H-packing of k-chromatic graphs

Raphael Yuster *

Abstract

For graphs H and G, let $p_{H}(G)$ denote the maximum number of edges covered by a set of edge-disjoint copies of H in G. We prove that if H is k-chromatic, then $p_{H}(G) \geq p_{K_{k}}(G)-$ $o\left(|V(G)|^{2}\right)$. The error term cannot be improved much, as for any $\delta>0$ there are graphs H with $\chi(H)=k$ such that for all n sufficiently large, there are graphs G with n vertices for which $p_{H}(G) \leq p_{K_{k}}(G)-n^{2-\delta}$. We present several applications of this result in extremal graph theory.

 Keywords: edge-packing, chromatic number, H-packing
1 Introduction

All graphs considered here are finite, undirected, and simple. For standard graph-theoretic terminology the reader is referred to [3].

Finding sufficient conditions for the existence of copies of a given graph H as a subgraph of some larger graph lies at the heart of extremal graph theory. Many of the classical results that consider the case $H=K_{k}$ were subsequently generalized to hold for arbitrary H. We recall two sets of results where this has occurred.

Turán's Theorem asserts that a graph that has more edges than any complete ($k-1$)-partite graph with the same amount of vertices must contain K_{k} as a subgraph. Turán's Theorem was later generalized by a result of Erdős and Stone [6] to any graph H with chromatic number $\chi(H)=k \geq 3$. They proved that $e x(n, H)=(1-1 /(k-1)+o(1))\binom{n}{2}$, where $e x(n, H)$ is the maximum number of edges in a graph with n vertices that does not contain a copy of H. The Hajnal-Szemerédi Theorem asserts that a graph with n vertices and minimum degree $n(1-1 / k)$ has a K_{k}-factor, assuming $k \mid n$, where a K_{k}-factor is a set of n / k pairwise vertex-disjoint copies of K_{k}. This result was later generalized by Alon and Yuster [2] who proved that the same result holds asymptotically if $\chi(H)=k$. They proved that a minimum degree of $n(1-1 / k+o(1)) n$ guarantees an H-factor, assuming $\mid V(H) \| n$. The $o(n)$ error term was later improved to a constant depending on H [11]. We see that in these two sets of results, the chromatic number plays the main role, as they show that fixed graphs H with $\chi(H)=k$ asymptotically behave "no worse" than K_{k}.

[^0]In this paper we consider another natural problem of this type: the problem of edge-packing. An (edge) H-packing of a graph G is a set of pairwise edge-disjoint subgraphs of G that are isomorphic to H. The H-packing number of G, denoted by $\nu_{H}(G)$, is the maximum size of an H-packing. Equivalently, one can define $p_{H}(G)$ to be the number of edges covered by the elements of a maximum size H-packing, observing that $p_{H}(G) / \nu_{H}(G)=|E(H)|$. So, in analogy to the above sets of results, we would like to determine the relationship between $\nu_{H}(G)$ and $\nu_{K_{k}}(G)$ for a fixed graph H with $\chi(H)=k$. Optimally, we would expect $p_{H}(H)$ and $p_{K_{k}}(G)$ to be close. Indeed, this is our main result.

Theorem 1.1. Let H be a graph with $\chi(H)=k$ and let $\epsilon>0$. There exists $N=N(H, \epsilon)$ such that for all $n>N$ and for all graph G with n vertices,

$$
\nu_{H}(G) \geq \frac{\binom{k}{2}}{|E(H)|} \nu_{K_{k}}(G)-\epsilon n^{2} .
$$

The main ingredients in the proof of Theorem 1.1 are Szemerédi's regularity lemma [14], and an extension of a result of Haxell and Rödl that relates H-packings with their fractional relaxation [9].

The error term ϵn^{2} in Theorem 1.1 cannot be significantly improved, as can be seen from the following theorem. Let $T(k, q)$ denote the complete k-partite graph with q vertices in each part. Clearly, $\chi(T(k, q))=k$.

Theorem 1.2. For every n, there are graphs G with n vertices such that

$$
\nu_{T(k, q)}(G) \leq \frac{\binom{k}{2}}{|E(T(k, q))|} \nu_{K_{k}}(G)-\Theta\left(n^{2-\frac{k q-2}{\binom{k}{2} q^{2}-1}}\right) .
$$

In particular, Theorem 1.2 shows that for any $\delta>0$, there are graphs H with $\chi(H)=k$ such that for all n sufficiently large, there are graphs G with n vertices for which $p_{H}(G) \leq p_{K_{k}}(G)-n^{2-\delta}$.

Theorem 1.1 has several interesting applications, as there are several known results (and conjectures) in extremal graph theory that guarantee the existence of a large K_{k}-packing. These results can therefore be directly extended to the more general setting of H-packing of graphs with $\chi(H)=k$.

The rest of this paper is organized as follows. In Section 2 we establish the tools that are required for the proof of our theorems. Section 3 contains the proof of Theorem 1.1 and Section 4 contains the proof of Theorem 1.2. Several applications of Theorem 1.1 are given in Section 5.

