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Abstract

For an oriented graph G with n vertices, let f(G) denote the minimum number of transitive
subtournaments that decompose G. We prove several results on f(G). In particular, if G is a
tournament then f(G) < 5

21n2(1 + o(1)) and there are tournaments for which f(G) > n2/3000.
For general G we prove that f(G) ≤ bn2/3c and this is tight. Some related parameters are also
considered.
AMS classification code: 05C20, 05C70
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1 Introduction

All graphs and digraphs considered here are finite and have no loops or multiple edges. For the
standard terminology used the reader is referred to [1]. An oriented graph is a digraph without
directed cycles of length two (antiparallel edges). In other words, it is an orientation of a simple
graph. A tournament on n vertices is an orientation of Kn. An oriented graph is called acyclic if it
has no directed cycles. An acyclic tournament is usually called a transitive tournament. We denote
by TTk the unique (up to isomorphism) transitive tournament on k vertices.

A transitive decomposition of a digraph G is a set of edge-disjoint transitive subtournaments
that occupy all the edges of the graph. Namely, each edge of G belongs to precisely one transitive
subtournament in the set. Let f(G) denote the minimum size of a transitive decomposition of G.
Since a digraph with e(G) = m edges has a trivial transitive decomposition into m copies of TT2

we always have f(G) ≤ e(G). The goal of this paper is to study transitive decompositions and to
obtain nontrivial bounds for f(G). We note that this problem is closely related to the problem of
Erdős, Goodman and Pósa [3] who asked for the minimum number of cliques that decompose a
graph G. They proved that if G has n vertices then bn2/4c cliques always suffice, and this is tight.
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Let f(n, m) denote the maximum possible value of f(G) taken over all oriented graphs with n

vertices and m edges. Particularly interesting is the value of f(n,
(n
2

)
), namely, the minimal number

of transitive tournaments that are needed in order to decompose an n-vertex tournament, in the
worst case. For notational convenience we put f(n) = f(n,

(n
2

)
).

In the next section we consider upper and lower bounds for f(n). Notice that it is not obvious
at first sight that f(n) = Θ(n2). This is because every n-vertex tournament contains many copies
of TTΘ(log n) which is easy to prove by induction. However, we prove that there are tournaments
in which the large transitive subtournaments cannot be packed so as to cover all but o(n2) edges.
In particular, we prove the following.

Theorem 1.1 1
3000n2(1 + o(1)) < f(n) < 5

21n2(1 + o(1)).

We note that both the upper and lower bounds can be slightly improved but they are still quite
far. It seems very interesting to determine f(n) even asymptotically.

In Section 3 we consider the more general parameter f(n, m). Clearly, f(n, m) = m if and
only if there is an oriented graph with n vertices and m edges without a TT3. It is not difficult
to construct such graphs for all m ≤ bn2/3c (as shown in the beginning of Section 3). We prove,
however, that for larger m, f(n, m) is still bounded by bn2/3c.

Theorem 1.2 f(n, m) ≤ bn2/3c. f(n, m) = m for m ≤ bn2/3c.

Section 4 contains some concluding remarks and some results on related parameters.

2 Decomposing tournaments into transitive subtournaments

Let r(k) denote the minimum integer that guarantees that every tournament with r(k) vertices has
a TTk. A trivial induction argument gives r(k) ≤ 2k−1. Hence, it follows that in a tournament with
n vertices, every vertex appears in many copies of TTΘ(log n). Unfortunately, as wee shall see, in
some cases it is impossible to pack these large transitive tournaments in order to obtain a transitive
decomposition with o(n2) elements. In fact, Erdős and Moser [4] proved, using the probabilistic
method, that r(k) ≥ 20.5k(1+o(1)). This already shows that we cannot expect f(n) = o(n2/ log2 n)
even for random tournaments. It is easy to show f(2) = 2, f(3) = 4 an it is well known that
f(4) = 8 and f(5) = 14 [7]. In fact, it is straightforward to construct the unique tournament T
on seven vertices without a TT4. We shall need the following lemmas in order to prove the upper
and lower bounds of Theorem 1.1. Our first lemma is (a simple application of) the seminal result
of Wilson [8] for undirected graphs.

Lemma 2.1 Let k be a positive integer. Then Kn has 1
k(k−1)n

2(1 − o(1)) edge-disjoint copies of
Kk.
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In fact, Wilson’s theorem shows that if some obvious divisibility conditions hold then there is a
Kk-decomposition of Kn, assuming n is sufficiently large.

Our second lemma establishes f(n) for some small values of n.

Lemma 2.2 f(2) = 1, f(3) = 3, f(4) = 4, f(5) = 6, f(6) = 8 and f(7) = 10.

