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Abstract

For graphs H and G, let pH(G) denote the maximum number of edges covered by a set of

edge-disjoint copies of H in G. We prove that if H is k-chromatic, then pH(G) ≥ pKk
(G) −

o(|V (G)|2). The error term cannot be improved much, as for any δ > 0 there are graphs H with

χ(H) = k such that for all n sufficiently large, there are graphs G with n vertices for which

pH(G) ≤ pKk
(G)−n2−δ. We present several applications of this result in extremal graph theory.
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1 Introduction

All graphs considered here are finite, undirected, and simple. For standard graph-theoretic termi-

nology the reader is referred to [3].

Finding sufficient conditions for the existence of copies of a given graph H as a subgraph of

some larger graph lies at the heart of extremal graph theory. Many of the classical results that

consider the case H = Kk were subsequently generalized to hold for arbitrary H. We recall two

sets of results where this has occurred.

Turán’s Theorem asserts that a graph that has more edges than any complete (k − 1)-partite

graph with the same amount of vertices must contain Kk as a subgraph. Turán’s Theorem was later

generalized by a result of Erdős and Stone [6] to any graph H with chromatic number χ(H) = k ≥ 3.

They proved that ex(n,H) = (1 − 1/(k − 1) + o(1))
(n
2

)
, where ex(n,H) is the maximum number

of edges in a graph with n vertices that does not contain a copy of H. The Hajnal-Szemerédi

Theorem asserts that a graph with n vertices and minimum degree n(1 − 1/k) has a Kk-factor,

assuming k|n, where a Kk-factor is a set of n/k pairwise vertex-disjoint copies of Kk. This result

was later generalized by Alon and Yuster [2] who proved that the same result holds asymptotically

if χ(H) = k. They proved that a minimum degree of n(1 − 1/k + o(1))n guarantees an H-factor,

assuming |V (H)||n. The o(n) error term was later improved to a constant depending on H [11].

We see that in these two sets of results, the chromatic number plays the main role, as they show

that fixed graphs H with χ(H) = k asymptotically behave “no worse” than Kk.
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In this paper we consider another natural problem of this type: the problem of edge-packing.

An (edge) H-packing of a graph G is a set of pairwise edge-disjoint subgraphs of G that are

isomorphic to H. The H-packing number of G, denoted by νH(G), is the maximum size of an

H-packing. Equivalently, one can define pH(G) to be the number of edges covered by the elements

of a maximum size H-packing, observing that pH(G)/νH(G) = |E(H)|. So, in analogy to the above

sets of results, we would like to determine the relationship between νH(G) and νKk
(G) for a fixed

graph H with χ(H) = k. Optimally, we would expect pH(H) and pKk
(G) to be close. Indeed, this

is our main result.

Theorem 1.1. Let H be a graph with χ(H) = k and let ε > 0. There exists N = N(H, ε) such

that for all n > N and for all graph G with n vertices,

νH(G) ≥
(k
2

)
|E(H)|

νKk
(G)− εn2 .

The main ingredients in the proof of Theorem 1.1 are Szemerédi’s regularity lemma [14], and

an extension of a result of Haxell and Rödl that relates H-packings with their fractional relaxation

[9].

The error term εn2 in Theorem 1.1 cannot be significantly improved, as can be seen from the

following theorem. Let T (k, q) denote the complete k-partite graph with q vertices in each part.

Clearly, χ(T (k, q)) = k.

Theorem 1.2. For every n, there are graphs G with n vertices such that

νT (k,q)(G) ≤
(k
2

)
|E(T (k, q))|

νKk
(G)−Θ

(
n
2− kq−2

(k2)q2−1

)
.

In particular, Theorem 1.2 shows that for any δ > 0, there are graphs H with χ(H) = k such

that for all n sufficiently large, there are graphs G with n vertices for which pH(G) ≤ pKk
(G)−n2−δ.

