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Abstract. For a graph G and a fixed integer k ≥ 3, let νk(G) denote the maximum number of
pairwise edge-disjoint copies of Kk in G. For a constant c, let η(k, c) be the infimum over all constants
γ such that any graph G of order n and minimum degree at least cn has νk(G) ≥ γn2(1 − on(1)).
By Turán’s Theorem, η(k, c) = 0 if c ≤ 1− 1/(k− 1) and by Wilson’s Theorem, η(k, c) → 1/(k2 − k)
as c → 1. We prove that for any 1 > c > 1− 1/(k − 1),

η(k, c) ≥
c

2
−

(
(k
2

)
− 1)ck−1

2Πk−2
i=1 ((i+ 1)c− i) + 2(

(k
2

)
− 1)ck−2

while it is conjectured that η(k, c) = c/(k2 − k) if c ≥ k/(k+ 1) and η(k, c) = c/2− (k− 2)/(2k− 2)
if k/(k + 1) > c > 1− 1/(k − 1).

The case k = 3 is of particular interest. In this case the bound states that for any 1 > c > 1/2,

η(3, c) ≥
c

2
−

c2

4c− 1
.

By further analyzing the case k = 3 we obtain the improved lower bound

η(3, c) ≥

(
12 c2 − 5 c+ 2−

√
240 c4 − 216 c3 + 73 c2 − 20 c+ 4

)
(2 c− 1)

32 (1− c) c
.

This bound is always at most within a fraction of (20 −
√
238)/6 > 0.762 of the conjectured value

which is η(3, c) = c/6 for c ≥ 3/4 and η(3, c) = c/2− 1/4 if 3/4 > c > 1/2.
Our main tool is an analysis of the value of a natural fractional relaxation of the problem.
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1. Introduction. All graphs considered here are finite and simple undirected
graphs. For standard graph-theoretic terminology the reader is referred to [1].

The problem of computing a maximum set of pairwise edge-disjoint subgraphs of
a graph G that are isomorphic to a given fixed graph H is a fundamental problem in
extremal graph theory and in design theory. Perhaps the most studied case is when
H is the complete graph H = Kk, dating back to a classical result of Kirkman [15].
See [3, 4, 8, 9, 11, 14, 12, 18, 21, 23, 24] for some representative works in this area.

For a graph G and a fixed integer k ≥ 3, let νk(G) denote the maximum number of
pairwise edge-disjoint copies ofKk in G. If G is sufficiently sparse, then we might have
νk(G) = 0. In fact, Turán’s Theorem states that νk(G) = 0 only if e(G) ≤ t(n, k− 1).
Here t(n, r) denotes the number of edges of the graph T (n, r) which is the complete
r-partite graph with n vertices and either ⌈n/r⌉ or ⌊n/r⌋ vertices in each partite class.
As the minimum degree of T (n, r) is at most n(1 − 1/r), a graph G with minimum
degree cn might have νk(G) = 0 when c ≤ 1 − 1/(k − 1). On the other hand, the
simple greedy algorithm shows that νk(G) = Θ(n2) for any constant c > 1−1/(k−1).
In fact, by Wilson’s Theorem [23], Kn has a set of

(
n
2

)
/
(
k
2

)
edge-disjoint copies of Kk

as long as n is sufficiently large and satisfies some necessary divisibility conditions.
Hence, when c → 1, graphs with minimum degree at least cn have νk(G) close to(
n
2

)
/
(
k
2

)
. It is therefore of interest to determine νk(G) as a function of the minimum

degree of G.
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More formally, for a real constant c and an integer k ≥ 3, let η(k, c) be the
infimum over all constants γ such that any graph G with n vertices and minimum
degree at least cn has νk(G) ≥ γn2(1 − on(1)). By the discussion in the previous
paragraph, Turán’s Theorem states that η(k, c) = 0 if c ≤ 1 − 1/(k − 1) and, more
generally, η(k, c) → 0 as c → 1 − 1/(k − 1). On the other hand, Wilson’s Theorem
asserts that η(k, c) → 1/(k2 − k) as c → 1. Observe also the trivial upper bound
η(k, c) ≤ c/(k2 − k) since a cn-regular graph cannot have more than cn2/2 pairwise
edge-disjoint copies of Kk.

A longstanding conjecture of Nash-Williams [18] states that η(3, c) = c/6 for
all c ≥ 3/4. In fact, the conjecture of Nash-Williams is sharper in the sense that
if, in addition, some divisibility conditions hold (the degree of each vertex is even
and the overall number of edges is a multiple of 3), then a graph with minimum
degree at least 3n/4 has a triangle decomposition. Gustavsson, in his Ph.D. Thesis
[7] proved that η(3, c) = c/6 for c ≥ 1−10−24. A special case of a recent breakthrough
paper of Keevash [13] gives an alternative proof to Gustavsson’s result. The results of
Gustavsson and Keevash, just like the conjecture of Nash-Williams, are decomposition
results. The value of c for which η(3, c) = c/6 was improved by the author in [24] to
c ≥ 1 − 1/105 and recently by Dukes [2] to c ≥ 1 − 1/162. The conjecture of Nash
Williams is sharp in the sense that it cannot be improved. A simple interpolation
argument provides a construction showing that η(3, c) ≤ c/2− 1/4 for 1/2 ≤ c ≤ 3/4.
We state this upper bound as the conjectured value for η(3, c).

Conjecture 1.1.

η(3, c) =


c
6 if 3

4 ≤ c < 1,(
c
2 − 1

4

)
if 1

2 ≤ c ≤ 3
4 ,

0 if 0 ≤ c ≤ 1
2 .

As shown in Gustavsson’s thesis, it is not difficult to generalize the construction of
Nash Williams, and his conjecture, to larger values of k. The analogous conjecture in
this case is that η(k, c) = c/(k2−k) for all c ≥ 1−1/(k+1). An interpolation argument,
given in Section 7, provides a construction showing that η(k, c) ≤ c/2−(k−2)/(2k−2)
for 1− 1/(k − 1) ≤ c ≤ 1− 1/(k + 1). We state this upper bound as the conjectured
value for η(k, c).

Conjecture 1.2.

η(k, c) =


c

k2−k if 1− 1
k+1 ≤ c < 1,(

c
2 − k−2

2k−2

)
if 1− 1

k−1 ≤ c ≤ 1− 1
k+1 ,

0 if 0 ≤ c ≤ 1− 1
k−1 .