Proof: The values of f(n) for n ≤ 5 are easy exercises. We shall prove the case f(7) = 10. The
case f(6) = 8 is easier. Let S be a tournament with t vertices. If S = TT7 then f(S) = 1. If S

contains a TT6 then f(S) ≤ 7 since a TT6 already contains 15 of the 21 edges. If S contains a
TT5 and does not contain a TT6 then let (x, y) be an edge such that the other five vertices induce
a TT5 (the notation (x, y) corresponds to an edge from x to y). Since there is no TT6, not all
edges between y and the other five vertices emanate from y. Hence there is a TT3 containing (x, y)
which is edge-disjoint from the TT5. Consequently, f(S) ≤ 10. If S has a TT4 and does not have
a TT5 then we may assume, without loss of generality, that a, b, c, d are the vertices of a TT4 and
e, f, g are the other vertices. It is not difficult to verify that there are three edge-disjoint TT3, each
containing precisely two vertices from e, f, g. Thus, S decomposes into a TT4, three TT3 and six
TT2. Consequently, f(S) ≤ 10. If S has no TT4 then S = T (recall that T denotes the unique
7-vertex tournament without a TT4). It is easy to verify that T has 6 edge-disjoint TT3. Hence
f(T ) = 9. We have shown that f(7) ≤ 10. The following tournament S has f(S) = 10. Let
A = {1, 2}, B = {3, 4}, C = {5, 6, 7}. Orient all edges from A to B, from B to C and from C to
A. The orientation of the edge {12} and {34} is arbitrary. Orient the edges inside C in a cycle. It
is easy to check that S has no TT5, and any TT3 must contain two vertices from the same part. It
follows that f(S) = 10.

The next two lemmas are needed for the lower bound in Theorem 1.1.

Lemma 2.3 There exist tournaments that do not have more than n2/14 edge-disjoint TT4.

Proof: As before, let T denote the unique 7-vertex tournament without a TT4. Assume the
vertices of T are 1, . . . , 7. We blow up each vertex of T into either dn/7e or bn/7c vertices, so that
the total number of vertices is n. Let Vi denote the set of vertices blown up from i. For x ∈ Vi

and y ∈ Vj the orientation of the edge xy is the same as the orientation of ij in T . The orientation
between two vertices in the same set is arbitrary. Since T has no TT4, we have constructed a
tournament with n vertices in which every TT4 must contain an edge connecting two vertices from
the same set. As the total number of edges with both endpoints in the same set is at most n2/14
the claim follows.

Lemma 2.4 For all t ≥ 2, Kt has a packing with edge-disjoint copies of K4 so that the number of
unpacked edges is at most 4t− 7.
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Proof: It is well known that for t ≡ 1, 4 mod 12, Kt has a K4 decomposition (see, e.g., [2]).
Suppose t is not of this form. We may add or delete s vertices where 1 ≤ s ≤ 4 so as to obtain
a graph whose number of vertices is either 1 or 4 modulo 12. In case t ≡ 2, 5 mod 12 we delete
one vertex and t − 1 ≤ 4t − 7 edges. In case t ≡ 0, 3 mod 12 we add one vertex and the t added
edges are on t/3 copies of K4 containing precisely t ≤ 4t − 7 original edges. In case t ≡ 6 mod 12
we delete two vertices and 2t − 3 ≤ 4t − 7 edges. In case t ≡ 7 mod 12 we delete three vertices
and 3t − 6 ≤ 4t − 7 edges. In case t ≡ 8 mod 12 we delete four vertices and 4t − 10 ≤ 4t − 7
edges. In case t ≡ 10 mod 12 we add three vertices x, y, z. We may assume that some K4 of the
decomposition contains x, y, z, w where w is an original vertex. This K4 contains no original edges.
The other K4’s containing one of x, y, z contain precisely 3t − 3 ≤ 4t − 7 original edges. In case
t ≡ 11 mod 12 we add two vertices. The unique K4 containing the two new vertices contains only
one original edge and the other K4’s containing a new vertex contain precisely 2t−4 original edges.
Again (2t − 4) + 1 = 2t − 3 ≤ 4t − 7. In case t ≡ 9 mod 12 we add one vertex and use the case
of 10 mod 12 to obtain a packing with K4 which has 3(t + 1) − 3 = 3t unpacked edges. Since
6t/(t + 1) > 5 there is some vertex which is incident with at least 6 unpacked edges. Deleting
this vertex we obtain a graph with t vertices and the number of unpacked edges is now at most
(3t− 6) + (t− 6) = 4t− 12 ≤ 4t− 7.

