the product of row A of

Q and column C of W is obtained as follows. Consider some B ∈
([n]
k

)
such that B ⊇ C. Then

either B ⊇ A or else |B ∩ A| = r − 1. In the former case, the value qr contributes to the product

and in the latter case the value qr−1 contributes to it. As the product must be zero we obtain

qr

(
n− r − 1

n− k

)
+ qr−1

(
n− r − 1

n− k − 1

)
= 0 .

Hence, using qr =
(
n−r
n−k
)−1

, we obtain that

qr−1 = − k − r(
n−r
n−k
)
(n− k)

.

In general, consider qr−t for t = 0, . . . , r. Let A,C ∈
(
[n]
r

)
such that |A ∩ C| = r − t. Then the

product of row A of Q and column C of W is obtained as follows. Consider some B ∈
([n]
k

)
such

that B ⊇ C. Then |B ∩A| = r − j for some j = 0, . . . , t. As the product must be zero we obtain

t∑
j=0

qr−j

(
t

j

)(
n− r − t
n− k − j

)
= 0 .

Specifically, using the already determined values of qr and qr−1 we obtain that

qr−2

(
n− r
n− k

)
=

(k − r)(k − r + 1)

(n− k)(n− k − 1)
.

Continuing in the same fashion,

qr−3

(
n− r
n− k

)
= − (k − r)(k − r + 1)(k − r + 2)

(n− k)(n− k − 1)(n− k − 2)

and by induction substituting the previously determined values qr, . . . , qr−t+1 we obtain that

qr−t

(
n− r
n− k

)
= (−1)t

t−1∏
j=0

k − r + j

n− k − j
. (1)

This proves that the required q0, . . . , qr exist and explicitly determines their value.

2.2 The case of Q(r, k, r + k)

We will be particularly interested in the values of qr−t determined in (1) in the case n = r + k. In

this case, we define q(t, r, k) = qr−t so we have by (1) that

q(t, r, k) = (−1)t
(
k−r+t−1

t

)(
r
t

)(
k
r

) .
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3 Graphs

Suppose that w : E(Kn) → R is a weighing of the complete graph Kn. One can consider w as a

(column) vector indexed by
(
[n]
2

)
with real entries. Thus, for the inclusion matrix W = W (2, k, n)

where 2 < k ≤ n− 2, we have that v = Ww is a vector indexed by
([n]
k

)
where for X ∈

([n]
k

)
, vX is

the weight of the k-clique induced by X.

We consider first the case n = k + 2. In this case, W = W (2, k, k + 2) is non-singular, and

W−1 = Q(2, k, k + 2) where the entries of Q are explicitly determined in the previous section. So,

assume that we are told the weight of each k-clique of Kk+2, and record these values in a vector

v indexed by
([k+2]

k

)
where vX is the weight of the k-clique induced by X. Then we can recover

uniquely the edge-weighing w of Kk+2 giving rise to these weights of the k-cliques by computing

w = Qv.

Recall that our goal is to estimate disck(w)/disc(w). Now, disck(w) is the maximum difference

between two coordinates of v while disc(w) is the maximum difference between two coordinates of

w, i.e. two coordinates of Qv.

Suppose that diskk(w) = 2δ, and hence there exists s ∈ R such that each coordinate of v is

in [s − δ, s + δ]. We may assume that s = 0 as subtracting the same weight from all edges does

not change the discrepancies. Suppose that disc(w) is realized by the two edges e and f so that

|w(e)−w(f)| = disc(w). Now, w(e) is the product of row Q[e] with v while w(f) is the product of

row Q[f ] with v. Thus,

disc(w) = |(Q[e]−Q[f ])v| . (2)

Entry Q[e, Z] for Z ∈
(
k+2
k

)
is either q0, q1, or q2 depending on |e ∩ Z| ∈ {0, 1, 2}. Similarly

Q[f, Z] is either q0, q1, or q2 depending on |f ∩ Z| ∈ {0, 1, 2}. We recall from the previous section

that

q2 = q(0, 2, k) =
2

k(k − 1)
, q1 = q(1, 2, k) = − k − 2

k(k − 1)
, q0 = q(2, 2, k) =

k − 2

k
. (3)