Our main results are lower bounds for η(k, c) in general and η(k, 3) in particular.
As far as we know, these are the first nontrivial lower bounds that apply to the entire
spectrum of c. Our first main result is a general lower bound for η(k, c).

Theorem 1.3. Let k ≥ 3 be an integer and let c be a real satisfying 1−1/(k−1) <
c < 1. Then

η(k, c) ≥ c

2
−

(
(
k
2

)
− 1)ck−1

2Πk−2
i=1 ((i+ 1)c− i) + 2(

(
k
2

)
− 1)ck−2

.

Observe first that if c > 1− 1/(k− 1), then Theorem 1.3 asserts that η(k, c) > 0 and
if c→ 1, then Theorem 1.3 asserts that η(k, c) → 1/(k2 − k), which is consistent with
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the discussion above. The following corollary is a restatement of Theorem 1.3 for the
cases k = 3 and k = 4, given for reference.

Corollary 1.4.

η(3, c) ≥ c

2
− c2

4c− 1
for 1 > c >

1

2
,(1.1)

η(4, c) ≥ c
2
− 5c3

22c2 − 14c+ 4
for 1 > c >

2

3
.(1.2)

Let us compare (1.1) to some other lower bounds that can be derived from existing
results. A classical result of Goodman [6] on the triangle densities of graphs, states
that a graph with c

(
n
2

)
edges has c(2c−1)

(
n
3

)
−o(n3) triangles. From this fact, together

with the fact that Kn has n(n− 1)/6− o(n) edge-disjoint triangles, one easily obtains
that a graph with c

(
n
2

)
edges has c(2c− 1)n2/6− o(n2) edge-disjoint triangles. Thus,

the easy lower bound η(3, c) ≥ c2/3 − c/6 follows immediately. Observe that the
latter bound only relies on the fact that the edge density of the graph is c and does
not use the assumption that the minimum degree is cn. If we do use the minimum
degree condition, together with an observation that one can assume that any edge is
contained in at most cn triangles (see more details on the latter assumption in Section
3) and together with the fact that, in dense graphs, a maximum fractional triangle
packing has asymptotically the same value as a maximum integral one (see details
on this fact in Section 2), then Goodman’s result implies that η(3, c) ≥ c/3 − 1/6.
However, observe that the lower bound (1.1) is always better than c/3 − 1/6 for
1 > c > 1/2. It is important to note that Goodman’s result on the density of
triangles is optimal for values of c of the form 1 − 1/t where t ≥ 2 is an integer,
but is not optimal for other values of c. The optimal bound was recently obtained
in a breakthrough paper of Razborov [20]. If we use Razborov’s bound instead of
Goodman’s bound (for values of c not of the form 1− 1/t), then the bound c/3− 1/6
is slightly improved, but still falls short of our lower bound (1.1) for all 1 > c > 1/2.
As an illustrative example, consider the case c = 5/8. Goodman’s bound would then
imply η(3, 5/8) ≥ 1/24 = 5/120. Razborov’s bound1 would imply η(3, 5/8) ≥ 5/108,
while (1.1) shows that η(3, 5/8) ≥ 5/96. Finally, note that Conjecture 1.1 states that
η(3, 5/8) = 1/16 = 6/96.

A generalization of Goodman’s result for arbitrary k ≥ 3 was obtained by Lovász
and Simonovits [16] (see also [17]). Nikiforov [19] generalized Razborov’s result to
k = 4. Their bound can be used to prove a lower bound for η(k, c) using a similar
reasoning as for triangles. Again, the obtained bound using this approach is always
smaller than the one given in Theorem 1.3. For example, if k = 4, then there are
always c(2c− 1)(3c− 2)

(
n
4

)
− o(n4) copies of K4. This can be used to give the bound

η(4, c) ≥ c(2c− 1)(3c− 2)/12. However, observe that the lower bound (1.2) is always
better than c(2c− 1)(3c− 2)/12 for 1 > c > 2/3.

Theorem 1.3 is a general lower bound for all k and c. However, for the case k = 3,
it is possible to obtain a non-negligible improvement using a more detailed analysis.
This is our second main result.

Theorem 1.5. Let c be a constant satisfying 1/2 < c < 1. Then

(1.3) η(3, c) ≥
(
12 c2 − 5 c+ 2−

√
240 c4 − 216 c3 + 73 c2 − 20 c+ 4

)
(2 c− 1)

32 (1− c) c
.

1For c ∈ (1/2, 2/3) the density of triangles was established already in [5].
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Observe that if c > 1/2, then Theorem 1.3 asserts that η(3, c) > 0 and if c → 1,
then Theorem 1.3 asserts that η(3, c) → 1/6, which is consistent with the discussion
above. As shown in Section 6, the bound (1.3) is always better than the bound (1.1)
for 1 > c > 1/2. One should therefore compare (1.3) with Conjecture 1.1 (recall
that the conjectured bound is also an upper bound). As shown in Section 6, the
ratio between the lower bound (1.3) and the conjectured bound is never smaller than
(20−

√
238)/6 > 0.762 for any 1 > c > 1/2.

To prove our main results, we first reduce the problem of computing η(k, c) to
the problem of computing its fractional relaxation. The fact that such reductions
carry asymptotically no loss is an important result of Haxell and Rödl [11]. We then
consider a particular fractional assignment that we call the natural fractional packing.
We prove that the natural fractional packing always attains the values claimed in
Theorem 1.3 and Theorem 1.5. Proving this requires some detailed combinatorial
and analytical considerations.

The rest of this paper is organized as follows. In Section 2 we review the reduction
from integral to fractional packings and define the notion of a natural fractional
packing. Section 3 contains the proof of Theorem 1.3 for the case of triangles. The
general case of Theorem 1.3, which contains significantly more notation but otherwise
uses the same ideas as given in Section 3 is proved in Section 4. The proof of the
improved bound for η(3, c) (namely, Theorem 1.5) appears in Section 5. The quality
of the lower bounds obtained in Theorems 1.3 and 1.5 with respect to the conjectured
values for k = 3, 4 is established in Section 6. Constructions of the upper bounds that
coincide with Conjecture 1.2 are provided in Section 7. The final section contains
some concluding remarks.