2 Preliminaries

Let $\binom{G}{H}$ denote the set of copies of a graph H in a graph G. A function ψ from $\binom{G}{H}$ to $[0,1]$ is a fractional H-packing of G if $\sum_{H^{\prime} \in\binom{G}{H}: e \in H^{\prime}} \psi\left(H^{\prime}\right) \leq 1$ for each $e \in E(G)$. For a fractional H-packing ψ, let $w(\psi)=\sum_{H^{\prime} \in\binom{G}{H}} \psi\left(H^{\prime}\right)$. The fractional H-packing number, denoted by $\nu_{H}^{*}(G)$, is the maximum value of $w(\psi)$ ranging over all fractional H-packings ψ. Trivially, $\nu_{H}^{*}(G) \geq \nu_{H}(G)$,
as an H-packing is a special case of a fractional H-packing. An important result of Haxell and Rödl [9] asserts that the converse is also asymptotically true, up to a small error term.

Lemma 2.1. For every $\eta>0$ and every graph H there exists $N_{1}=N_{1}(H, \eta)$ such that for all $n>N_{1}$, if G is a graph with n vertices, then $\nu_{H}^{*}(G)-\nu_{H}(G) \leq \eta n^{2}$.

We assume that the reader is familiar with the statement of Szemerédi's regularity lemma [14], and in particular with the definitions of bipartite density, ϵ-regularity, and equitable partitions, as these are now a standard concepts in Combinatorics. The survey [12] is an excellent source for an overview of the regularity lemma and its applications in graph theory.

Both the results of Haxell and Rödl [9] and of Yuster [16] are based on the following idea. Given a graph H with $|V(H)|=k$ vertices, any sufficiently large graph G has a set of k-partite subgraphs that are pairwise edge-disjoint and have the following property. Each pair of parts in these k-partite subgraphs is ϵ-regular, and if the pair corresponds to an edge of H, then it has edge density very close to some common value δ. Otherwise, its density is zero. Furthermore, if one takes a maximum H-packing in each of these subgraphs, then the sum of their sizes is very close to $\nu_{H}^{*}(G)$.

The statement in the last paragraph is a by-product of the proofs in [9, 16], and is not stated as a separate result in these papers. It will be important for us to state and quantify it accurately as a separate lemma. For simplicity, we state it for the complete graph K_{k}, as this case will be sufficient for the proof of Theorem 1.1.

We require the following definition. Let b and k be positive integers, and let ϵ and δ_{0} be positive reals. We say that a graph P is a $\left(b, k, \delta_{0}, \epsilon\right)$-graph if P is a k-partite graph with b vertices in each part, and each pair of parts induces an ϵ-regular graph with density in the range $\delta \pm \epsilon$ where $\delta \geq \delta_{0}$.

Lemma 2.2. For every $\zeta>0$ and $k \geq 2$ there exist $\delta_{0}=\delta_{0}(\zeta, k)$ and $\Gamma=\Gamma(\zeta, k)$ such that for all $0<\gamma \leq \Gamma$ there exists $N=N(\zeta, k, \gamma)$ and $M=M(\zeta, k, \gamma)$ such that any graph G with $n>N$ vertices has a set \mathcal{P} of pairwise edge-disjoint $\left(b, k, \delta_{0}, \gamma\right)$-graphs with $b \geq n / M$. Furthermore,

$$
\sum_{P \in \mathcal{P}} \nu_{K_{k}}(P) \geq \nu_{K_{k}}^{*}(G)-\zeta n^{2} .
$$

Outline of proof. We outline the proof from [9]. Let δ_{0} and Γ be sufficiently small constants depending only on k and ζ, and let $\gamma \leq \Gamma$. Let M and N be sufficiently large constants depending on ζ, k, γ. For a graph G with $n>N$, let ψ be a fractional K_{k}-packing of G with $w(\psi)=\nu_{K_{k}}^{*}(G)$. We apply the regularity lemma and obtain a $\gamma / 2$-regular partition into m parts V_{1}, \ldots, V_{m} with $1 / \gamma<m<M$, so we may assume that each part has b vertices where $b \geq n / M$. The total contribution to $w(\psi)$ of copies of K_{k} that contain an edge with both endpoints in the same part, or between pair of parts with density smaller than δ_{0}, or between pairs that are not $\gamma / 2$-regular, is easily shown to be at most $\zeta n^{2} / 4$, so we can ignore such bad copies of K_{k}, and call the other copies good.

We next define the "supergraph" S with vertices $\{1, \ldots, m\}$ where vertex i represents V_{i}. An edge $i j$ represents a $\gamma / 2$-regular pair $\left(V_{i}, V_{j}\right)$ with density at least δ_{0}. By scaling down each
weight of a good copy by a factor of n^{2} / m^{2} we obtain a fractional K_{k}-packing ψ^{\prime} of S with $w\left(\psi^{\prime}\right) \geq m^{2} w(\psi) / n^{2}-\zeta m^{2} / 4$. Another important observation in [9] is that one can modify ψ^{\prime} so that each copy H of K_{K} in S for which $\psi^{\prime}(H)>0$ actually has $\psi^{\prime}(H) \geq \delta_{0}$, where after this modification we can still have $w\left(\psi^{\prime}\right) \geq m^{2} w(\psi) / n^{2}-\zeta m^{2} / 2$.