Now, clearly, e 6= f as w is assumed to be non-constant. So, there are two cases to consider:

either |e ∩ f | = 1 or e ∩ f = ∅. Consider first the case e ∩ f = ∅. For how may distinct Z could

we have that Q[e, Z] = q0 and Q[f, Z] = q0? Clearly, this can never happen. Similarly, it can

never happen that Q[e, Z] = q0 and Q[f, Z] = q1. However, Q[e, Z] = q0 and Q[f, Z] = q2 happens

exactly once, for Z = [k + 2] \ e. Now, Q[e, Z] = q1 and Q[f, Z] = q1 occurs four times, as such

a Z must contain all elements of [k + 2] − (e ∪ f), and also contain one of the two endpoints of e

and one of the two endpoints of f . Likewise, Q[e, Z] = q1 and Q[f, Z] = q2 occurs 2(k − 2) times.

Finally, Q[e, Z] = q2 and Q[f, Z] = q2 occurs
(
k−2
2

)
times. The other possibilities are computed

symmetrically by changing the roles of e and f . These values are summarized in the left part of

Figure 1. It follows from this discussion, from (2), from (3), and from the fact that every coordinate

of v has absolute value at most δ that

disc(w) ≤ δ · (2 · |q0 − q2|+ 4(k − 2) · |q1 − q2|) = δ
6k − 14

k − 1
. (4)
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Q[f, Z] vs. Q[e, Z] q0 q1 q2

q0 0 0 1

q1 0 4 2k − 4

q2 1 2k − 4
(
k−2
2

)
Q[f, Z] vs. Q[e, Z] q0 q1 q2

q0 0 1 0

q1 1 k k − 1

q2 0 k − 1
(
k−1
2

)
e ∩ f = ∅ |e ∩ f | = 1

Figure 1: The number of entries of Q for which Q[e, Z] = qi and Q[f, Z] = qj where Z ranges

over all columns. The left table is for the case where e ∩ f = ∅ and the right table is for the case

|e ∩ f | = 1.

We now consider the case |e ∩ f | = 1. In a similar way, for every i = 0, 1, 2 and j = 0, 1, 2 we

compute the number of columns Z for which Q[e, Z] = qi and Q[f, Z] = qk. These values are

summarized in the right part of Figure 1. Thus, in this case we have that

disc(w) ≤ δ · (2 · |q0 − q1|+ 2(k − 1) · |q1 − q2|) = δ
4k − 6

k − 1
. (5)

Since diskk(w) = 2δ, it follows from (4) that in the case e ∩ f = ∅ we have disck(w)/disc(w) ≥
(k − 1)/(3k − 7) and it follows from (5) that in the case |e ∩ f | = 1 we have disck(w)/disc(w) ≥
(k − 1)/(2k − 3). We therefore have that for k = 3, disc(2, 3, 5) ≥ 2/3 while for k ≥ 4 we have

disc(2, k, 2 + k) ≥ (k − 1)/(3k − 7). We now show that this lower bound is tight.

For the case k = 3, consider the following weighing of K5: Assign weights w(1, 2) = 1, w(2, 3) =

0, w(4, 5) = 1/2, w(1, 3) = 1/2, the two remaining edges incident with 1 receive weight 1/3, the two

remaining edges incident with 2 receive weight 1/2, and the two remaining edges incident with 3

receive weight 2/3. It is easy to verify that the smallest weight of a triangle is 7/6 while the largest

wright of a triangle is 11/6. So for this weighing we have disc(w) = 1 while disc3(w) = 2/3. The

construction proves that disc(2, 3, 5) = 2/3.