2. Preliminaries. Let
(
G
H

)
denote the set of copies of a graphH in a graph G. A

function ϕ from
(
G
H

)
to [0, 1] is a fractional H-packing of G if

∑
H′∈(GH) : e∈H′ ϕ(H ′) ≤ 1

for each e ∈ E(G). For a fractional H-packing ϕ, let |ϕ| =
∑

H′∈(GH)
ϕ(H ′). The

fractional H-packing number, denoted by ν∗H(G), is the maximum value of |ϕ| ranging
over all fractional H-packings ϕ. An H-packing of G is a set of pairwise edge-disjoint
copies of H in G. Let νH(G) denote the maximum size of an H-packing of G. In the
case H = Kk we set νk(G) = νKk

(G) and ν∗k(G) = ν∗KK
(G).

Trivially, ν∗H(G) ≥ νH(G), as an H-packing is a special case of a fractional H-
packing. An important result of Haxell and Rödl [11] (see also [25]), which relies
on Szemerédi’s regularity lemma [22], shows that the converse is also asymptotically
true, up to an additive error term which is negligible for sufficiently dense graphs.

Lemma 2.1. For every ϵ > 0 and every graph H there exists N = N(H, ϵ) such
that for all n > N , if G is a graph with n vertices, then ν∗H(G)− νH(G) ≤ ϵn2.

For a real constant c and an integer k ≥ 3, let η∗(k, c) be the infimum over all
constants γ such that any graph G with n vertices and minimum degree at least cn
has ν∗k(G) ≥ γn2(1− on(1)). The following is an immediate corollary of Lemma 2.1.

Corollary 2.2. η∗(k, c) = η(k, c).
For an edge e ∈ E(G) let fH(e) denote the number of elements of

(
G
H

)
that

contain e. We sometimes omit the subscript H if it can be determined from context.
Let ψ = ψH(G) be the fractional H-packing of G defined by

ψ(X) =
1

maxe∈E(X) fH(e)
.

In other words, for each X ∈
(
G
H

)
, we look at all the edges of X, take the edge that

4



appears in the largest amount of elements of
(
G
H

)
, and assign to X the value which is

reciprocal to this amount. We call ψ the natural fractional H-packing of G. Observe
that ψ is indeed a valid fractional H-packing of G as for each edge, the sum of the
weights of the copies of H containing it is at most fH(e) · (1/fH(e)) = 1.

It may be that |ψH(G)| < ν∗H(G). For example, let G = K−
5 and let H = K3.

In this case,
(
G
H

)
contains 7 triangles. Each triangle contains at least one edge that

appears in three triangles, so each triangle receives the weight 1/3 in the natural
fractional triangle packing of K−

5 . The value of ψ is therefore 7/3. On the other
hand, it is easy to verify that ν∗3 (K

−
5 ) = 3.

The proofs of Theorems 1.3 and 1.5 are based on lower-bounding the value of the
natural fractional Kk-packing of a graph with minimum degree cn, thereby establish-
ing a lower bound for η∗(k, c). By Corollary 2.2, this also establishes a lower bound
for η(k, c).

3. Proof of Theorem 1.3 for triangles. Let 1 > c > 1/2 be fixed. Let G be
a graph with n vertices and minimum degree δ(G) ≥ cn. By Corollary 2.2, it suffices
to prove that ψ, the natural fractional triangle packing of G, satisfies

|ψ| ≥
(
c

2
− c2

4c− 1

)
n2 .

We may assume that for any edge (u, v) ∈ E(G), either d(u) = δ(G) or d(v) = δ(G),
as otherwise we may remove (u, v) and prove the theorem for the resulting subgraph,
which still has the same minimum degree.

Let m denote the number of edges of G and observe that m ≥ cn2/2. Recall
that for an edge e ∈ E(G), f(e) = fK3(e) denotes the number of triangles containing
e. Hence, by our assumption that any edge is incident with a vertex of degree δ(G)
and by the fact that the number of common neighbors of any two vertices is at least
2δ(G)− n, we have

(3.1) (2c− 1)n ≤ f(e) ≤ δ(G)− 1 < cn .

Let T (G) denote the set of triangles of G and let α = |T (G)|/n3. For a triangle
T ∈ T (G), we have that

ψ(T ) =
1

maxe∈E(T ) f(e)
≥ 1

cn
.

Consider first the case where

α ≥ c2

2
− c3

4c− 1
.

Observe that indeed α > 0 since c > 1/2. In this case we easily have

(3.2) |ψ| =
∑

T∈T (G)

ψ(T ) ≥ αn3 · 1

cn
≥
(
c

2
− c2

4c− 1

)
n2 .

Consider from here onwards the case that 0 < α ≤ c2/2−c3/(4c−1). Order E(G)
as a sequence e1, . . . , em where f(ei) ≥ f(ei+1) for i = 1, . . . ,m − 1. Now consider
the non-decreasing sequence B = {b1, b2, . . .} of 3αn3 = 3|T (G)| rationals, consisting
of m blocks, where the first f(e1) elements of B are 1/f(e1) (this is the first block),
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the next f(e2) elements are 1/f(e2) (the second block), and so on, where the final
block consists of f(em) elements which are 1/f(em). The sum of the elements of B
is, therefore, m, since the sum of each block is 1. Observe that any element of the
sequence B can be mapped to a triangle T ∈ T (G). Indeed, the f(ej) elements of B
in block j are bijectively mapped to the f(ej) triangles containing ej . Denote this
mapping by M : B → T (G). Also notice that for each T ∈ T (G) there are precisely
three elements of B that are mapped to T , one for each edge of T . The first of
these three elements in the sequence B is called the leading element with respect to
T . Suppose that E(T ) = {ei, ej , ek} and that f(ei) ≥ f(ej) ≥ f(ek). The leading
element with respect to T has value 1/f(ei) = ψ(T ).

Let B′ be the subsequence of B consisting of the leading elements, one for each
T ∈ T (G). By definition of ψ, and since each element of B′ corresponds to the weight
given by ψ to a triangle, we have that the sum of the elements of B′ is precisely |ψ|.
But B′ is some subsequence of |T (G)| elements of the nondecreasing sequence B, so
in particular, its sum is at least the sum of the first |T (G)| = αn3 elements of B.
Hence,

|ψ| ≥
αn3∑
ℓ=1

bℓ .