Theorem 1.1 has several interesting applications, as there are several known results (and con-

jectures) in extremal graph theory that guarantee the existence of a large Kk-packing. These

results can therefore be directly extended to the more general setting of H-packing of graphs with

χ(H) = k.

The rest of this paper is organized as follows. In Section 2 we establish the tools that are

required for the proof of our theorems. Section 3 contains the proof of Theorem 1.1 and Section 4

contains the proof of Theorem 1.2. Several applications of Theorem 1.1 are given in Section 5.

2 Preliminaries

Let
(G
H

)
denote the set of copies of a graph H in a graph G. A function ψ from

(G
H

)
to [0, 1]

is a fractional H-packing of G if
∑
H′∈(G

H) : e∈H′ ψ(H ′) ≤ 1 for each e ∈ E(G). For a fractional

H-packing ψ, let w(ψ) =
∑
H′∈(G

H) ψ(H ′). The fractional H-packing number, denoted by ν∗H(G), is

the maximum value of w(ψ) ranging over all fractional H-packings ψ. Trivially, ν∗H(G) ≥ νH(G),

2



as an H-packing is a special case of a fractional H-packing. An important result of Haxell and

Rödl [9] asserts that the converse is also asymptotically true, up to a small error term.

Lemma 2.1. For every η > 0 and every graph H there exists N1 = N1(H, η) such that for all

n > N1, if G is a graph with n vertices, then ν∗H(G)− νH(G) ≤ ηn2.

We assume that the reader is familiar with the statement of Szemerédi’s regularity lemma [14],

and in particular with the definitions of bipartite density, ε-regularity, and equitable partitions, as

these are now a standard concepts in Combinatorics. The survey [12] is an excellent source for an

overview of the regularity lemma and its applications in graph theory.

Both the results of Haxell and Rödl [9] and of Yuster [16] are based on the following idea.

Given a graph H with |V (H)| = k vertices, any sufficiently large graph G has a set of k-partite

subgraphs that are pairwise edge-disjoint and have the following property. Each pair of parts in

these k-partite subgraphs is ε-regular, and if the pair corresponds to an edge of H, then it has edge

density very close to some common value δ. Otherwise, its density is zero. Furthermore, if one

takes a maximum H-packing in each of these subgraphs, then the sum of their sizes is very close

to ν∗H(G).

The statement in the last paragraph is a by-product of the proofs in [9, 16], and is not stated

as a separate result in these papers. It will be important for us to state and quantify it accurately

as a separate lemma. For simplicity, we state it for the complete graph Kk, as this case will be

sufficient for the proof of Theorem 1.1.

We require the following definition. Let b and k be positive integers, and let ε and δ0 be positive

reals. We say that a graph P is a (b, k, δ0, ε)-graph if P is a k-partite graph with b vertices in each

part, and each pair of parts induces an ε-regular graph with density in the range δ±ε where δ ≥ δ0.

Lemma 2.2. For every ζ > 0 and k ≥ 2 there exist δ0 = δ0(ζ, k) and Γ = Γ(ζ, k) such that for

all 0 < γ ≤ Γ there exists N = N(ζ, k, γ) and M = M(ζ, k, γ) such that any graph G with n > N

vertices has a set P of pairwise edge-disjoint (b, k, δ0, γ)-graphs with b ≥ n/M . Furthermore,∑
P∈P

νKk
(P ) ≥ ν∗Kk

(G)− ζn2 .

Outline of proof. We outline the proof from [9]. Let δ0 and Γ be sufficiently small constants

depending only on k and ζ, and let γ ≤ Γ. Let M and N be sufficiently large constants depending

on ζ, k, γ. For a graph G with n > N , let ψ be a fractional Kk-packing of G with w(ψ) = ν∗Kk
(G).

We apply the regularity lemma and obtain a γ/2-regular partition into m parts V1, . . . , Vm with

1/γ < m < M , so we may assume that each part has b vertices where b ≥ n/M . The total

contribution to w(ψ) of copies of Kk that contain an edge with both endpoints in the same part,

or between pair of parts with density smaller than δ0, or between pairs that are not γ/2-regular,

is easily shown to be at most ζn2/4, so we can ignore such bad copies of Kk, and call the other

copies good.