For the case k ≥ 4 the construction proceeds as follows. We construct a vector v∗ as above

which corresponds to all the weights of the Kk in Kk+2 where each coordinate of v∗ is in {−δ, 0, δ},
at least one coordinate is +δ and at least one coordinate is −δ. We need to show that v∗ has the

property that there are two coordinates of Qv∗ that differ by δ 6k−14k−1 . Recall that we know that

in this case our lower bound (k − 1)/(3k − 7) is obtained in the case e ∩ f = ∅. So, wlog, we will

use e = {1, 2} and f = {3, 4}. For the unique Z such that Q[e, Z] = q0 and Q[f, Z] = q2 (i.e. for

Z = {3, 4 . . . , k + 2}), set v∗Z = δ. For the unique Z such that Q[e, Z] = q2 and Q[f, Z] = q0, set

v∗Z = −δ. For all Z such that Q[e, Z] = q1 and Q[f, Z] = q2 (recall from Figure 1 that there are

2k− 4 such Z), set v∗Z = −δ and for all Z such that Q[e, Z] = q2 and Q[f, Z] = q1, set v∗Z = δ. For

all other Z, set v∗Z to the same value, say 0. Now, since q0 > q2 > q1, our construction shows that

for this v∗, (4) is, in fact, an equality, and coordinate e of Qv∗ is larger than coordinate f of Qv∗

by precisely δ 6k−14k−1 . Let w∗ = Qv∗ denote the resulting edge weighing of Kn. The construction
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proves that disc(2, k, 2 + k) = (k − 1)/(3k − 7) for k ≥ 4.

We show how to extend this construction of w∗ from the case n = k+ 2 to all n ≥ k+ 2. For an

ordered pair of edges (e, f) of Kn, the profile of any edge g ∈ E(Kn) is the ordered triple (p1, p2, p3)

where p1 = |e ∩ g|, p2 = |f ∩ g| and p3 = |e ∩ f ∩ g|. So, by the above construction of w∗ (that is,

by the construction of v∗), we see that if g and g′ are two edges of Kk+2 having the same profile,

then w∗(g1) = w∗(g2). Thus, we can extend the weighing w∗ to all edges g of Kn by setting w∗(g)

equal to the weight of an edge of Kk+2 with the same profile.

In fact, notice that in our construction for the case k ≥ 4, we have used e = {1, 2} and

f = {3, 4} so there are 6 distinct profiles, (2, 0, 0), (0, 2, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 0). In our

construction for the case k = 3 we have in fact used e = (1, 2) f = (2, 3) and there are 7 distinct

profiles, (2, 1, 1) which is the profile of (1, 2), (1, 2, 1) which is the profile of (2, 3), (1, 1, 0) which is

the profile of (1, 3), (1, 0, 0) which is the profile of (1, 4) and (1, 5), (1, 1, 1) which is the profile of

(2, 4) and (2, 5), (0, 1, 0) which is the profile of (3, 4) and (3, 5), and (0, 0, 0) which is the profile of

(4, 5).

Now, suppose n ≥ k + 2. Define the profile of a Kk copy Z of Kn as the vector indexed by

all possible profiles, where each coordinate is the number of edges of Z with the given profile. So,

for example, consider the case k = 4 and the extension of our constructed weighing w∗ of K6 to

K7. The profile of, say, Z = {2, 3, 4, 7} is as follows. There are no edges of Z with the profile

(2, 0, 0) since Z does not contain e = {1, 2}. There is one edge of Z with the profile (0, 2, 0) since

Z contains {3, 4}. There is one edge of Z with the profile (1, 0, 0), namely {2, 7}. There are two

edges of Z with the profile (0, 1, 0), namely {3, 7} and {4, 7}. There are two edges of Z with the

profile (1, 1, 0), namely {2, 3} and {2, 4}. There are no edges of Z with the profile (0, 0, 0).

Since two Kk’s with the same profile have the same weight, and for any Z there is a Z ′ already in

Kk+2 with the same profile, we obtain that disck(w∗) and disc(w∗) did not change after this exten-

sion. This proves that disc(2, k, n) ≤ disc(2, k, k+2). Since, trivially, disc(2, k, n) ≥ disc(2, k, k+2),

equality holds. Summarizing, we have obtained that For all n ≥ k+ 2 we have disc(2, k, n) = 2
3 for

k = 3 and disc(2, k, n) = k−1
3k−7 for k ≥ 4. Hence, we have proved Corollary 1.1.