The problem is that the densities between pairs of parts corresponding to an edge $i j \in E(S)$, although guaranteed to be at least δ_{0}, may still vary significantly. To overcome this problem, for each edge $e=i j \in E(S)$, the set of edges of the pair $\left(V_{i}, V_{j}\right)$ is "sliced" into γ-regular graphs with edge sets $E_{i j}(H)$, one for each copy of K_{k} in S with $\psi^{\prime}(H) \geq \delta_{0}$, such that $E_{i j}(H)$ has density $\psi^{\prime}(H)$. Therefore each such copy H of K_{k} in S with vertex set $\left\{i_{1}, \ldots, i_{k}\right\}$ corresponds to a subgraph P_{H} of G with vertex set $V_{i_{1}} \cup \cdots \cup V_{i_{k}}$ and edge set $\cup_{i j \in E(H)} E_{i j}(H)$ where $E_{i j}(H)$ is γ-regular of density $\psi^{\prime}(H)$. In other words, each such P_{H} is a $\left(b, k, \delta_{0}, \gamma\right)$-graph. The γ-regularity of the pairs of parts of P_{H} is then used to show that, in fact, $\nu_{K_{k}}(P)$ absorbs almost all edges of P_{H}, implying that its total value is very close to $\psi^{\prime}(H) n^{2} / m^{2}$. Summing over all H we obtain a value which is larger than $w\left(\psi^{\prime}\right) n^{2} / m^{2}-\zeta n^{2} / 2$. Recalling that $w\left(\psi^{\prime}\right) \geq m^{2} w(\psi) / n^{2}-\zeta m^{2} / 2$, the result now follows.

For an h-partite graph G with parts V_{1}, \ldots, V_{h} and for a graph H with vertices $\left\{w_{1}, \ldots, w_{h}\right\}$, we say that a subgraph H^{\prime} of G is partite-isomorphic to H, if H^{\prime} is isomorphic to H and w_{i} is mapped to a vertex of H^{\prime} in V_{i}. We also need the following lemma from [9], which relies on a result from [4], and which estimates the number of partite-isomorphic subgraphs containing a given edge of a certain h-partite graph. For a graph X, let $e(X)=|E(X)|$.

Lemma 2.3. Let H be a graph with vertices $\left\{w_{1}, \ldots, w_{h}\right\}$ and with r edges. Let real numbers $\lambda>0$ and $\delta_{0}>0$ be given. Then there exists $\gamma=\gamma\left(H, \lambda, \delta_{0}\right)$ such that the following holds. Let R be an h-partite graph with vertex classes V_{1}, \ldots, V_{h} with $\left|V_{i}\right|=b$, satisfying
(i) for each $w_{i} w_{j} \in E(H)$ we have that $\left(V_{i}, V_{j}\right)$ is γ-regular with density in $\delta \pm \gamma$ where $\delta \geq \delta_{0}$,
(ii) for each $w_{i} w_{j} \notin E(H)$ we have that $V_{i} \cup V_{j}$ is an independent set.

Then there exists a subgraph $R^{\prime} \subset R$ with vertex classes $V_{1}^{\prime}, \ldots, V_{h}^{\prime}, V_{i}^{\prime} \subset V_{i}$, and at least $(1-\lambda) e(R)$ edges such that for each edge e of R^{\prime},

$$
\left|c_{H}(e)-\delta^{r-1} b^{h-2}\right|<\lambda \delta^{r-1} b^{h-2}
$$

where $c_{H}(e)$ denotes the number of subgraphs of R^{\prime} containing e which are partite-isomorphic to H in $R^{\prime}\left[V_{1}^{\prime}, \ldots, V_{h}^{\prime}\right]$.

In order to simplify the proof, it will be convenient to prove Theorem 1.1 for the case where H is a balanced complete partite graph. We next show why such an assumption suffices for the proof of Theorem 1.1, when combined with Lemma 2.1. Recall that $T(k, q)$ denotes the complete k-partite graph with q vertices in each part. Suppose H is any graph with $\chi(H)=k$ and $|V(H)|=q$. We may trivially embed a copy of H in $T(k, q)$ (actually, this already holds if q is the size of the largest vertex class in a k-coloring H). However, we note that a stronger property holds.

Lemma 2.4. If $k=\chi(H)$ and $q=|V(H)|$, then $\nu_{H}^{*}(T(k, q))=\binom{k}{2} q^{2} / e(H)$.

Proof. By symmetry, each edge of $T(k, q)$ lies on the same number of copies of H. Denote this number by s. Assigning to each copy of H in $T(k, q)$ the value $1 / s$ defines a valid fractional H-packing, which is also a fractional H-decomposition. Hence, its value is $e(T(k, q)) / e(H)=$ $\binom{k}{2} q^{2} / e(H)$.

A result of Frankl and Rödl [7] on near perfect matchings of uniform hypergraphs will be useful for both the proof of Theorem 1.1 and the proof of Theorem 1.2. Recall that if x, y are two vertices of a hypergraph, then $\operatorname{deg}(x)$ denotes the number of edges that contain x and $\operatorname{deg}(x, y)$ denotes the number of edges that contain both x and y. We use the following extension of a theorem of Frankl and Rödl, proved by Pippenger (see [8]).

Lemma 2.5. For an integer $r \geq 2$ and a real $\beta>0$ there exists $\mu=\mu(r, \beta)>0$ such that: If an r-uniform hypergraph L on t vertices has the following properties for some d :
(i) $(1-\mu) d<\operatorname{deg}(x)<(1+\mu) d$ holds for all vertices,
(ii) $\operatorname{deg}(x, y)<\mu d$ holds for all distinct vertices x and y,
then L has a matching of size at least $(t / r)(1-\beta)$.