We next define the “supergraph” S with vertices {1, . . . ,m} where vertex i represents Vi. An

edge ij represents a γ/2-regular pair (Vi, Vj) with density at least δ0. By scaling down each

3



weight of a good copy by a factor of n2/m2 we obtain a fractional Kk-packing ψ′ of S with

w(ψ′) ≥ m2w(ψ)/n2 − ζm2/4. Another important observation in [9] is that one can modify ψ′

so that each copy H of KK in S for which ψ′(H) > 0 actually has ψ′(H) ≥ δ0, where after this

modification we can still have w(ψ′) ≥ m2w(ψ)/n2 − ζm2/2.

The problem is that the densities between pairs of parts corresponding to an edge ij ∈ E(S),

although guaranteed to be at least δ0, may still vary significantly. To overcome this problem, for

each edge e = ij ∈ E(S), the set of edges of the pair (Vi, Vj) is “sliced” into γ-regular graphs

with edge sets Eij(H), one for each copy of Kk in S with ψ′(H) ≥ δ0, such that Eij(H) has

density ψ′(H). Therefore each such copy H of Kk in S with vertex set {i1, . . . , ik} corresponds to

a subgraph PH of G with vertex set Vi1 ∪ · · · ∪ Vik and edge set ∪ij∈E(H)Eij(H) where Eij(H) is

γ-regular of density ψ′(H). In other words, each such PH is a (b, k, δ0, γ)-graph. The γ-regularity

of the pairs of parts of PH is then used to show that, in fact, νKk
(P ) absorbs almost all edges of

PH , implying that its total value is very close to ψ′(H)n2/m2. Summing over all H we obtain a

value which is larger than w(ψ′)n2/m2 − ζn2/2. Recalling that w(ψ′) ≥ m2w(ψ)/n2 − ζm2/2, the

result now follows.

For an h-partite graph G with parts V1, . . . , Vh and for a graph H with vertices {w1, . . . , wh},
we say that a subgraph H ′ of G is partite-isomorphic to H, if H ′ is isomorphic to H and wi is

mapped to a vertex of H ′ in Vi. We also need the following lemma from [9], which relies on a result

from [4], and which estimates the number of partite-isomorphic subgraphs containing a given edge

of a certain h-partite graph. For a graph X, let e(X) = |E(X)|.

Lemma 2.3. Let H be a graph with vertices {w1, . . . , wh} and with r edges. Let real numbers λ > 0

and δ0 > 0 be given. Then there exists γ = γ(H,λ, δ0) such that the following holds. Let R be an

h-partite graph with vertex classes V1, . . . , Vh with |Vi| = b, satisfying

(i) for each wiwj ∈ E(H) we have that (Vi, Vj) is γ-regular with density in δ ± γ where δ ≥ δ0,

(ii) for each wiwj /∈ E(H) we have that Vi ∪ Vj is an independent set.

Then there exists a subgraph R′ ⊂ R with vertex classes V ′1 , . . . , V
′
h, V ′i ⊂ Vi, and at least (1−λ)e(R)

edges such that for each edge e of R′,

|cH(e)− δr−1bh−2| < λδr−1bh−2,

where cH(e) denotes the number of subgraphs of R′ containing e which are partite-isomorphic to H

in R′[V ′1 , . . . , V
′
h].

In order to simplify the proof, it will be convenient to prove Theorem 1.1 for the case where H is

a balanced complete partite graph. We next show why such an assumption suffices for the proof of

Theorem 1.1, when combined with Lemma 2.1. Recall that T (k, q) denotes the complete k-partite

graph with q vertices in each part. Suppose H is any graph with χ(H) = k and |V (H)| = q. We

may trivially embed a copy of H in T (k, q) (actually, this already holds if q is the size of the largest

vertex class in a k-coloring H). However, we note that a stronger property holds.