4 3-graphs

The arguments given in the previous section for graphs can be extended to r-graphs for r ≥ 3, but

become more involved as there are more intersection types, more pairwise intersections, considerably

more edge profiles, and even more clique profiles. Still, the case r = 3 is simple enough to be

explicitly given as a closed formula.

Suppose that w : E(K3
n)→ R is a weighing of the complete 3-graph K3

n. One can consider w as

a (column) vector indexed by
(
[n]
3

)
with real entries. Thus, for the inclusion matrix W = W (3, k, n)

where 3 < k ≤ n− 3, we have that v = Ww is a vector indexed by
([n]
k

)
where for X ∈

([n]
k

)
, vX is

the weight of the k-clique induced by X.
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We consider first the case n = k + 3. In this case, W = W (3, k, k + 3) is non-singular, and

W−1 = Q(3, k, k + 3) where the entries of Q are explicitly determined in Section 2. So, assume

that we are told the weight of each k-clique of K3
k+3, and record these values in a vector v indexed

by
([k+3]

k

)
where vX is the weight of the k-clique induced by X. Then we can recover uniquely the

edge-weighing w of Kk+3 giving rise to these weights of the k-cliques by computing w = Qv.

As in the previous section, suppose that diskk(w) = 2δ, and that each coordinate of v is in

[−δ, δ]. Suppose that disc(w) is realized by the two edges e and f so that |w(e)−w(f)| = disc(w).

In the graph theoretic case we had only two possibilities to consider, corresponding to |e∩ f |. Now

we have three since |e ∩ f | ∈ {0, 1, 2}.
Further, we recall from Section 2 that

q3 =
1(
k
3

) , q2 = −k − 3

3
(
k
3

) , q1 =
k − 3

k(k − 1)
, q0 = −k − 3

k
. (6)

We compute tables analogous to the tables in Figure 1. We need a table for each possible value

of |e ∩ f |. These are given in Figure 2.

As in (4) we obtain from Figure 2 for the case e ∩ f = ∅ that

disc(w) ≤ δ · (2 · |q3 − q0|+ 18 · |q1 − q2|+ 6(k − 3)|q1 − q3|+ 6

(
k − 3

2

)
|q3 − q2|) . (7)

For all k ≥ 5 we have q1 ≥ q3 ≥ q2 ≥ q0 so (6) and (7) imply for k ≥ 5 that

disc(w) ≥ δ k − 3

k(k − 1)(k − 2)

(
12

k − 3
+ 4− 42k + 14k2

)
(8)

while for k = 4

disc(w) ≥ 5δ . (9)

For the case |e ∩ f | = 1 we obtain from Figure 2 that

disc(w) ≤ δ · (2 · |q2 − q0|+ 4(k − 1) · |q1 − q2|+ 2(k − 2)|q1 − q3|+ 4

(
k − 2

2

)
|q3 − q2|) . (10)

So for k ≥ 5 we get from (6) and (10) that

disc(w) ≥ δ k − 3

k(k − 1)(k − 2)

(
− 12

k − 3
− 4− 26k + 12k2

)
(11)

while for k = 4

disc(w) ≥ 13

3
δ . (12)

For the case |e ∩ f | = 2 we obtain from Figure 2 that

disc(w) ≤ δ · (2 · |q1 − q0|+ 4(k − 1) · |q1 − q2|+ 2

(
k − 1

2

)
|q3 − q2|) . (13)
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Q[f, Z] vs. Q[e, Z] q0 q1 q2 q3

q0 0 0 0 1

q1 0 0 9 3(k − 3)

q2 0 9 9(k − 3) 3
(
k−3
2

)
q3 1 3(k − 3) 3

(
k−3
2

) (
k−3
3

)
e ∩ f = ∅

Q[f, Z] vs. Q[e, Z] q0 q1 q2 q3

q0 0 0 1 0

q1 0 4 2(k − 1) k − 2

q2 1 2(k − 1)
(
k−2
2

)
+ 4(k − 2) 2

(
k−2
2

)
q3 0 k − 2 2

(
k−2
2

) (
k−2
3

)
|e ∩ f | = 1

Q[f, Z] vs. Q[e, Z] q0 q1 q2 q3

q0 0 1 0 0

q1 1 k + 1 2(k − 1) 0

q2 0 2(k − 1) (k − 1) + 2
(
k−1
2

) (
k−1
2

)
q3 0 0

(
k−1
2

) (
k−1
3

)
|e ∩ f | = 2

Figure 2: The number of entries of Q for which Q[e, Z] = qi and Q[f, Z] = qj where Z ranges over