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. We first need to prove a slight extension of Lemma 2.3. Let G be a k-partite graph with vertex parts V_{1}, \ldots, V_{k}. A q-blowup of G, denoted by G^{q}, is obtained by cloning each V_{i} precisely q times, to obtain copies $V_{i, 1} \ldots, V_{i, q}$ where each $v \in V_{i}$ has a copy v_{ℓ} in $V_{i, \ell}$. There is an edge of G^{q} between each copy of u and each copy of v if and only if $u v \in E(G)$. Two edges of G^{q} are equivalent if they correspond to the same edge of G. Likewise, two vertices of G^{q} are equivalent if they are clones of the same vertex of G. Each edge of G gives rise to q^{2} equivalent edges of G^{q} and each vertex of G gives rise to q equivalent vertices of G^{q}. Observe that G^{q} is an h-partite graph where $h=k q$, having $|V(G)| q$ vertices and $e(G) q^{2}$ edges.

Lemma 3.1. If the h-partite graph R of Lemma 2.3 is a q-blowup of some k-partite graph P (namely $R=P^{q}$), then the subgraph R^{\prime} of R obtained by the lemma has the property that $e \in E\left(R^{\prime}\right)$ if and only if all q^{2} edges of R that are equivalent to e are also in $E\left(R^{\prime}\right)$. Likewise, $v \in V\left(R^{\prime}\right)$ if and only if all q vertices of R that are equivalent to v are also in $V\left(R^{\prime}\right)$.

Proof. Lemma 2.3 states that the set of edges $E\left(R^{\prime}\right)$ is obtained by removing a set E^{\prime} of at most $\lambda e(R)$ edges of R. The proof of Lemma 2.3 constructs the set E^{\prime} of removed edges in two stages. In the first stage, one actually deletes vertices from V_{i} to obtain the subset V_{i}^{\prime}. The deleted vertices $V_{i} \backslash V_{i}^{\prime}$ are decided upon only by examining the neighborhood of a vertex. Hence, all q vertices of R that are clones of the same original vertex of P are either all deleted or otherwise all are not deleted. Hence, the first set of removed edges (namely, those edges that are incident to the removed vertices $\cup_{i=1}^{h} V_{i} \backslash V_{i}^{\prime}$) has the property that if an edge is removed then all q^{2} edges equivalent to it are also removed. In the second stage, the set of removed edges are what are classified as bad edges. Again, the definition of a bad edge $x y$ in the proof of Lemma 2.3 is only a function of the common
neighborhoods of x and y. Since two equivalent edges have isomorphic common neighborhoods, an edge $x y$ is bad if and only if all edges equivalent to $x y$ are also bad.

For a q-blowup graph $R=P^{q}$, we say that a subgraph of R is pure if it contains precisely one vertex from each vertex class of R and it does not contain two equivalent vertices. Observe that a pure subgraph of R corresponds uniquely to a subgraph of P containing precisely q vertices in each vertex class of P.

Lemma 3.2. Suppose that a k-partite graph P contains c distinct copies of $T(k, q)$. Then P^{q} contains $c(q!)^{k}$ distinct pure copies of $T(k, q)$. Furthermore, if $e \in E(P)$ belongs to $c(e)$ distinct copies of $T(k, q)$ then each of the q^{2} clones of e in P^{q} belongs to $c(e)(q!)^{k} / q^{2}$ distinct pure copies of $T(k, q)$.

Proof. Let V_{1}, \ldots, V_{k} denote the partite classes of P. Suppose that H is a copy of $T(k, q)$ in P. Observe that H is uniquely defined by k subsets W_{1}, \ldots, W_{k} with $\left|W_{i}\right|=q$ and $W_{i} \subset V_{i}$. Consider the partite sets of P^{q} denoted by $V_{i, \ell}$ for $i=1, \ldots, k$ and $\ell=1, \ldots, q$. A pure copy of $T(k, q)$ in P^{q} that corresponds to H selects from each of $V_{i, 1}, \ldots, V_{i, q}$ a unique clone of a vertex from W_{i}. As there are precisely q ! ways to select these clones, and as this holds for all $i=1, \ldots, k$, there are precisely $(q!)^{k}$ copies that correspond to H. Hence there are $c(q!)^{k}$ distinct pure copies of $T(k, q)$. For the second part, suppose that $e \in E(P)$ and let H be a copy of $T(k, q)$ in P that contains e. Each clone of e (recall that there are q^{2} such clones) corresponds to a $1 / q^{2}$ fraction of the pure copies of $T(k, q)$ in P^{k} that correspond to H, since each such copy contains a unique clone of e.