Summarizing, we have that B is a nondecreasing sequence of 3αn3 rationals, whose
sum is m where m ≥ cn2/2. Each element in the sequence is at least 1/(cn) and at
most 1/((2c − 1)n), and we wish to lower bound the minimum possible sum of the
first αn3 elements of this sequence.

Let therefore S = {s1, s2, . . .} be any nondecreasing sequence of 3αn3 rationals,
whose sum is m, and whose elements are between 1/(cn) and 1/((2c − 1)n) and for
which the sum of the first αn3 elements is minimized. We may assume that all the
first αn3 elements of S are equal, as otherwise we can just replace each of them with
their average.

So, we may assume that the first αn3 elements of S are all equal to some value
1/(xn), and that the average value of the remaining 2αn3 elements of S is some value
1/(yn), and recall that we have 1/(yn) ≤ 1/((2c− 1)n). It follows that

m =
3αn3∑
i=1

si = αn3 · 1

xn
+ 2αn3 · 1

yn
.

Using m ≥ cn2/2 and y ≥ 2c− 1 we obtain from the last equation that

c

2
≤ α

x
+

2α

2c− 1
.

Hence,

αn3∑
i=1

si = αn3 · 1

xn
(3.3)

≥ n2
(
c

2
− 2α

2c− 1

)
≥ n2

(
c

2
− 2(c2/2− c3/(4c− 1))

2c− 1

)
=

(
c

2
− c2

4c− 1

)
n2 .
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By the minimality of S we have that

|ψ| ≥
αn3∑
i=1

bi ≥
αn3∑
i=1

si ≥
(
c

2
− c2

4c− 1

)
n2

as required.

4. Proof of Theorem 1.3. The proof of Theorem 1.3 can be generalized to
other fixed complete graphs Kk by lower-bounding the natural fractional Kk-packing.
We outline the differences between the proof for K3 given in the previous section and
its more general form given here.

The first modification is equation (3.1) which gives upper and lower bounds for
f(e). Now f(e) is the number of Kk that contain e. Clearly, f(e) is at most the
number of copies of Kk−2 in the common neighborhood of u and v where e = (u, v).
An upper bound for f(e) follows from the fact that at least one of the endpoints has
degree δ(G) ≤ cn. So, there could be at most

(
cn
k−2

)
copies of Kk−2 in the common

neighborhood of u and v. Thus, f(e) ≤ (cn)k−2/(k − 2)!.
On the other hand, u and v has at least (2c − 1)n common neighbors. For each

such common neighbor x1, there are at least (3c− 2)n common neighbors of u, v, x1.
For each such common neighbor x2 there are at least (4c − 3)n common neighbors
of u, v, x1, x2. Continuing in this way for k − 2 times, and noticing that each Kk is
counted at most (k − 2)! times in this way, we obtain that

(4.1) nk−2Π
k−2
i=1 ((i+ 1)c− i)

(k − 2)!
≤ f(e) ≤ nk−2 ck−2

(k − 2)!
.

Let K(G) denote the set of Kk of G and let α = |K(G)|/nk. For a copy K ∈ K(G),
we have that

ψ(K) =
1

maxe∈E(T ) f(e)
≥ (k − 2)!

ck−2nk−2
.

Consider first the case where

(4.2) α ≥
ck−1

2(k−2)!

1 +
((k2)−1)ck−2

Πk−2
i=1 ((i+1)c−i)

.

In this case we get the trivial bound

|ψ| =
∑

K∈K(G)

ψ(K) ≥ αnk · (k − 2)!

ck−2nk−2

≥

(
c

2
−

(
(
k
2

)
− 1)ck−1

2Πk−2
i=1 ((i+ 1)c− i) + 2(

(
k
2

)
− 1)ck−2

)
n2 .

For α which is at most the r.h.s. of (4.2), we construct the rational sequence B as in
the proof of the previous section. Now B has

(
k
2

)
αnk =

(
k
2

)
|K(G)| elements, whose

sum is m. Each element of the sequence B is mapped to some K ∈ K(G) and for
each K ∈ K(G) there are

(
k
2

)
elements of B that are mapped to K, one for each edge

of K. The first of these
(
k
2

)
elements in the sequence B is now the leading element

with respect to K.

7



Let B′ be the subsequence of B consisting of the leading elements. By definition
of ψ, the sum of the elements of B′ is precisely |ψ|. But B′ is some subsequence of
|K(G)| elements of the nondecreasing sequence B, so in particular, its sum is at least
the sum of the first |K(G)| = αnk elements of B. Hence,

|ψ| ≥
αnk∑
ℓ=1

bℓ .

Summarizing, we have that B is a nondecreasing sequence of
(
k
2

)
αnk rationals, whose

sum is m where m ≥ cn2/2. Each element in the sequence is at least (k−2)!
ck−2nk−2 and

at most (k−2)!

nk−2Πk−2
i=1 ((i+1)c−i)

and we wish to lower bound the minimum possible sum of

the first αnk elements of this sequence.

Let S = {s1, s2, . . .} be any nondecreasing sequence of
(
k
2

)
αnk rationals, whose

sum is m, whose elements are between the two stated bounds, and for which the sum
of the first αnk elements is minimized. As in the previous section, we may assume
that all the first αnk elements of S are equal. So, we may assume that the first αnk

elements of S are all equal to some value 1/(xnk−2), and that the average value of
the remaining (

(
k
2

)
− 1)αnk elements of S is some value 1/(ynk−2), and recall that we

have 1/(ynk−2) ≤ (k−2)!

nk−2Πk−2
i=1 ((i+1)c−i)

. It follows that

m =

(k2)αn
k∑

i=1

si = αnk · 1

xnk−2
+ (

(
k

2

)
− 1)αnk · 1

ynk−2
.

Usingm ≥ cn2/2 and y ≥ Πk−2
i=1 ((i+1)c−i)/((k−2)!) we obtain from the last equation

that

c

2
≤ α

x
+

(
(
k
2

)
− 1)α

Πk−2
i=1 ((i+ 1)c− i)/((k − 2)!)

.

Hence,

αnk∑
i=1

si = αnk · 1

xnk−2
≥ n2

(
c

2
−

(
(
k
2

)
− 1)α

Πk−2
i=1 ((i+ 1)c− i)/((k − 2)!)

)
.