Lemma 2.4. If k = χ(H) and q = |V (H)|, then ν∗H(T (k, q)) =
(k
2

)
q2/e(H).
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Proof. By symmetry, each edge of T (k, q) lies on the same number of copies of H. Denote this

number by s. Assigning to each copy of H in T (k, q) the value 1/s defines a valid fractional

H-packing, which is also a fractional H-decomposition. Hence, its value is e(T (k, q))/e(H) =(k
2

)
q2/e(H).

A result of Frankl and Rödl [7] on near perfect matchings of uniform hypergraphs will be useful

for both the proof of Theorem 1.1 and the proof of Theorem 1.2. Recall that if x, y are two vertices

of a hypergraph, then deg(x) denotes the number of edges that contain x and deg(x, y) denotes the

number of edges that contain both x and y. We use the following extension of a theorem of Frankl

and Rödl, proved by Pippenger (see [8]).

Lemma 2.5. For an integer r ≥ 2 and a real β > 0 there exists µ = µ(r, β) > 0 such that: If an

r-uniform hypergraph L on t vertices has the following properties for some d:

(i) (1− µ)d < deg(x) < (1 + µ)d holds for all vertices,

(ii) deg(x, y) < µd holds for all distinct vertices x and y,

then L has a matching of size at least (t/r)(1− β).

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. We first need to prove a slight extension of Lemma 2.3. Let

G be a k-partite graph with vertex parts V1, . . . , Vk. A q-blowup of G, denoted by Gq, is obtained

by cloning each Vi precisely q times, to obtain copies Vi,1 . . . , Vi,q where each v ∈ Vi has a copy v`
in Vi,`. There is an edge of Gq between each copy of u and each copy of v if and only if uv ∈ E(G).

Two edges of Gq are equivalent if they correspond to the same edge of G. Likewise, two vertices

of Gq are equivalent if they are clones of the same vertex of G. Each edge of G gives rise to q2

equivalent edges of Gq and each vertex of G gives rise to q equivalent vertices of Gq. Observe that

Gq is an h-partite graph where h = kq, having |V (G)|q vertices and e(G)q2 edges.

Lemma 3.1. If the h-partite graph R of Lemma 2.3 is a q-blowup of some k-partite graph P

(namely R = P q), then the subgraph R′ of R obtained by the lemma has the property that e ∈ E(R′)

if and only if all q2 edges of R that are equivalent to e are also in E(R′). Likewise, v ∈ V (R′) if

and only if all q vertices of R that are equivalent to v are also in V (R′).

Proof. Lemma 2.3 states that the set of edges E(R′) is obtained by removing a set E′ of at most

λe(R) edges of R. The proof of Lemma 2.3 constructs the set E′ of removed edges in two stages. In

the first stage, one actually deletes vertices from Vi to obtain the subset V ′i . The deleted vertices

Vi \ V ′i are decided upon only by examining the neighborhood of a vertex. Hence, all q vertices of

R that are clones of the same original vertex of P are either all deleted or otherwise all are not

deleted. Hence, the first set of removed edges (namely, those edges that are incident to the removed

vertices ∪hi=1Vi \ V ′i ) has the property that if an edge is removed then all q2 edges equivalent to it

are also removed. In the second stage, the set of removed edges are what are classified as bad edges.

Again, the definition of a bad edge xy in the proof of Lemma 2.3 is only a function of the common
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neighborhoods of x and y. Since two equivalent edges have isomorphic common neighborhoods, an

edge xy is bad if and only if all edges equivalent to xy are also bad.

For a q-blowup graph R = P q, we say that a subgraph of R is pure if it contains precisely one

vertex from each vertex class of R and it does not contain two equivalent vertices. Observe that a

pure subgraph of R corresponds uniquely to a subgraph of P containing precisely q vertices in each

vertex class of P .