We restate Theorem 1.1 for the special case where $H=T(k, q)$ and then obtain Theorem 1.1 as a corollary.
Theorem 3.3. For integers $q \geq 1, k \geq 2$ and for $\epsilon>0$ there exists $N=N(k, q, \epsilon)$ such that for all $n>N$, if G is a graph with n vertices, then

$$
\nu_{T(k, q)}(G) \geq \frac{1}{q^{2}} \nu_{K_{k}}(G)-\epsilon n^{2} .
$$

Proof of Theorem 1.1. Let H be a graph with $\chi(H)=k$ and let $\epsilon>0$. Let $\eta=\epsilon / 2$ and $N_{1}=N_{1}(H, \eta)$ be the constants from Lemma 2.1. Let $q=|V(H)|$ and let $N=N(k, q, \epsilon / 2)$ be the constant from Theorem 3.3. Observe also the trivial fact that $\nu_{H}^{*}(G) \geq \nu_{H}^{*}(Q) \nu_{Q}(G)$ for any graph Q. We therefore have by Lemmas 2.1, 2.4, and Theorem 3.3 that for all $n>\max \left\{N, N_{1}\right\}$,

$$
\begin{aligned}
\nu_{H}(G) & \geq \nu_{H}^{*}(G)-\frac{\epsilon}{2} n^{2} \\
& \geq \nu_{H}^{*}(T(k, q)) \nu_{T(k, q)}(G)-\frac{\epsilon}{2} n^{2} \\
& =\frac{\binom{k}{2} q^{2}}{e(H)} \nu_{T(k, q)}(G)-\frac{\epsilon}{2} n^{2} \\
& \geq \frac{\binom{k}{2} q^{2}}{e(H)} \cdot \frac{1}{q^{2}} \nu_{K_{k}}(G)-\frac{\epsilon}{2} n^{2}-\frac{\epsilon}{2} n^{2} \\
& =\frac{\binom{k}{2}}{e(H)} \nu_{K_{k}}(G)-\epsilon n^{2} .
\end{aligned}
$$

Proof of Theorem 3.3. We start be setting some constants that are functions of the given constants k, q, ϵ.

1. Let $h=k q$ and $r=\binom{k}{2} q^{2}$ denote the number of vertices and the number of edges of $T(k, q)$.
2. Let $\zeta=\epsilon / 2$ and $\beta=\epsilon / 8$.
3. Let $\mu=\mu(r, \beta)$ be the constant from Lemma 2.5.
4. Let $\lambda=\min \{\mu / 2, \epsilon / 8\}$.
5. Let $\delta_{0}=\delta_{0}(\zeta, k)$ and $\Gamma=\Gamma(\zeta, k)$ be the constants from Lemma 2.2.
6. Let $\gamma=\min \left\{\Gamma, \delta_{0} / 2, \gamma\left(T(k, q), \lambda, \delta_{0}\right)\right\}$ where $\gamma\left(T(k, q), \lambda, \delta_{0}\right)$ is the constant from Lemma 2.3.
7. Let $M=M(\zeta, k, \gamma)$ and $N=\max \left\{N(\zeta, k, \gamma), \frac{k q^{2} M}{\lambda \delta_{0}^{r-1}}, \frac{(q!)^{k} M}{q^{2} \delta_{0}^{r-1} \mu}\right\}$ where $N(\zeta, k, \gamma)$ and $M=$ $M(\zeta, k, \gamma)$ are the constants from Lemma 2.2.

Suppose that G is a graph with $n>N$ vertices. We apply Lemma 2.2 and obtain a set \mathcal{P} of pairwise edge-disjoint $\left(b, k, \delta_{0}, \gamma\right)$-graphs of G with $b \geq n / M$, and which satisfy the statement of Lemma 2.2.

For $P \in \mathcal{P}$ consider $R=P^{q}$, the q-blowup of P. We claim that R satisfies the conditions of Lemma 2.3 for the case $H=T(k, q)$ in that lemma. For convenience, denote the vertex classes of P by V_{1}, \ldots, V_{k}. Denote the vertices of $T(k, q)$ belonging to the i 'th vertex class by $w_{i, 1}, \ldots, w_{i, q}$. Denote the vertex classes of R by $V_{i, \ell}$ for $i=1, \ldots, k$ and $\ell=1, \ldots, q$. Now, there are no edges between $V_{i, \ell}$ and $V_{i, \ell^{\prime}}$ but this is fine since $w_{i, \ell}$ and $w_{i, \ell^{\prime}}$ are not adjacent in $T(k, q)$. On the other hand, the bipartite subgraph induced by $V_{i, \ell}$ and $V_{j, \ell^{\prime}}$ for $i \neq j$ is isomorphic to the bipartite subgraph induced by V_{i} and V_{j} which, by the fact that P is a $\left(b, k, \delta_{0}, \gamma\right)$-graph, means that it is γ-regular with density in $\delta \pm \gamma$ for some $\delta \geq \delta_{0}$. This is also fine since $w_{i, \ell}$ and $w_{j, \ell^{\prime}}$ are adjacent in $T(k, q)$.

By Lemma 2.3 there exists a subgraph $R^{\prime} \subset R$ with vertex classes $V_{i, \ell}^{\prime} \subset V_{i, \ell}$, and at least $(1-\lambda) e(R)$ edges such that for each edge e of R^{\prime},

$$
\begin{equation*}
\left|c^{\prime}(e)-\delta^{r-1} b^{h-2}\right|<\lambda \delta^{r-1} b^{h-2} \tag{1}
\end{equation*}
$$

where $c^{\prime}(e)$ denotes the number of subgraphs of R^{\prime} containing e which are partite-isomorphic to $T(k, q)$ in R^{\prime}. As R is a q-blowup, we have that by Lemma $3.1, R^{\prime}$ is also a q-blowup and $R^{\prime}=\left(P^{\prime}\right)^{q}$ where P^{\prime} is a subgraph of P, and

$$
\begin{equation*}
e\left(P^{\prime}\right)=\frac{e\left(R^{\prime}\right)}{q^{2}} \geq(1-\lambda) \frac{e(R)}{q^{2}}=(1-\lambda) e(P) \tag{2}
\end{equation*}
$$