Plugging in the r.h.s. of (4.2) which is an upper bound on α, we obtain

αnk∑
i=1

si ≥

(
c

2
−

(
(
k
2

)
− 1)ck−1

2Πk−2
i=1 ((i+ 1)c− i) + 2(

(
k
2

)
− 1)ck−2

)
n2 .

By the minimality of S we have that

|ψ| ≥
αnk∑
i=1

bi ≥
αnk∑
i=1

si ≥

(
c

2
−

(
(
k
2

)
− 1)ck−1

2Πk−2
i=1 ((i+ 1)c− i) + 2(

(
k
2

)
− 1)ck−2

)
n2

as required.
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5. Improved lower bound for η(3, c). In this section we prove Theorem 1.5.
Let 1 > c > 1/2 be fixed. Let G be a graph with n vertices and minimum degree
δ(G) ≥ cn. By Corollary 2.2, it suffices to prove that ψ, the natural fractional triangle
packing of G, satisfies

|ψ| ≥
(
12 c2 − 5 c+ 2−

√
240 c4 − 216 c3 + 73 c2 − 20 c+ 4

)
(2 c− 1)

32 (1− c) c
n2 − o(n2) .

As shown in Section 3, we may assume that for any edge (u, v) ∈ E(G), either
d(u) = δ(G) or d(v) = δ(G). We will also use (3.1), as well as the following notations
from Section 3:

1. The number of edges of G is m where m ≥ cn2/2.
2. T (G) is the set of triangles of G and α = |T (G)|/n3.
3. The ordering of E(G) as a sequence e1, . . . , em where f(ei) ≥ f(ei+1) for
i = 1, . . . ,m− 1.

4. The non-decreasing sequence B = {b1, b2, . . .} of 3αn3 rationals consisting of
m blocks where block j has f(ej) elements that are all equal to 1/f(ej).

5. The mapping M : B → T (G) which bijectively maps the block of B corre-
sponding to ej to the f(ej) triangles containing ej .

6. The notion of a leading element with respect to T ∈ T (G).
7. The subsequenceB′ consisting of the leading elements, one for each T ∈ T (G).

Recall that the sum of the elements of B′ is precisely |ψ|.
Let β and r be parameters satisfying

(5.1)
c

2
> β >

1

4
, r =

β(4β − 1)

3
≤ α .

Let F ⊂ E be F = {em, em−1, . . . , em−βn2+1}. Thus, F consists of the βn2 edges
having the lowest values of f . The following is an immediate consequence of the
result of Goodman [6] mentioned in the introduction.

Lemma 5.1. Let G[F ] be the spanning subgraph of G consisting of the edges of
F . Then G[F ] contains at least rn3 − o(n3) triangles where r = β(4β − 1)/3.

Proof. By Goodman’s theorem, a graph with n vertices and ρ
(
n
2

)
edges has

ρ(2ρ − 1)
(
n
3

)
− o(n3) triangles. Our graph G[F ] has βn2 edges so we can use ρ =

2β − o(1) and the lemma follows.
Let BF be the subsequence of B consisting of the last βn2 blocks (namely, the

blocks corresponding to the elements of F ). By Lemma 5.1, we know that at least
rn3 − o(n3) of the leading elements fall in BF . In other words, the subsequence
B′ of the leading elements has |B′ ∩ BF | ≥ rn3 − o(n3) while |B′ ∩ (B \ BF )| ≤
(α − r)n3 + o(n3). Recall that our goal is to lower bound the sum of the elements
of B′. As B is non-decreasing, if we replace B′ with the subsequence B′′ (of the
same cardinality αn3) consisting of the first (α− r)n3 elements of B and the first rn3

elements of BF then the sum of the elements of B′′ is at most the sum of the elements
of B′ (up to the negligible error term o(n2)).

Let, therefore, S(n, c, α, β) denote the set of all non-decreasing sequences with
the following properties for each S ∈ S:

1. S contains 3αn3 rational elements, partitioned into m blocks, where
(
n
2

)
≥

m ≥ cn2/2.
2. The overall sum of the sequence S is m.
3. Each element is between 1/(cn) and 1/((2c− 1)n).
4. The sum of the elements in the last βn2 blocks is βn2.
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5. Each S is occupied with a sub-sequence S′′ consisting of the first (α−r)n3 el-
ements and also with the first rn3 elements of the subsequence of S consisting
of the final βn2 blocks.

6. The value of S, denoted V al(S), is the sum of the elements of S′′.
Observe that B ∈ S(n, c, α, β) and that V al(B) is just the sum of the elements of B′′

which is what we want to lower bound. Let, therefore,

V al(n, c, α, β) = min
S∈S(n,c,α,β)

V al(S) .

Observe that if S ∈ S satisfies V al(S) = V al(n, c, α, β), then as shown in Section 3,
we may assume that the first (α−r)n3 elements of S (which are also the first elements
of S′′) are all equal to some value x/n where x ≥ 1/c. Likewise, the remaining rn3

elements of S′′ are all equal to some value z/n where 1/(2c−1) ≥ z ≥ x. The elements
of S starting with the element at location (α − r)n3 and ending at the last element
of block m − βn2 have values which are at least x/n and at most z/n. Denote the
number of such elements by tn3. The remaining (2α− t)n3 elements (which are also
the last elements of S) have values which are at least z/n and at most 1/((2c− 1)n).
With this notation we have that V al(n, c, α, β) is of the form

V al(n, c, α, β) = V al(S) = n2((α− r)x+ rz)

but we must still compute x and z which minimize the r.h.s. of the last equation,
subject to their constraints.

Lemma 5.2. The solution to program P (c, α, β) of Figure 1 is a lower bound for
V al(n, c, α, β)/n2.

P (c, α, β) :
minimize (α− r)x+ rz
s.t.
(1) (α− r)x ≥ c

2 − β − 2αz + (2c− 1)βz − (2c− 1)rz2 ,
(2) 1

c ≤ x ≤ z ≤ 1
2c−1 .

Fig. 1. The program P (c, α, β) whose solution is a lower bound for V al(c, α, β).

Proof. Let S be as in the previous paragraph, namely V al(n, c, α, β) = V al(S) =
n2((α − r)x + rz). The target value of P (c, α, β) then follows from the fact that
V al(n, c, α, β)/n2 is of the form (α − r)x + rz. Constraint (2) is also obvious from
the constraints for x and z stated in the paragraph preceding the lemma. To see the
Constraint (1) we observe the following. Notice first that we must have

(5.2) (α− r)x+ tz ≥ c

2
− β .