Lemma 3.2. Suppose that a k-partite graph P contains c distinct copies of T (k, q). Then P q

contains c(q!)k distinct pure copies of T (k, q). Furthermore, if e ∈ E(P ) belongs to c(e) distinct

copies of T (k, q) then each of the q2 clones of e in P q belongs to c(e)(q!)k/q2 distinct pure copies

of T (k, q).

Proof. Let V1, . . . , Vk denote the partite classes of P . Suppose that H is a copy of T (k, q) in P .

Observe that H is uniquely defined by k subsets W1, . . . ,Wk with |Wi| = q and Wi ⊂ Vi. Consider

the partite sets of P q denoted by Vi,` for i = 1, . . . , k and ` = 1, . . . , q. A pure copy of T (k, q) in

P q that corresponds to H selects from each of Vi,1, . . . , Vi,q a unique clone of a vertex from Wi. As

there are precisely q! ways to select these clones, and as this holds for all i = 1, . . . , k, there are

precisely (q!)k copies that correspond to H. Hence there are c(q!)k distinct pure copies of T (k, q).

For the second part, suppose that e ∈ E(P ) and let H be a copy of T (k, q) in P that contains e.

Each clone of e (recall that there are q2 such clones) corresponds to a 1/q2 fraction of the pure

copies of T (k, q) in P k that correspond to H, since each such copy contains a unique clone of e.

We restate Theorem 1.1 for the special case where H = T (k, q) and then obtain Theorem 1.1

as a corollary.

Theorem 3.3. For integers q ≥ 1, k ≥ 2 and for ε > 0 there exists N = N(k, q, ε) such that for

all n > N , if G is a graph with n vertices, then

νT (k,q)(G) ≥ 1

q2
νKk

(G)− εn2 .

Proof of Theorem 1.1. Let H be a graph with χ(H) = k and let ε > 0. Let η = ε/2 and

N1 = N1(H, η) be the constants from Lemma 2.1. Let q = |V (H)| and let N = N(k, q, ε/2) be the

constant from Theorem 3.3. Observe also the trivial fact that ν∗H(G) ≥ ν∗H(Q)νQ(G) for any graph

Q. We therefore have by Lemmas 2.1, 2.4, and Theorem 3.3 that for all n > max{N,N1},

νH(G) ≥ ν∗H(G)− ε

2
n2

≥ ν∗H(T (k, q))νT (k,q)(G)− ε

2
n2

=

(k
2

)
q2

e(H)
νT (k,q)(G)− ε

2
n2

≥
(k
2

)
q2

e(H)
· 1

q2
νKk

(G)− ε

2
n2 − ε

2
n2

=

(k
2

)
e(H)

νKk
(G)− εn2 .
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Proof of Theorem 3.3. We start be setting some constants that are functions of the given constants

k, q, ε.

1. Let h = kq and r =
(k
2

)
q2 denote the number of vertices and the number of edges of T (k, q).

2. Let ζ = ε/2 and β = ε/8.

3. Let µ = µ(r, β) be the constant from Lemma 2.5.

4. Let λ = min{µ/2, ε/8}.

5. Let δ0 = δ0(ζ, k) and Γ = Γ(ζ, k) be the constants from Lemma 2.2.

6. Let γ = min{Γ , δ0/2 , γ(T (k, q), λ, δ0)} where γ(T (k, q), λ, δ0) is the constant from Lemma

2.3.

7. Let M = M(ζ, k, γ) and N = max{N(ζ, k, γ) , kq2M

λδr−1
0

, (q!)kM

q2δr−1
0 µ
} where N(ζ, k, γ) and M =

M(ζ, k, γ) are the constants from Lemma 2.2.

Suppose that G is a graph with n > N vertices. We apply Lemma 2.2 and obtain a set P of

pairwise edge-disjoint (b, k, δ0, γ)-graphs of G with b ≥ n/M , and which satisfy the statement of

Lemma 2.2.