What we are really interested in is the number of copies of $T(k, q)$ in P^{\prime} that contain a given edge. The problem is that (1) estimates the total number of partite isomorphic copies of $T(k, q)$
that contain e, including the non-pure copies. So, let us estimate the number of non-pure partite isomorphic copies of $T(k, q)$ containing a given edge of R. Assume, without loss of generality, that $e \in E(R)$ and $e=x y$ with $x \in V_{1,1}$ and $y \in V_{2,1}$. A non-pure copy selects (at least) two equivalent vertices. Namely, for some, i, and for some ℓ and ℓ^{\prime}, the copy contain two equivalent vertices, one from $V_{i, \ell}$ and one from $V_{i, \ell^{\prime}}$. There are k choices for i and $\binom{q}{2}$ choices for ℓ and ℓ^{\prime}. Observe that once we have chosen the vertex from $V_{i, \ell}$, its equivalent vertex from $V_{i, \ell^{\prime}}$ is determined. Hence, the number of non-pure copies of $T(k, q)$ containing a given edge is trivially at most $k\binom{q}{2} b^{h-3}$. Thus, using (1), if $c(e)$ denotes the number of pure copies of $T(k, q)$ in R^{\prime} that contain e, we have that

$$
\left|c(e)-\delta^{r-1} b^{h-2}\right|<\lambda \delta^{r-1} b^{h-2}+k\binom{q}{2} b^{h-3} \leq 2 \lambda \delta^{r-1} b^{h-2}
$$

where in the last inequality we have used the fact than $b \geq n / M \geq k q^{2} /\left(\lambda \delta_{0}^{r-1}\right)$. By Lemma 3.2 we have that for $e \in P^{\prime}$, if $c(e)$ is the number of copies of $T(k, q)$ in P^{\prime} that contain e, then

$$
\begin{equation*}
\left|c(e)-\frac{q^{2}}{(q!)^{k}} \delta^{r-1} b^{h-2}\right|<2 \lambda \frac{q^{2}}{(q!)^{k}} \delta^{r-1} b^{h-2} \tag{3}
\end{equation*}
$$

We construct an r-uniform hypergraph L as follows. The vertices of L are the edges of P^{\prime}. Hence L has $t=e\left(P^{\prime}\right)$ vertices. The edges of L correspond to the edge sets of copies of $T(k, q)$ in P^{\prime}. Observe that L is indeed r-uniform and the degree of a vertex $e \in V(L)$ is $c(e)$. Observe that by setting $d=\frac{q^{2}}{(q!)^{k}} \delta^{r-1} b^{h-2}$ and since $\mu \geq 2 \lambda$, equation (3) shows that L satisfies the first condition of Lemma 2.5. We need to show that the second condition also holds. For two edges of P^{\prime}, the number of copies of $T(k, q)$ containing both of them is trivially at most b^{h-3} which is smaller than μd, since $b>n / M \geq(q!)^{k} /\left(q^{2} \delta_{0}^{r-1} \mu\right)$. If follows from Lemma 2.5 that P^{\prime} contains at least $(t / r)(1-\beta)$ edge-disjoint copies of $T(k, q)$. By (2) we therefore have that

$$
\nu_{T(k, q)}(P) \geq(1-\beta) \frac{e\left(P^{\prime}\right)}{r} \geq(1-\beta)(1-\lambda) \frac{e(P)}{r}
$$

Altogether we obtain

$$
\begin{aligned}
\nu_{K_{k}}^{*}(G) & \leq \sum_{P \in \mathcal{P}} \nu_{K_{k}}(P)+\zeta n^{2} \\
& \leq \sum_{P \in \mathcal{P}} \frac{e(P)}{\binom{k}{2}}+\zeta n^{2} \\
& \leq \frac{r}{(1-\beta)(1-\lambda)\binom{k}{2}} \sum_{P \in \mathcal{P}} \nu_{T(k, q)}(P)+\zeta n^{2} \\
& =\frac{q^{2}}{(1-\beta)(1-\lambda)} \sum_{P \in \mathcal{P}} \nu_{T(k, q)}(P)+\zeta n^{2} \\
& \leq q^{2} \sum_{P \in \mathcal{P}} \nu_{T(k, q)}(P)+(2 \beta+2 \lambda) q^{2} \sum_{P \in \mathcal{P}} \nu_{T(k, q)}(P)+\zeta n^{2} \\
& \leq q^{2} \sum_{P \in \mathcal{P}} \nu_{T(k, q)}(P)+(2 \beta+2 \lambda) n^{2}+\zeta n^{2} \\
& \leq q^{2} \sum_{P \in \mathcal{P}} \nu_{T(k, q)}(P)+q^{2} \epsilon n^{2}
\end{aligned}
$$

It follows from the last inequality that

$$
\nu_{T(k, q)}(G) \geq \sum_{P \in \mathcal{P}} \nu_{T(k, q)}(P) \geq \frac{1}{q^{2}} \nu_{K_{k}}^{*}(G)-\epsilon n^{2} \geq \frac{1}{q^{2}} \nu_{K_{k}}(G)-\epsilon n^{2} .
$$