Indeed, the sum of the elements of S in the first m−βn2 blocks is precisely m−βn2.
On the other hand by the discussion in the paragraph before the lemma, it is at least
n3(α − r)(x/n) + (tn3)(z/n). Dividing by n2 and using m ≥ cn2/2, (5.2) follows.
Notice next that we must have

(5.3) rz +
1

2c− 1
(2α− t) ≥ β .

Indeed, the sum of the elements of S in the last βn2 blocks is precisely βn2. On
the other hand by the discussion in the paragraph before the lemma, it is at least
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n3r(z/n) + (2α− t)n3(1/((2c− 1)n)). Dividing by n2, (5.3) follows. Now, constraint
(1) is obtained by combining inequalities (5.2) and (5.3).

Let p(c, α, β) denote the solution for P (c, α, β). Let

p(c, α) = max
β satisfying (5.1)

p(c, α, β) .

Corollary 5.3.

η(3, c) ≥ min
0≤α≤ 1

6

max

{
p(c, α) ,

α

c
,
c

2
− 2α

2c− 1

}
.

Proof. Let G be any n-vertex graph with minimum degree cn and with αn3

triangles. The fact that 0 ≤ α ≤ 1/6 is trivial. Lemma 5.2 proves that for any β
satisfying (5.1), p(c, α, β)n2−o(n2) is a lower bound for the natural fractional triangle
packing of G. Thus, p(c, α)n2 − o(n2) is a lower bound for the natural fractional
triangle packing of G. The other two bounds in the statement of the corollary have
already been proved in Section 3. The bound (α/c)n2−o(n2) is the trivial lower bound
proved in (3.2), and is useful when α is relatively large. The bound ( c2−

2α
2c−1 )n

2−o(n2)
is the other lower bound for the fractional natural triangle packing of G proved in
(3.3) and is useful when α is relatively small. In fact, observe that the bound for
η(3, c) proved in Section 3 is just the minimum over all α of the maximum of the two
bounds α

c and c
2 − 2α

2c−1 .
In order to lower bound p(c, α) it would be simpler to compute p(c, α, β) at the

particular point β = 2α/(2c−1). The reason for choosing this particular value of β will
be made apparent later. However, we must make sure that choosing β = 2α/(2c− 1)
does not violate (5.1). For this to hold, α must therefore satisfy

c

2
>

2α

2c− 1
>

1

4
, r =

2α
2c−1 (

8α
2c−1 − 1)

3
≤ α .

This is equivalent to requiring

(5.4)
2c− 1

8
< α <

c(2c− 1)

4
.

Thus, by the definition of p(c, α) as a maximum over all plausible β of p(c, α, β), we
obtain that p(c, α) ≥ p(c, α, 2α/(2c − 1)) whenever α satisfies (5.4). For notational
convenience, define

q(c, α) =

{
p(c, α, 2α/(2c− 1)) if 2c−1

8 < α < c(2c−1)
4 ,

0 otherwise.

Thus, we can restate Corollary 5.3 as

(5.5) η(3, c) ≥ min
0≤α≤ 1

6

max

{
q(c, α) ,

α

c
,
c

2
− 2α

2c− 1

}
.

The reason for using q(c, α) instead of p(c, α) becomes apparent by the fact that
the program P (c, α, β) is significantly simplified by plugging in β = 2α/(2c− 1). The
following is an immediate corollary of Lemma 5.2.
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Q(c, α) :
minimize (α− r)x+ rz
s.t.
(1) (α− r)x ≥ c

2 − 2α
2c−1 − (2c− 1)rz2 ,

(2) 1
c ≤ x ≤ z ≤ 1

2c−1 .

Fig. 2. The program Q(c, α) whose solution is q(c, α).

Corollary 5.4. Let 2c−1
8 < α < c(2c−1)

4 and r = ( 2α
2c−1 )(

8α
2c−1 − 1)/3. Then,

q(c, α) is the solution to program Q(c, α) of Figure 2.
Analyzing Q(c, α). Observe that whenever Q(c, α) has a feasible solution, q(c, α)
is always at least as large as α/c. Indeed, the target function is (α − r)x + rz =
αx + r(z − x) but in any feasible solution, z ≥ x and x ≥ 1/c. Similarly, q(c, α) is
always at least as large as c

2 − 2α
2c−1 . To see this, notice that by Constraint (1), the

target function satisfies

(α− r)x+ rz ≥ c

2
− 2α

2c− 1
− (2c− 1)rz2 + rz ≥ c

2
− 2α

2c− 1

since z ≤ 1
2c−1 . So, we now specify a valid range of α where Q(c, α) has a feasible

solution, and where we can analytically compute this solution, and we are guaranteed
that in this range, q(c, α) dominates the three terms in the max expression of (5.5).
We define two points g(c) and h(c) (where g(c) < h(c)) as follows. The point h(c) is
the smallest point for which we can take x = z = 1/c as a feasible (and hence optimal)
solution. For this to hold, constraint (1) must satisfy

(α− r)

c
≥ c

2
− 2α

2c− 1
− (2c− 1)r

c2
.

Solving the last inequality for α (and recall that r = ( 2α
2c−1 )(

8α
2c−1 −1)/3) we have that

(5.6) h(c) =
1

32
·
(
12c2 − 5c+ 2−

√
240c4 − 216c3 + 73c2 − 20c+ 4

)
(2c− 1)

1− c
.

In particular, at the point α = h(c) (and above it) we have that q(c, α) coincides with
α/c. The point g(c) is the largest point for which we can take x = 1/c and still have
a feasible solution. For this to hold, constraint (1) must satisfy

(α− r)

c
≥ c

2
− 2α

2c− 1
− (2c− 1)r

(2c− 1)2
.

Solving the last inequality for α we get that
(5.7)

g(c) =
1

32

(
−24 c2 + 16 c− 1 +

√
384 c4 − 480 c3 + 208 c2 − 32 c+ 1

)
(2 c− 1)

1− c
.

Since we have shown that q(c, a) dominates the two other terms in the max expression
of (5.5) in the range [g(c), h(c)] we have, in particular, that

(5.8) η(3, c) ≥ min
0≤α≤ 1

6


c
2 − 2α

2c−1 if α ≤ g(c),

q(c, α) if g(c) ≤ α ≤ h(c),
α
c if α ≥ h(c).
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Also notice from the above discussion that at point α = h(c) we have q(c, α) = α/c
and at point α = g(c) we have q(c, α) = c

2 − 2α
2c−1 .