For P ∈ P consider R = P q, the q-blowup of P . We claim that R satisfies the conditions of

Lemma 2.3 for the case H = T (k, q) in that lemma. For convenience, denote the vertex classes of

P by V1, . . . , Vk. Denote the vertices of T (k, q) belonging to the i’th vertex class by wi,1, . . . , wi,q.

Denote the vertex classes of R by Vi,` for i = 1, . . . , k and ` = 1, . . . , q. Now, there are no edges

between Vi,` and Vi,`′ but this is fine since wi,` and wi,`′ are not adjacent in T (k, q). On the other

hand, the bipartite subgraph induced by Vi,` and Vj,`′ for i 6= j is isomorphic to the bipartite

subgraph induced by Vi and Vj which, by the fact that P is a (b, k, δ0, γ)-graph, means that it is

γ-regular with density in δ ± γ for some δ ≥ δ0. This is also fine since wi,` and wj,`′ are adjacent

in T (k, q).

By Lemma 2.3 there exists a subgraph R′ ⊂ R with vertex classes V ′i,` ⊂ Vi,`, and at least

(1− λ)e(R) edges such that for each edge e of R′,

|c′(e)− δr−1bh−2| < λδr−1bh−2, (1)

where c′(e) denotes the number of subgraphs of R′ containing e which are partite-isomorphic to

T (k, q) in R′. As R is a q-blowup, we have that by Lemma 3.1, R′ is also a q-blowup and R′ = (P ′)q

where P ′ is a subgraph of P , and

e(P ′) =
e(R′)

q2
≥ (1− λ)

e(R)

q2
= (1− λ)e(P ) . (2)

What we are really interested in is the number of copies of T (k, q) in P ′ that contain a given

edge. The problem is that (1) estimates the total number of partite isomorphic copies of T (k, q)
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that contain e, including the non-pure copies. So, let us estimate the number of non-pure partite

isomorphic copies of T (k, q) containing a given edge of R. Assume, without loss of generality, that

e ∈ E(R) and e = xy with x ∈ V1,1 and y ∈ V2,1. A non-pure copy selects (at least) two equivalent

vertices. Namely, for some, i, and for some ` and `′, the copy contain two equivalent vertices, one

from Vi,` and one from Vi,`′ . There are k choices for i and
(q
2

)
choices for ` and `′. Observe that

once we have chosen the vertex from Vi,`, its equivalent vertex from Vi,`′ is determined. Hence, the

number of non-pure copies of T (k, q) containing a given edge is trivially at most k
(q
2

)
bh−3. Thus,

using (1), if c(e) denotes the number of pure copies of T (k, q) in R′ that contain e, we have that

|c(e)− δr−1bh−2| < λδr−1bh−2 + k

(
q

2

)
bh−3 ≤ 2λδr−1bh−2,

where in the last inequality we have used the fact than b ≥ n/M ≥ kq2/(λδr−10 ). By Lemma 3.2

we have that for e ∈ P ′, if c(e) is the number of copies of T (k, q) in P ′ that contain e, then

|c(e)− q2

(q!)k
δr−1bh−2| < 2λ

q2

(q!)k
δr−1bh−2 . (3)

We construct an r-uniform hypergraph L as follows. The vertices of L are the edges of P ′.

Hence L has t = e(P ′) vertices. The edges of L correspond to the edge sets of copies of T (k, q)

in P ′. Observe that L is indeed r-uniform and the degree of a vertex e ∈ V (L) is c(e). Observe

that by setting d = q2

(q!)k
δr−1bh−2 and since µ ≥ 2λ, equation (3) shows that L satisfies the first

condition of Lemma 2.5. We need to show that the second condition also holds. For two edges

of P ′, the number of copies of T (k, q) containing both of them is trivially at most bh−3 which is

smaller than µd, since b > n/M ≥ (q!)k/(q2δr−10 µ). If follows from Lemma 2.5 that P ′ contains at

least (t/r)(1− β) edge-disjoint copies of T (k, q). By (2) we therefore have that

νT (k,q)(P ) ≥ (1− β)
e(P ′)

r
≥ (1− β)(1− λ)

e(P )

r
.