4 Lower bound

Proof of Theorem 1.2. Let c be some small absolute constant. We show that the random graph $G=G(n, p)$ with

$$
p=c n^{-\frac{k q-2}{\left(\frac{k}{2}\right)^{2} q^{2}-1}}
$$

satisfies the stated claim with high probability. Let

$$
z=n^{2-\frac{k q-2}{\left(\begin{array}{c}
\kappa
\end{array}\right) q^{2}-1}} .
$$

As $T(k, q)$ has $k q$ vertices and $\binom{k}{2} q^{2}$ edges, the expected number of copies of $T(k, q)$ in G is less than

$$
\left.n^{k q} p^{k} \begin{array}{c}
k \\
2
\end{array}\right) q^{2}=c^{\binom{k}{2} q^{2}} z .
$$

On the other hand, the expected number of edges of G is

$$
p\binom{n}{2} \approx \frac{c}{2} z .
$$

Since the number of edges is a binomial random variable, highly concentrated around its expectation, we obtain that for a sufficiently small c, with probability at least, say, $2 / 3$, any packing of G with edge-disjoint copies of $T(k, q)$ leaves at least $(c / 6) z$ edges uncovered.

On the other hand, we will show that with probability at least, say, $2 / 3$, a maximum packing of G with edge-disjoint copies of K_{k} covers all but at most $(c / 10) z$ edges, thereby proving the existence of an n-vertex graph G for which $p_{T(k, q)}(G) \leq p_{K_{k}}(G)-\Theta(z)$, as required.

For $\beta=0.1$ and $r=\binom{k}{2}$, and let $\mu=\mu(r, \beta)$ be the constant from Lemma 2.5. Consider the r-uniform hypergraph whose vertices are the edges of G and whose edges are the copies of K_{k} in G. For an edge $e \in E(G)$, $\operatorname{deg}(e)$ denotes the number of copies of K_{k} that contain e, and for a pair of edges $e, f \in E(G)$, $\operatorname{deg}(e, f)$ denote the number of copies of K_{k} that contain both of e and f. Given that e is an edge of G, the expectation of $\operatorname{deg}(e)$ is

$$
d=\binom{n-2}{k-2} p^{\binom{k}{2}-1} .
$$

A standard application of the second moment method (see, [1], Chapter 4) shows that $\operatorname{deg}(e)$ is concentrated around its expectation d, so that for any $\mu>0$, if n is sufficiently large, $|\operatorname{deg}(e)-d| \leq$ μd holds with high probability for all edges of G. On the other hand, we trivially have $\operatorname{deg}(e, f) \leq \mu d$
for all n sufficiently large. Hence, by Lemma 2.5 , with high probability, a maximum K_{k}-packing of G covers all but a β-fraction of the edges. As with high probability we also have that the number of edges of G is very close to $(c / 2) z$, we are guaranteed that with high probability, the number of uncovered edges in an maximum K_{k}-packing is at most $(c / 10) z$, as claimed.

5 Applications

For a graph H and for positive integers r and n, let $f(H, r, n)$ denote the least integer t such than in any r-coloring of the edges of K_{n}, there are t pairwise edge-disjoint monochromatic copies of H.

Corollary 5.1. If H be a fixed graph with $\chi(H)=k$ then

$$
f(H, r, n) \geq f\left(K_{k}, r, n\right) \frac{\binom{k}{2}}{e(H)}\left(1-o_{n}(1)\right) .
$$

Furthermore, if $\chi(H)=3$, then $f(H, 2, n) \geq \frac{3 n^{2}}{13 e(H)}$ for all n sufficiently large.
Proof. First observe that $f\left(K_{k}, r, n\right)=\Theta\left(n^{2}\right)$ is an immediate consequence of Ramsey's Theorem, so it suffices to prove that $f(H, r, n) \geq f\left(K_{k}, r, n\right)\binom{k}{2} / e(H)-o\left(n^{2}\right)$. Indeed, consider a maximum packing of monochromatic copies of K_{k} in a given r-coloring of the edges of K_{n}. Suppose the packing contains t_{i} copies of K_{k} with color i for $i=1, \ldots, r$. Then, by definition, $\sum_{i=1}^{r} t_{i} \geq f\left(K_{k}, r, n\right)$. We can also view the edges with color i as a graph G_{i} with n vertices, and clearly $t_{i}=\nu_{K_{k}}\left(G_{i}\right)$. Applying Theorem 1.1 to each G_{i} separately yields a packing with edge disjoint monochromatic copies of H of total size at least

$$
\sum_{i=1}^{r}\left(t_{i} \frac{\binom{k}{2}}{e(H)}-o\left(n^{2}\right)\right) \geq f\left(K_{k}, r, n\right) \frac{\binom{k}{2}}{e(H)}-o\left(n^{2}\right)
$$

The second part of the corollary follows from a result of Keevash and Sudakov [10] who proved that $f\left(K_{3}, 2, n\right) \geq n^{2} / 12.9$ for all n sufficiently large.

We note that a conjecture of Erdős (see [5]) states that $f\left(K_{3}, 2, n\right) \geq n^{2} / 12-o\left(n^{2}\right)$. This conjecture may now be appropriately generalized to any fixed graph H with $\chi(H)=3$.

It seems reasonable that if a graph has large minimum degree, then it has a large H-packing, covering almost all the edges. Indeed, this has been proved by the author for the case of $H=K_{k}$ and can now be proved for all k-chromatic graphs.