all columns in the various possibilities of |e ∩ f | for 3-graphs.
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So for all k ≥ 4 we get from (6) and (13) that

disc(w) ≥ δ k − 3

k(k − 1)(k − 2)

(
12

k − 3
+ 4− 8k + 8k2

)
. (14)

Recall that diskk(w) = 2δ. For k = 4, the maximum of (9),(12), (14) is obtained by (9) which

implies that disc4(w)/disc(w) ≥ 2δ/(5δ) for all possible w hence disc(3, 4, 7) ≥ 2/5. For k = 5, the

maximum of (8), (11), (14) is obtained by (14) and it is 17δ/3. Hence, disc(3, 5, 8) ≥ 6/17. For

k = 6, the maximum is obtained in (11) and it is 67/10. Hence, disc(3, 6, 9) ≥ 20/67. For all k ≥ 7

the maximum of (8), (11), (14) is obtained by (14) and hence for all k ≥ 7,

disc(3, k, k, k + 3) ≥ 2δ

δ k−3
k(k−1)(k−2)

(
12
k−3 + 4− 42k + 14k2

) =
(k − 1)(k − 2)

7k2 − 42k + 65
=

1

7
+ ok(1) .

As in the proof for the graph theoretic case in the previous section, for each of the possible

values of |e∩f | we can construct a vector v∗ which corresponds to all the weights of the Kk in Kk+3

where each coordinate of v∗ is in {−δ, 0, δ}, and such that each of (7), (10), (13) is an equality,

and the corresponding weighing is Qv∗ = w∗. Hence all lower bounds for disc(3, k, k+ 3) that have

been computed in the previous paragraph are, indeed, equalities.

We show how to extend w∗ from the case n = k + 3 to all n ≥ k + 3. We use the exact same

idea of profiles as in the previous section for the graph-theoretic case. For an ordered pair of edges

(e, f) of K3
n, the profile of any edge g ∈ E(K3

n) is the ordered triple (p1, p2, p3) where p1 = |e ∩ g|,
p2 = |f ∩ g| and p3 = |e∩ f ∩ g|. So, if g and g′ are two edges of K3

k+3 having the same profile, then

w∗(g1) = w∗(g2). Thus, we can extend the weighing w∗ to all edges g of K3
n by setting w∗(g) equal

to the weight of an edge of K3
k+3 with the same profile. Now, suppose n ≥ k+ 3. Define the profile

of a K3
k copy Z of K3

n as the vector indexed by all possible profiles, where each coordinate is the

number of edges of Z with the given profile. Since two K3
k ’s with the same profile have the same

weight, and for any Z there is a Z ′ already in K3
k+3 with the same profile, we obtain that disck(w∗)

and disc(w∗) did not change after this extension. This proves that disc(3, k, n) ≤ disc(3, k, k + 3).

Since, trivially, disc(3, k, n) ≥ disc(3, k, k + 3), equality holds.

Summarizing, we have obtain Corollary 1.2: For all n ≥ k + 3 we have disc(3, k, n) = 2
5 for

k = 4, disc(3, k, n) = 6
17 for k = 5, disc(3, k, n) = 20

67 for k = 6, and disc(3, k, n) = (k−1)(k−2)
7k2−42k+65

for

k ≥ 7.

5 r-graphs

As can be seen from the two previous sections, we can determine disk(r, k, n) for all 2 ≤ r < k ≤ n,

but the precise closed formula becomes increasingly difficult to compute as r grows. The following

describes the general procedure.