Proof of the upper bound in Theorem 1.1 Let T be a tournament with n vertices. By
Lemma 2.1 we can pack Kn with 1

k(k−1)n
2(1− o(1)) edge-disjoint Kk. Particularly, we can pack T

with 1
42n2(1−o(1)) edge-disjoint subtournaments each having 7 vertices. By Lemma 2.2, f(7) = 10.

Thus, each of these subtournaments can be decomposed into at most 10 transitive tournaments. It
follows that f(T ) ≤ 10

42n2(1 + o(1)).
We note that in [9] it is proved that a tournament on n vertices has at least 0.13n2(1 + o(1))

edge-disjoint TT3. These TT3 cover 0.39n2(1+o(1)) edges which implies an upper bound of 0.24 in
Theorem 1.1. This is only slightly inferior to our 5/21 upper bound. By computing specific values
of f(k) for larger k one may be able to obtain an improve upper bound, but this approach must
converge as suggested by the lower bound.

Proof of the lower bound in Theorem 1.1 Let T be the n-vertex tournament constructed
in Lemma 2.3, and recall that T has at most n2/14 edge-disjoint TT4. Consider a transitive
decomposition of T with k = f(T ) elements whose vertex sizes are p1, . . . , pk. Thus,

(n
2

)
=
∑k

i=1

(pi
2

)
.

By Lemma 2.4, the element whose size is pi contains a set of edge-disjoint TT4 covering all but at
most 4pi − 7 edges. It follows that T has at least(n

2

)
−
∑k

i=1(4pi − 7)
6

edge-disjoint copies of TT4. Clearly the last sum is minimized when
∑k

i=1 pi is maximized. This
happens when all the pi are equal and their common value p satisfies p(p − 1) = n(n − 1)/k. For
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convenience, put k = αn(n − 1). Thus, p = 1/2 +
√

1/4 + 1/α and the number of edge-disjoint
copies of TT4 is at least

n(n− 1)
(

1
12

+
7
6
α− 2

3
α(1/2 +

√
1/4 + 1/α)

)
.

Taking α = 1/3000 gives, for n sufficiently large, more than 0.071438n2 > 1
14n2 edge-disjoint TT4

in T , a contradiction.

3 Proof of Theorem 1.2

Consider the Turán graph T (n, 3). Recall that this graph is a complete 3-partite graph whose vertex
classes are as equal as possible. Hence, it has bn2/3c edges. Let the vertex classes be V0, V1, V2. We
orient all edges from Vi to V(i+1) mod 3 for i = 0, 1, 2. Notice that this orientation does not contain
a TT3. Hence, we have that f(n, m) = m for all m ≤ bn2/3c.

It remains to show that every oriented graph G with n vertices has f(G) ≤ n2/3. We prove
this by induction on n. The theorem clearly holds for n = 1. Assume it holds for oriented graphs
with n−1 vertices. Let G = (V,E) be a graph with n vertices. For a vertex u, let d+(u) and d−(u)
be the out and in degrees of u, respectively, and let d(u) = d+(u) + d−(u) be the total degree. Let
v ∈ V have minimal total degree. Let G′ be the induced subgraph of G on V − v. By the induction
hypothesis, f(G′) ≤ b(n − 1)2/3c. Clearly, f(G) ≤ d(v) + f(G′) since we may trivially decompose
the edges incident with v into d(v) copies of TT2. Thus, if d(v) ≤ 2n/3 we have

f(G) ≤ b2
3
nc+ b(n− 1)2

3
c = bn

2

3
c.

We may now assume that d(v) = b2n/3c + a where a > 0. It suffices to prove that there are a

edge-disjoint copies of TT3 containing v since this would give f(G) ≤ a + (d(v) − 2a) + f(G′) and
we can again use the induction hypothesis to obtain f(G) ≤ bn2

3 c.
Without loss of generality, assume d+(v) ≥ d−(v). Let N+(v) and N−(v) be the set of out-

neighbors and in-neighbors of v, respectively. Hence, |N+(v)| = d+(v) = bn/3c+b where b > 0 and
|N−(v)| = d−(v) = bn/3c + c and note that it may be that c < 0. Let H1 (H2) be the undirected
subgraph of G induced by N+(v) (N−(v)). The minimum degree of H1 satisfies

δ(H1) ≥ d(v)− (n− d+(v)) = b2n/3c+ bn/3c − n + a + b ≥ a + b− 1.

Similarly,

δ(H2) ≥ d(v)− (n− d−(v)) = b2n/3c+ bn/3c − n + a + c ≥ a + c− 1.

We shall use the well known fact that a graph with minimum degree δ has a path of length δ and
hence a matching of size dδ/2e (see, e.g., [1]). Consider first the case c < 0. In this case we must
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have b ≥ a and hence there is a matching of size at least d(2a−1)/2e = a in H1. If c ≥ 0 then there
is a matching of size d(a+b−1)/2e in H1 and a matching of size d(a+c−1)/2e in H2 which together
is a matching of size at least a in N+(v) ∪ N−(v). Now, each element of this matching, together
with v, yields a TT3. We have shown that there are a edge-disjoint copies of TT3 containing v, as
required.