Corollary 5.2. If H be a fixed graph with $\chi(H)=k$, then any graph with n vertices and minimum degree at least $n\left(1-1 / 9 k^{10}\right)$ has an H-packing which covers all but o $\left(n^{2}\right)$ edges.

Proof. The proof follows directly from Theorem 1.1 and from the result from [15] for the case $H=K_{k}$.

A longstanding conjecture of Nash-Williams [13] asserts that if a graph has minimum degree $3 n / 4$ then it has a packing of edge-disjoint triangles covering all but $o\left(n^{2}\right)$ edges. In fact, the conjecture is sharper as it states that if, in addition, all the degrees are even and the number of edges is divisible by 3 , then all edges can be covered (namely, a triangle decomposition exists). The $3 / 4$-fraction for the minimum degree requirement is essential, as there is a construction showing that it cannot be replaced by a smaller constant. Clearly, Theorem 1.1 can be used to generalize the conjecture of Nash-Williams to any fixed 3 -chromatic graph. The following conjecture is yet a further generalization as it also considers the case where the minimum degree is smaller than $3 n / 4$.

Conjecture 5.3. For any $1 \geq \alpha \geq 0$, and any fixed graph H with $\chi(H)=3$, if a graph G with n vertices has minimum degree at least $n / 2+\alpha n / 4$, then it contains an H-packing which covers all but at most $(1-\alpha) n^{2} / 4+o\left(n^{2}\right)$ edges.

Theorem 1.1 shows that it suffices to prove Conjecture 1.1 for the case $H=K_{3}$. We next show that, if true, Conjecture 5.3 is optimal, in the sense that the constant $(1-\alpha) / 4$ cannot be replaced with a smaller one. Let R be any graph with $n / 4$ vertices which is $\alpha n / 4$-regular. Let $R_{1}, R_{2}, R_{3}, R_{4}$ denote four disjoint copies of R. Add all $n^{2} / 16$ edges between R_{i} and R_{i+1} for $i=1,2,3$ as well as between R_{1} and R_{4}. The constructed graph G has n vertices and is ($n / 2+\alpha n / 4$)-regular. Any triangle of G must contain at least one edge with both endpoints in R_{i} for some i. Hence, a maximum triangle packing contains at most $4 e(R)$ triangles, so $\nu_{K_{3}}(G) \leq \alpha n^{2} / 8$. As $e(G)=\alpha n^{2} / 8+n^{2} / 4$ it follows that a maximum triangle packing fails to cover at least $\alpha n^{2} / 8+n^{2} / 4-3 \alpha n^{2} / 8=(1-\alpha) n^{2} / 4$ edges.

Acknowledgment

I thank the referee for some useful comments.

References

[1] N. Alon and J.H. Spencer. The probabilistic method. Wiley-Interscience, 2000.
[2] N. Alon and R. Yuster. H-factors in dense graphs. Journal of Combinatorial Theory-Series B, 66(2):269-282, 1996.
[3] B. Bollobás. Extremal Graph Theory. Academic Press, 1978.
[4] R.A. Duke, H. Lefmann, and V. Rödl. A fast approximation algorithm for computing the frequencies of subgraphs in a given graph. SIAM Journal on Computing, 24:598, 1995.
[5] P. Erdős. Some recent problems and results in graph theory. Discrete Mathematics, 164(1-3):81-85, 1997.
[6] P. Erdős and A.H. Stone. On the structure of linear graphs. Bulletin of the American. Mathematical Society, 52:1087-1091, 1946.
[7] P. Frankl and V. Rödl. Near perfect coverings in graphs and hypergraphs. European Journal of Combinatorics, 6:317-326, 1985.
[8] Z. Füredi. Matchings and covers in hypergraphs. Graphs and Combinatorics, 4(1):115-206, 1988.
[9] P.E. Haxell and V. Rödl. Integer and fractional packings in dense graphs. Combinatorica, 21(1):13-38, 2001.
[10] P. Keevash and B. Sudakov. Packing triangles in a graph and its complement. Journal of Graph Theory, 47(3):203-216, 2004.
[11] J. Komlós, G. Sárközy, and E. Szemerédi. Proof of the Alon-Yuster conjecture. Discrete Mathematics, 235(1-3):255-269, 2001.
[12] J. Komlós and M. Simonovits. Szemerédi's regularity lemma and its applications in graph theory. In Combinatorics, Paul Erdős is eighty, volume 2, pages 295-352. Bolyai Soc. Math. Stud, 1996.
[13] C.S.J.A. Nash-Williams. An unsolved problem concerning decomposition of graphs into triangles. In P. Erdős, P. Rényi, and V.T. Sós, editors, Combinatorial Theory and its Applications, volume 3, pages 1179-1183. North Holland, 1970.
[14] E. Szemerédi. Regular partitions of graphs. In Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq. Internat. CNRS, pages 399-401. CNRS, Paris, 1978.
[15] R. Yuster. Asymptotically optimal K_{k}-packings of dense graphs via fractional K_{k} decompositions. Journal of Combinatorial Theory Series B, 95(1):1-11, 2005.
[16] R. Yuster. Integer and fractional packing of families of graphs. Random Structures and Algorithms, 26(1-2):110-118, 2005.

[^0]: *Department of Mathematics, University of Haifa, Haifa 31905, Israel.
 E-mail: raphy@math.haifa.ac.il