Altogether we obtain

ν∗Kk
(G) ≤

∑
P∈P

νKk
(P ) + ζn2

≤
∑
P∈P

e(P )(k
2

) + ζn2

≤ r

(1− β)(1− λ)
(k
2

) ∑
P∈P

νT (k,q)(P ) + ζn2

=
q2

(1− β)(1− λ)

∑
P∈P

νT (k,q)(P ) + ζn2

≤ q2
∑
P∈P

νT (k,q)(P ) + (2β + 2λ)q2
∑
P∈P

νT (k,q)(P ) + ζn2

≤ q2
∑
P∈P

νT (k,q)(P ) + (2β + 2λ)n2 + ζn2

≤ q2
∑
P∈P

νT (k,q)(P ) + q2εn2 .
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It follows from the last inequality that

νT (k,q)(G) ≥
∑
P∈P

νT (k,q)(P ) ≥ 1

q2
ν∗Kk

(G)− εn2 ≥ 1

q2
νKk

(G)− εn2 .

4 Lower bound

Proof of Theorem 1.2. Let c be some small absolute constant. We show that the random graph

G = G(n, p) with

p = cn
− kq−2

(k2)q2−1

satisfies the stated claim with high probability. Let

z = n
2− kq−2

(k2)q2−1 .

As T (k, q) has kq vertices and
(k
2

)
q2 edges, the expected number of copies of T (k, q) in G is less

than

nkqp(
k
2)q

2
= c(

k
2)q

2
z .

On the other hand, the expected number of edges of G is

p

(
n

2

)
≈ c

2
z .

Since the number of edges is a binomial random variable, highly concentrated around its expecta-

tion, we obtain that for a sufficiently small c, with probability at least, say, 2/3, any packing of G

with edge-disjoint copies of T (k, q) leaves at least (c/6)z edges uncovered.

On the other hand, we will show that with probability at least, say, 2/3, a maximum packing

of G with edge-disjoint copies of Kk covers all but at most (c/10)z edges, thereby proving the

existence of an n-vertex graph G for which pT (k,q)(G) ≤ pKk
(G)−Θ(z), as required.

For β = 0.1 and r =
(k
2

)
, and let µ = µ(r, β) be the constant from Lemma 2.5. Consider the

r-uniform hypergraph whose vertices are the edges of G and whose edges are the copies of Kk in

G. For an edge e ∈ E(G), deg(e) denotes the number of copies of Kk that contain e, and for a pair

of edges e, f ∈ E(G), deg(e, f) denote the number of copies of Kk that contain both of e and f .

Given that e is an edge of G, the expectation of deg(e) is

d =

(
n− 2

k − 2

)
p(

k
2)−1 .

A standard application of the second moment method (see, [1], Chapter 4) shows that deg(e) is

concentrated around its expectation d, so that for any µ > 0, if n is sufficiently large, |deg(e)−d| ≤
µd holds with high probability for all edges of G. On the other hand, we trivially have deg(e, f) ≤ µd
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for all n sufficiently large. Hence, by Lemma 2.5, with high probability, a maximum Kk-packing of

G covers all but a β-fraction of the edges. As with high probability we also have that the number

of edges of G is very close to (c/2)z, we are guaranteed that with high probability, the number of

uncovered edges in an maximum Kk-packing is at most (c/10)z, as claimed.

5 Applications

For a graph H and for positive integers r and n, let f(H, r, n) denote the least integer t such than

in any r-coloring of the edges of Kn, there are t pairwise edge-disjoint monochromatic copies of H.

Corollary 5.1. If H be a fixed graph with χ(H) = k then

f(H, r, n) ≥ f(Kk, r, n)

(k
2

)
e(H)

(1− on(1)) .

Furthermore, if χ(H) = 3, then f(H, 2, n) ≥ 3n2

13e(H) for all n sufficiently large.