Solving Q(c, α) in [g(c), h(c)]. We can analytically compute q(c, α) at the range
α ∈ [g(c), h(c)]. Let f(z) = c

2 − 2α
2c−1 − (2c− 1)rz2 + rz. By Constraint (1) in Figure

2 we have that (α− r)x+ rz ≥ f(z). Now, f(z) is concave and, in addition, gets its
minimum when z is as large as possible subject to constraint (2) in Figure 2. But
constraint (1) shows that in order to make z as large as possible, x should be as small
as possible. Hence, the solution to Q(c, α) is when x = 1

c and z satisfies the quadratic
equation (α− r) 1c = c

2 − 2α
2c−1 − (2c− 1)rz2. Thus,

z =
1√
r
·

√√√√( c

4c− 2
− 2a

(2c− 1)
2 − a− r

c (2c− 1)

)
and

q(c, α) =
α− r

c
+

√√√√r

(
c

4c− 2
− 2a

(2c− 1)
2 − a− r

c (2c− 1)

)
.

By taking second derivative (recall that r is also a function of α) we have that q(c, α),
as a function of α, is concave in [g(c), h(c)]. Thus, its minimum is obtained either
at q(c, g(c)) or q(c, h(c)). Comparing the two values we obtain that the minimum of
q(c, a) in [g(c), h(c)] is obtained at α = h(c). Thus, by (5.8) we have that

η(3, c) ≥ h(c)

c
=

(
12 c2 − 5 c+ 2−

√
240 c4 − 216 c3 + 73 c2 − 20 c+ 4

)
(2 c− 1)

32 (1− c) c
.

We end this section by graphically illustrating the three functions on the r.h.s. of
(5.8) for the case c = 3/4. In this case we have h(c) = h(3/4) = 5/16 −

√
238/64 ≈

0.0714 and g(c) = g(3/4) =
√
13/16 − 5/32 ≈ 0.0691. Figure 3 shows that in the

range [g(3/4), h(3/4)] the function q(3/4, α) is concave and dominates both α
c = 4α

3
and c

2 − 2α
2c−1 = 3

8 − 4α. The minimum in (5.8) is attained for α = h(3/4).

6. Quality of lower bounds. We start by analyzing the quality of the worst
case ratio between the lower bounds given in Corollary 5.3 (namely, Theorem 1.3 in
the cases k = 3, 4) and the conjectured values given in Conjectures 1.1 for k = 3 and
1.2 for k = 4 (recall that the conjectured values are also upper bounds).

Consider first the case k = 3. As the conjectured value is c/6 for c ≥ 3/4 and
c/2− 1/4 when 1/2 ≤ c ≤ 3/4, the worst case ratio is

min

{
inf

1
2<c≤ 3

4

c
2 − c2

4c−1
c
2 − 1

4

, min
3
4≤c≤1

c
2 − c2

4c−1
c
6

}
.

The left expression is a monotone decreasing function in (1/2, 3/4] and the right
expression is a monotone increasing function in [3/4, 1]. Hence, c = 3/4 minimizes
both expression and the obtained ratio is 0.75.

Consider next the case k = 4. As the conjectured value is c/12 for c ≥ 4/5 and
c/2− 1/3 when 2/3 ≤ c ≤ 4/5, the worst case ratio is

min

{
inf

2
3<c≤ 4

5

c
2 − 5c3

22c2−14c+4
c
2 − 1

3

, min
4
5≤c≤1

c
2 − 5c3

22c2−14c+4
c
12

}
.
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Fig. 3. The three functions in the r.h.s. of (5.8) in the case c = 3/4.

By taking derivatives, it is not difficult to see that the left expression is a monotone
increasing function in (2/3, 4/5] and the right expression is also monotone increasing
in [4/5, 1]. Both expressions are equal at c = 4/5. Hence, the minimum is when
c = 2/3 (which yields the infimum of the left expression) and the obtained ratio is
0.3.

We now analyze the quality of the worst case ratio between the lower bounds
given in Theorem 1.5 and the conjectured value given in Conjecture 1.1. Here we
need to compute

min

{
inf

1
2<c≤ 3

4

x(c) , inf
3
4≤c<1

y(c)

}
where

x(c) =

(12 c2−5 c+2−
√
240 c4−216 c3+73 c2−20 c+4)(2 c−1)

32(1−c)c

c
2 − 1

4

y(c) =

(12 c2−5 c+2−
√
240 c4−216 c3+73 c2−20 c+4)(2 c−1)

32(1−c)c
c
6

.

Using derivatives, it is not difficult (though tedious) to see that x(c) is a monotone
decreasing function in (1/2, 3/4] (in fact, in (1/2, 1)) and that y(c) is a monotone
increasing function in [3/4, 1) (in fact, in (1/2, 1)); see Figure 4. They are (trivially)
both equal at c = 3/4 which is, therefore, the minimum point of their upper envelope.
The value at this point, and hence the obtained ratio, is x(3/4) = y(3/4) = (20 −√
238)/6 > 0.762.
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Fig. 4. The decreasing function x(c) and the increasing function y(c) shown in the range (0.5, 1).

7. Upper bounds. We start by giving a simple proof showing that the values
stated in Conjecture 1.2 are, in fact, upper bounds for η(k, c).

Proposition 7.1.

η(k, c) ≤


c

k2−k if 1− 1
k+1 ≤ c < 1,(

c
2 − k−2

2k−2

)
if 1− 1

k−1 ≤ c ≤ 1− 1
k+1 ,

0 if 0 ≤ c ≤ 1− 1
k−1 .

Proof. If c ≤ 1 − 1
k−1 , then η(k, c) = 0 by Turán’s Theorem. If c ≥ 1 − 1

k+1
then the upper bound c

k2−k is trivial as any cn-regular graph cannot have more than

(cn2/2)/
(
k
2

)
edge-disjoint copies of Kk. It remains to consider the case 1− 1

k−1 ≤ c ≤
1− 1

k+1 . Start with the Turán graph T (n, k − 1) which has no copy of Kk. We may
assume than k − 1 divides n and that cn is an integer, by the asymptotic nature of
the definition of η(k, c). Let H be any graph that has n/(k−1) vertices and is regular
of degree (c+ 1

k−1 − 1)n. Embed a copy of H in each vertex class of T (n, k− 1). The

resulting graph G is regular of degree (c+ 1
k−1 − 1)n+ (1− 1

k−1 )n = cn. Now, each
copy of Kk in G must contain an edge from one of the k − 1 embedded copies of H.
Thus

νk(G) ≤ (k − 1)e(H) = (k − 1) · n2

2(k − 1)

(
c+

1

k − 1
− 1

)
= n2

(
c

2
− k − 2

2k − 2

)
.