So, suppose r is fixed and w : E(Kr
n)→ R is a weighing of the complete r-graph Kr

n. One can

consider w as a (column) vector indexed by
(
[n]
r

)
with real entries. Thus, for the inclusion matrix

10



W = W (r, k, n) where r < k ≤ n− r, we have that v = Ww is a vector indexed by
([n]
k

)
where for

X ∈
([n]
k

)
, vX is the weight of the k-clique induced by X. As shown in the previous two sections,

we need to consider the case n = k + 3 where in this case, W = W (r, k, k + r) is non-singular, and

W−1 = Q(r, k, k + r) where the entries of Q are explicitly determined in Section 2. So, assume

that we are told the weight of each k-clique of Kr
k+r, and record these values in a vector v indexed

by
([k+r]

k

)
where vX is the weight of the k-clique induced by X. Then we can recover uniquely the

edge-weighing w of Kk+r giving rise to these weights of the k-cliques by computing w = Qv. As in

the previous two sections, suppose that diskk(w) = 2δ, and that each coordinate of v is in [−δ, δ].
Suppose that disc(w) is realized by the two edges e and f so that |w(e)−w(f)| = disc(w). Notice

that |e ∩ f | ∈ {0, 1, 2, r − 1}.
We define tables analogous to the tables in Figure 1 and Figure 2. We need a table for each

possible value of |e ∩ f |. Denote the tables by M r
s for s = 0, . . . , r − 1. Each M r

s is a symmetric

matrix of order r+ 1 whose rows and columns are indexed by q0, . . . , qr where qr−t = q(t, r, k). The

value of M r
s [qi, qj ] equals the number of entries of Q = Q(r, k, k + r) for which Q[e, Z] = qi and

Q[f, Z] = qj where Z ranges over all columns, and |e ∩ f | = s. So, for example M3
1 is the middle

table in Figure 2 and M3
1 [q2, q3] = 2

(
k−2
2

)
. We next determine M r

s [qi, qj ] in general. Namely, we

have that |e∩ f | = s and wish to determine the number of subsets Z of [k+ r] of order k for which

|Z ∩ e| = i and |Z ∩ f | = j. Letting i = r − x and j = r − y we clearly have

M r
s [qr−x, qr−y] =

min{x,y}∑
j=0

(
s

j

)(
r − s
x− j

)(
r − s
y − j

)(
k − r + s

r − y − x+ j

)
. (15)

Let disc(s, r, k, r + k) denote the minimum of disc(w) where w ranges over all weighings w :

E(Kr
k+r) → R with disck(w) = 2δ and where the two edges e, f that realize disc(w) (i.e. |w(e) −

w(f)| = disc(w)) satisfy |e ∩ f | = s. Generalizing (4), (5), (7),(10),(13), we have that

disc(s, r, k, r + k) ≥ δ

 r∑
i=0

r∑
j=0

M r
s [qi, qj ]|qi − qj |

 .

As shown in the previous two sections, equality can always be attained by choosing an appropriate

vector v∗ and hence we have

disc(r, k, r + k) =
r

min
s=0

2δ

disc(s, r, k, r + k)
=

2

maxr
s=0

(∑r
i=0

∑r
j=0M

r
s [qi, qj ]|qi − qj |

) .
Using the argument of edge profiles and clique profiles given in the previous two sections we obtain

that for all n ≥ r + k,

disc(r, k, n) = disc(r, k, r + k) =
2

maxr
s=0

(∑r
i=0

∑r
j=0M

r
s [qi, qj ]|qi − qj |

) .

11



Plugging in (15) we get that

disc(r, k, n) =
2

maxr
s=0

(∑r
x=0

∑r
y=0

(∑min{x,y}
j=0

(
s
j

)(
r−s
x−j
)(

r−s
y−j
)(

k−r+s
r−y−x+j

))
|qr−x − qr−y|

) (16)

where for any fixed r ≥ 2, qr−x = q(x, r, k) and qr−y = q(y, r, k) and thus

|qr−x − qr−y| =

∣∣∣∣∣(−1)x
(
k−r+x−1

x

)(
r
x

)(
k
r

) − (−1)y

(
k−r+y−1

y

)(
r
y

)(
k
r

) ∣∣∣∣∣ .
This proves the first part of Theorem 1.