Proof. First observe that f(Kk, r, n) = Θ(n2) is an immediate consequence of Ramsey’s Theorem,

so it suffices to prove that f(H, r, n) ≥ f(Kk, r, n)
(k
2

)
/e(H) − o(n2). Indeed, consider a maximum

packing of monochromatic copies of Kk in a given r-coloring of the edges of Kn. Suppose the packing

contains ti copies of Kk with color i for i = 1, . . . , r. Then, by definition,
∑r
i=1 ti ≥ f(Kk, r, n).

We can also view the edges with color i as a graph Gi with n vertices, and clearly ti = νKk
(Gi).

Applying Theorem 1.1 to each Gi separately yields a packing with edge disjoint monochromatic

copies of H of total size at least

r∑
i=1

(
ti

(k
2

)
e(H)

− o(n2)
)
≥ f(Kk, r, n)

(k
2

)
e(H)

− o(n2) .

The second part of the corollary follows from a result of Keevash and Sudakov [10] who proved

that f(K3, 2, n) ≥ n2/12.9 for all n sufficiently large.

We note that a conjecture of Erdős (see [5]) states that f(K3, 2, n) ≥ n2/12−o(n2). This conjecture

may now be appropriately generalized to any fixed graph H with χ(H) = 3.

It seems reasonable that if a graph has large minimum degree, then it has a large H-packing,

covering almost all the edges. Indeed, this has been proved by the author for the case of H = Kk

and can now be proved for all k-chromatic graphs.

Corollary 5.2. If H be a fixed graph with χ(H) = k, then any graph with n vertices and minimum

degree at least n(1− 1/9k10) has an H-packing which covers all but o(n2) edges.

Proof. The proof follows directly from Theorem 1.1 and from the result from [15] for the case

H = Kk.
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A longstanding conjecture of Nash-Williams [13] asserts that if a graph has minimum degree

3n/4 then it has a packing of edge-disjoint triangles covering all but o(n2) edges. In fact, the

conjecture is sharper as it states that if, in addition, all the degrees are even and the number of

edges is divisible by 3, then all edges can be covered (namely, a triangle decomposition exists). The

3/4-fraction for the minimum degree requirement is essential, as there is a construction showing

that it cannot be replaced by a smaller constant. Clearly, Theorem 1.1 can be used to generalize

the conjecture of Nash-Williams to any fixed 3-chromatic graph. The following conjecture is yet a

further generalization as it also considers the case where the minimum degree is smaller than 3n/4.

Conjecture 5.3. For any 1 ≥ α ≥ 0, and any fixed graph H with χ(H) = 3, if a graph G with n

vertices has minimum degree at least n/2 + αn/4, then it contains an H-packing which covers all

but at most (1− α)n2/4 + o(n2) edges.

Theorem 1.1 shows that it suffices to prove Conjecture 1.1 for the case H = K3. We next show

that, if true, Conjecture 5.3 is optimal, in the sense that the constant (1−α)/4 cannot be replaced

with a smaller one. Let R be any graph with n/4 vertices which is αn/4-regular. Let R1, R2, R3, R4

denote four disjoint copies of R. Add all n2/16 edges between Ri and Ri+1 for i = 1, 2, 3 as well

as between R1 and R4. The constructed graph G has n vertices and is (n/2 + αn/4)-regular. Any

triangle ofGmust contain at least one edge with both endpoints inRi for some i. Hence, a maximum

triangle packing contains at most 4e(R) triangles, so νK3(G) ≤ αn2/8. As e(G) = αn2/8 + n2/4 it

follows that a maximum triangle packing fails to cover at least αn2/8+n2/4−3αn2/8 = (1−α)n2/4

edges.
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[8] Z. Füredi. Matchings and covers in hypergraphs. Graphs and Combinatorics, 4(1):115–206,

1988.
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[12] J. Komlós and M. Simonovits. Szemerédi’s regularity lemma and its applications in graph
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