4 Concluding remarks

• As mentioned in Section 2, if T is an n-vertex random tournament (the orientation of each
edge is chosen uniformly at random, and independently) then f(T ) = Ω(n2/ log2 n) almost
surely (that is, with probability tending to 1 as n tends to infinity). On the other hand, unlike
the general case where Theorem 1.1 shows that f(n) = Θ(n2), it is not difficult to show that
for every ε > 0, if T is an n-vertex random tournament then almost surely f(T ) < εn2 for n

sufficiently large. Hence f(T ) = o(n2) almost surely for random tournaments. This follows
from the result of [5] which, when applied to our setting, gives that for every fixed positive
integer k, there is, almost surely, a packing of T with copies of TTk so that the number of
unpacked edges is only o(n2). In particular this implies that f(T ) ≤

(n
2

)
/
(k
2

)
+ o(n2).

• As we define f(G) on general digraphs, we may also define the analog of f(n, m) on this wider
class where antiparallel edges are allowed. Notice that in this more general case, there is no
interesting analog for f(n) since the complete n-vertex digraph can be trivially decomposed
into two edge-disjoint copies of TTn and hence f(n, n(n − 1)) = 2 in this case. However,
using a similar inductive approach as in the proof of Theorem 1.2 it can be shown that
f(n, m) ≤ bn2/2c and f(n, m) = m for all m ≤ bn2/2c. The construction here is obtained by
the existence of an n-vertex bipartite digraph with m edges for m ≤ bn2/2c.

• As mentioned in Section 2, it is possible to slightly improve the upper bound in Theorem
1.1 by computing higher explicit values of f(k). This seems to be a difficult task already
for relatively small values of k. However, there is another approach which yields a minor
improvement of the upper bound and which requires no additional explicit computations. A
fractional transitive decomposition of a digraph G is an assignment of nonnegative weights to
all the transitive subtournaments of G so that for any edge, the sum of the weights of all the
transitive subtournaments that contain the edge is precisely one. The value of the fractional
transitive decomposition is the sum of all assigned weights. Let f∗(G) be the smallest possible
value of a fractional transitive decomposition of G. Trivially, f∗(G) ≤ f(G). Let f∗(n) be
the fractional analog of f(n). Thus, f∗(n) ≤ f(n). Let us first show how f(k) can be used
to obtain a nontrivial upper bound for f∗(k′), where k′ > k. Let T be a tournament with
k′ vertices. There are

(k′

k

)
subtournaments on k vertices. In each of them we may take a
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transitive decomposition with at most f(k) elements. Since each edge of T appears in
(k′−2

k−2

)
subtournament with k vertices, we may assign the value 1/

(k′−2
k−2

)
to each element of each

transitive decomposition and obtain a fractional transitive decomposition of T whose value
is at most (

k′

k

)
1(k′−2

k−2

)f(k) =
k′(k′ − 1)
k(k − 1)

f(k) ≥ f∗(k′).

However in some cases we can do better. Consider, for example, the case k = 7 and k′ = 64.
By the last inequality we have f∗(64) ≤ 960. Using the same notation as in Section 2, we
have that r(7) ≤ 64 and, in fact, every vertex of a 64-vertex tournament T is a source or a
sink of some TT7. Hence, T has at least 32 distinct TT7. Since f(TT7) = 1 and f(7) = 10 we
have

f∗(64) ≤ 1(62
5

) (10

((
64
7

)
− 32

)
+ 32

)
= 960− 288(62

5

) .
Now, using Lemma 2.1 applied to k = 64 in the proof of Theorem 1.1 would give f∗(n) ≤
( 5
21 −

1
14(62

5 ))n
2(1+o(1)). By Theorem 2 of [6], applied to the family of transitive tournaments

the values of f∗(n) and f(n) differ only in o(n2). Thus,

f(n) ≤
(

5
21

− 1
14
(62

5

))n2(1 + o(1)).

Although this is only a negligible improvement over the upper bound in Theorem 1.1, the
approach presented here may be useful in other settings as well.

• By the same argument as in the last paragraph we have that f∗(n)/(n(n − 1)) ≤ f∗(n −
1)/((n− 1)(n− 2)). In particular, this shows that f∗(n)/n2 converges to some limit c. Since
f(n) − f∗(n) = o(n2) we also have that f(n)/n2 converges to c. Theorem 1.1 shows that
5
21 > c > 1

3000 . We leave as an open problem determining c exactly.
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