Notice that for any fixed r we have that disc(r, k, n) is a rational function in k. We have

determined it precisely for r = 2, 3 in the previous two sections. Although a closed formula for

numerator and denominator coefficients of this rational function for arbitrary r seems hopeless, we

would still like to determine its asymptotic value, and thus complete the proof of Theorem 1.

So, we now fix r ≥ 2 and wish to determine the asymptotic value of disc(r, k, n) = disc(r, k, r+k)

as a function of k. We start with qr−x and qr−y. Notice that

|qr−t| = |q(t, r, k)| =
(
k−r+t−1

t

)(
r
t

)(
k
r

) =
(r − t)!

kr−t + o(kr−t)
.

Thus, if t = max{x, y} and furthermore x 6= y, then

|qr−x − qr−y| =
(r − t)!

kr−t + o(kr−t)
. (17)

We next analyze the denominator of (16) for each s separately. Thus let

g(s, r, k) =

r∑
x=0

r∑
y=0

min{x,y}∑
j=0

(
s

j

)(
r − s
x− j

)(
r − s
y − j

)(
k − r + s

r − y − x+ j

) |qr−x − qr−y| .
Consider first the case s = 0. Here we have

g(0, r, k) =

r∑
x=0

r∑
y=0

(
r

x

)(
r

y

)(
k − r

r − y − x

)
|qr−x − qr−y| .

By (17) all terms in the sum defining g(0, r, k) are ok(1) unless precisely one of x or y is 0. If, say,

x = 0 and y > 0 the corresponding term is
(
r
y

)(
k−r
r−y
) (r−y)!
kr−y+o(kr−y)

=
(
r
y

)
+ 0k(1). Thus,

g(0, r, k) =

 r∑
y=1

(
r

y

)
+ 0k(1)

+

(
r∑

x=1

(
r

x

)
+ 0k(1)

)
= 2r+1 − 2 + ok(1) .

Now consider the case s > 0. Here we have by (17) that whenever, say, y > x, the terms in the

inner summation on j in the definition of g(s, r, k) are all ok(1) unless j = x. Hence the inner term

amounts to (
s

x

)(
r − s
y − x

)
+ ok(1) .
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Thus,

g(s, r, k) = 2

r−1∑
x=0

r∑
y=x+1

(
s

x

)(
r − s
y − x

)+ 0k(1) = 2r+1 − 2s+1 + ok(1) .

Since for all k sufficiently large 2r+1 − 2s+1 + ok(1) is maximized when s = 0, we have that for all

k sufficiently large, the denominator of (16) is maximized when s = 0 and hence

disc(r, k, n) =
2∑r

x=0

∑r
y=0

(
r
x

)(
r
y

)(
k−r

r−y−x
)
|q(x, r, k)− q(y, r, k)|

.

and furthermore,

disc(r, k, n) =
1

2r − 1
+ ok(1)

completing the proof of Theorem 1.

6 Dense graphs

We can generalize the definition of disck(w) from complete r-graphs to general r graphs. Let G be

an r-graph and let w : E(G)→ R. Then, disck(w) = maxA,B∈(Gk) |w(A)− w(B)| where now
(
G
k

)
is

the set of all k-cliques of G. Generalizing the notion of disc(r, k, n), for an r-graph G and k > r,

we define

disc(G, k) = min
w

disck(w)

disc(w)

where r < k and the minimum is taken over all non-constant weighings w of G.

Trivially, if G has no k-clique, then disc(G, k) = 0. But since the Turán number of hypergraphs

is by itself a notoriously difficult problem (the Turán number of any Kk
r and where k > r > 2 is

not known, even asymptotically [6]), we will restrict our attention to graphs. Let us consider all

graphs with n vertices and minimum degree at least d for some 0 ≤ d < n. Thus, let

disc([n, d], k) = min
G
disc(G, k)

where the minimum is taken over all graphs with n vertices and minimum degree at least d. The

reason for looking at the family of graphs with a certain minimum degree requirement and not just

the family of graphs with a certain number of edges is obvious. In the latter case we can construct

graphs which are almost complete, say take a Kn−1, and an additional vertex v connected to just

one other vertex of the Kn−1. We can assign a nonzero weight to the edge incident with v and

weight 0 to all other edges. For k ≥ 3, every Kk in this graph has weight 0, while the edge weighing

is non-constant.