Observe that the proof of Proposition 7.1 actually also gives the same upper bound
for η∗(k, c).

Interestingly, the following proposition shows that in order to prove Conjecture
1.2, it suffices to prove it for η(k, 1− 1

k+1 ).

Proposition 7.2. If η(k, 1− 1
k+1 ) =

1
k2−1 , then Conjecture 1.2 holds.
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Proof. Assume that indeed η(k, 1 − 1
k+1 ) = 1

k2−1 . Consider first the case c >

1 − 1
k+1 . Let G be a graph with minimum degree cn. We may assume that n is

divisible by k, by the asymptotic nature of the definition of η(k, c). By a theorem
of Hajnal and Szemerédi [10], any graph with minimum degree at least n(1 − 1/k)
contains a Kk-factor (assuming n is divisible by k), namely n/k vertex-disjoint copies
of Kk. We may therefore greedily remove from G a set of r pairwise edge-disjoint
Kk-factors, as long as cn− (k − 1)r ≥ n(1− 1/k). In fact, we will only use

r = n
c+ 1

k+1 − 1

k − 1
.

After deleting r edge-disjoint Kk-factors, we obtain a graph G′ with minimum degree
(1− 1

k+1 )n. Assuming η(k, 1− 1
k+1 ) =

1
k2−1 , we have that G′ has n2/(k2 − 1)− o(n2)

edge-disjoint copies of Kk. Thus, G has at least

r
n

k
+

n2

k2 − 1
− o(n2) =

c

k2 − k
n2 − o(n2)

edge-disjoint copies of Kk. Hence, η(k, c) ≥ c/(k2 − k).
We remain with the case 1− 1

k−1 < c < 1− 1
k+1 . Let G be a graph with minimum

degree cn. We first need to establish the following claim: in order to increase the
minimum degree of the graph by 1 (and remain with a simple graph), it suffices to
add at most n/2 + o(n) edges. We prove this claim in the next paragraph.

Let A ⊂ V (G) denote the set of vertices with degree cn and let B = V (G) \A be
the vertices with higher degree. The number of edges of the cut (B,A) is therefore
larger than (cn− |B|)|B|. On the other hand, the sum of the degrees of the vertices
of A is cn|A|. It follows that e(A) > (cn|A| − (cn − |B|)|B|)/2. Denoting |A| = αn
and denoting by Gc[A] the complement of the subgraph of G induced by A we have:

e(Gc[A]) ≥
(
|A|
2

)
− e(A) ≥ n2

(
α2

2
− cα− (c− 1 + α)(1− α)

2

)
− o(n2) .

Simplifying the last expression we obtain

e(Gc[A]) ≥
(
α− 1

2

)
(1− c)n2 − o(n2) .

The maximum degree of e(Gc[A]) is not larger than the maximum degree of Gc which
is at most (1−c)n. Summarizing, Gc[A] is a graph with αn vertices, maximum degree
at most (1 − c)n, and its number of edges is at least (α − 1/2)(1 − c)n2 − o(n2). A
simple application of Tutte’s Theorem (see, e.g., [1]) gives that Gc[A] has a matching
M of size at least (α− 1/2)n− o(n) edges. The number of unmatched edges of Gc[A]
is therefore at most αn− 2|M | = (1−α)n+ o(n). For each unmatched vertex v ∈ A,
pick an arbitrary edge of Gc incident with v. Denote the set of selected edges by P .
Hence, P ∪M is a set of edges whose addition to G increases the minimum degree by
1. But

|P ∪M | = |P |+ |M | ≤ (1− α)n+ (α− 1/2)n+ o(n) =
n

2
+ o(n) .

Having proved our claim, we see that given a graph G with minimum degree
cn, we can add to it at most (1 − 1/(k + 1) − c)n · (n/2 + o(n)) edges and obtain a
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graph G′ with minimum degree at least (1 − 1/(k + 1))n. By our assumption that
η(k, 1− 1

k+1 ) =
1

k2−1 we have that G′ contains at least n2/(k2−1)−o(n2) edge-disjoint
copies of Kk. At most e(G′) − e(G) of these copies of Kk contain an edge that does
not appear in G. It follows that G has at least

n2

k2 − 1
− o(n2)−

(
1− 1

k + 1
− c

)
n ·
(n
2
+ o(n)

)
=

(
c

2
− k − 2

2k − 2

)
n2 − o(n2)

edge-disjoint copies of Kk. Hence, η(k, c) ≥ c
2 − k−2

2k−2 , as required.

8. Concluding remarks. The proofs of Theorem 1.3 and Theorem 1.5 are al-
gorithmic. Moreover, given a graph with minimum degree at least cn, one can find
a Kk-packing of size at least η(k, c)n2(1 − on(1)) in polynomial time. This follows
directly from the fact that Lemma 2.1 (the theorem of Haxell and Rödl [11]) is algorith-
mic, as they show that the optimal fractional packing (found via linear programming)
can be converted to an integral one with only a negligible additive loss, in polynomial
time.

Although our main results consider packings with complete graphs, they have a
natural extension to arbitrary fixed graphs H. Let η(H, c) be the infimum over all
constants γ such that any graph G of order n and minimum degree at least cn has
νH(G) ≥ γn2(1 − on(1)). As proved in [26], if χ(H) = k and |E(H)| = r, then
r · νH(G) ≥

(
k
2

)
νk(G) − o(n2). Thus, one can use the lower bound in Theorem 1.3,

multiplied by
(
k
2

)
/r, and obtain a lower bound for η(H, c). Likewise, the lower bound

in Theorem 1.5, multiplied by 3/r, serves as a lower bound for η(H, c) where H is a
3-chromatic graph.
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7:283–286, 1962.

[18] C.S.J.A. Nash-Williams. An unsolved problem concerning decomposition of graphs into trian-
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