Once again, if there exist graphs with n vertices and minimum degree d that do not contain a

Kk, then, trivially, disc([n, d], k) = 0. However, Turán’s theorem [7] tells us what is the minimum

d which guarantees that every graph with n vertices and that minimum degree has a Kk. That,
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however, is not enough since it may still be possible for a non-constant weighing to have all k-cliques

with the same weight.

Theorem 2 If d ≤ b k
k+1nc, then disc([n, d], k) = 0. If d > b k

k+1nc, then disc([n, d], k) =

disc(2, k, n).

Proof. Recall that the Turán graph T (s, n) is the unique complete s-partite graph with n vertices

and with each vertex part of size either bn/sc or dn/se. While T (s, n) does not contain Ks+1,

Turán’s theorem states that if a graph with n vertices has more edges than T (s, n) has, then it

does contain Ks+1.

Recall also from the introduction that there are nonzero weighings of Kk+1 such that every

copy of Kk has the same weight, that is disc(2, k, k+ 1) = 0. So take such a weighing w of Kk+1 on

vertex set [k + 1] and notice that T (k + 1, n) is a blowup of Kk+1, that is we replace vertex v with

an independent set Xv of size either bn/(k+ 1)c or dn/(k+ 1)e and add all possible edges between

Xv and Xu when u 6= v. So we can also assign the weight w(u, v) to all edges between Xu and Xv

and obtain a nonzero weighing of T (k + 1, n) where each copy of Kk in T (k + 1, n) has the same

weight. Now, since the minimum degree of T (k + 1, n) is n − dn/(k + 1)e ≤ b k
k+1nc we have that

whenever d ≤ b k
k+1nc, then disc([n, d], k) = 0.

Now suppose that G is a graph with n vertices whose minimum degree d satisfies d ≥ b k
k+1nc+1.

Every set of t vertices where 1 ≤ t ≤ k + 1 has a common neighbor. Indeed, suppose T is such a

set, then the number of vertices not adjacent to at least one element of T is at most t(n− 1− d) so

at least n − t − t(n − 1 − d) > 0 vertices are adjacent to all vertices of T . It follows that for each

Kt-subgraph of G on the set of vertices T , there is a Kk+2 subgraph of G that contains T .

Consider the graph H whose vertices are the edges of G and two vertices of H are adjacent

in H if the corresponding edges appear in the same copy of a Kk+2 in G. We claim that H is

connected. Indeed, suppose not. Then it is possible to partition V (H) = E(G) into two parts F1

and F2 with no edges of H connecting the two parts. For each v ∈ V (G) let Fi(v) be the set of all

edges of G incident with v that belong to Fi for i = 1, 2. Notice that |F1(v)|+ |F2(v) ≥ d. Since G

is connected, we must have that for some v ∈ V (G), F1(v) 6= ∅ and also F2(v) 6= ∅. Wlog, assume

|F2(v)| ≥ |F1(v)| and let (v, x) ∈ F1(v). But since k ≥ 3 and |F1(v)|+ |F2(v)| ≥ d > k
k+1n we must

have that (x, y) ∈ E(G) for some y with (v, y) ∈ F2(v). But according to the previous paragraph,

the triple (v, x, y) belongs to some Kk+2-subgraph of G. So it cannot be that (v, x) and (v, y) are

in distinct components of H.

Now suppose that w is a non-constant weighing of G. By the connectivity of H, there is some

copy of Kk+2 of G which has two edges whose weight is not the same. thus disck(w)/disc(w) ≥
disc(2, k, k+ 2). It follows that disc(G, k) ≥ disc(2, k, k+ 2) = disc(2, k, n). Thus, disc([n, d], k) ≥
disc(2, k, n). Since trivially disc([n, d], k) ≤ disc(2, k, n), the theorem follows.
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