Graphs Having the Local Decomposition Property

Yair Caro * Raphael Yuster ${ }^{\dagger}$

Abstract

Let H be a fixed graph without isolated vertices, and let G be a graph on n vertices. Let $2 \leq k \leq n-1$ be an integer. We prove that if $k \leq n-2$ and every k-vertex induced subgraph of G is H-decomposable then G or its complement is either a complete graph or a complete bipartite graph. This also holds for $k=n-1$ if all the degrees of the vertices of H have a common factor. On the other hand, we show that there are graphs H for which it is NPComplete to decide if every $n-1$-vertex subgraph of G is H-decomposable. In particular, we show that $H=K_{1, h-1}$ where $h>3$, are such graphs.

1 Introduction

All graphs considered here are finite, undirected and simple. Given two graphs, H and G, where H has no isolated vertices, the graph G is H-decomposable, denoted by $H \mid G$, if the edge-set of G is the union of edge-disjoint isomorphic copies of H. We refer to the recent book of Bosak [2] as a general reference for decomposition problems.
It has been proved by Dor and Tarsi [11] that for any fixed graph H having a connected component with at least three edges, the decision problem "does $H \mid G$ " is NP-Complete. On the other hand, it is shown by Caro et al. in [7, 9] that the class of decomposition problems called "Random H-decompositions" is solvable in polynomial time, and several structural results were published by Beineke, Goddard and Hamburger, and many others [3, 13]. Aigner and Triesch [1] and Caro $[5,6]$ raised the problem of the possibility to determine the structure of a graph G in terms of the information given on its induced subgraphs. Inspired by this question Caro and Yuster [10] considered the following: Let F be a graph property (i.e. a family of graphs). For $n>k>1$ a graph G on n vertices has the property $F(n, k)$ if every induced k-vertex subgraph of G has property F. In that paper, the computational complexity of deciding whether G has $F(n, k)$ is discussed

[^0]for a wide range of properties and values of k. Let H be a fixed graph and let F^{H} be the graph property of being H decomposable. The focus of this paper is to determine the computational complexity of $F^{H}(n, k)$, and provide a structure for $F^{H}(n, k)$ whenever this family of graphs is easily recognizable. For ease of notation we put $H(n, k)=F^{H}(n, k)$.
In order to present the results we need the following notations. For a graph $G=(V, E)$ denote by $e(G)=|E(G)|$ the cardinality of the edge-set of G, and denote by $e_{m}(G)$ the number of its edges modulo m where $m>1$ is an integer. For a subset $A \subset V$ denote by $\langle A\rangle$ the induced graph of G with vertex-set A. For a graph H having h vertices with degrees d_{1}, \ldots, d_{h} we put $\operatorname{gcd}(H)=\operatorname{gcd}\left(d_{1}, \ldots, d_{h}\right)$. Our main tool is the following theorem which is interesting in its own right.

Theorem 1.1 Let G be a graph on n vertices and let $m \geq 2$ and $n-2 \geq k \geq 2$ be integers. Suppose that for any two subsets $A, B \subset V$ with $|A|=|B|=k$ we have $e_{m}(\langle A\rangle)=e_{m}(\langle B\rangle)$. Then, one of the following holds:

1. $G \in\left\{K_{n}, \overline{K_{n}}\right\}$.
2. $G \in\left\{K_{1, n-1}, \overline{K_{1, n-1}}\right\}$ where $k \bmod m=1$.
3. $G \in\left\{K_{a, n-a}, \overline{K_{a, n-a}}\right\}$ where $m=2$ and $k \bmod 2=1$.

Using Theorem 1.1 we prove:
Theorem 1.2 Let H be a fixed graph on $h \geq 3$ vertices without isolated vertices.

1. If $\operatorname{gcd}(H) \geq 2$ and $h \leq k \leq n-1$ then $H(n, k) \subset\left\{K_{n}, \overline{K_{n}}\right\}$.
2. If $\operatorname{gcd}(H)=1$ and $h \leq k \leq n-2$ and H has more than two edges then $H(n, k) \subset$ $\left\{K_{n}, \overline{K_{n}}, K_{1, n-1}, \overline{K_{1, n-1}}\right\}$.
3. If H has two edges (i.e. $H=P_{3}$ or $H=2 K_{2}$) then $H(n, k) \subset\left\{K_{n}, \overline{K_{n}}, K_{a, n-a}, \overline{K_{a, n-a}}\right\}$.

Furthermore, in all of the above cases we can decide if $G \in H(n, k)$ in polynomial time.
Theorem 1.2 shows that $H(n, k)$ has an easily recognizable structure whenever $k \leq n-2$. This is not the case for $H(n, n-1)$ (unless $\operatorname{gcd}(H)>1$) even for some very simple graphs H, as can be seen from the following theorem.

Theorem 1.3 Let $H=K_{1, k}$ where $k \geq 3$. Given a graph G on n vertices, the decision problem "does $G \in H(n, n-1)$ " is NP-Complete.

We wish to emphasize that Theorem 1.1 essentially solves some problems mentioned in $[4,5]$ whose origin can be traced to an old open paper of Kelley and Merriell [12].

The rest of this paper is organized as follows. In Section 2 we prove Theorem 1.1 which provides us with the structure of graphs whose k-subgraphs have the same number of edges (modulo m). In section 3 we prove Theorem 1.2 thereby providing the structure for $H(n, k)$ for $k \leq n-2$ and, whenever $\operatorname{gcd}(H)>1$, also for $k=n-1$. In section 4 we turn to the case $k=n-1$ and $\operatorname{gcd}(H)=1$ and provide hardness results for some simple graphs H having this property. Section 5 contains concluding remarks and open problems.

$2 k$-subgraphs with the same number of edges

In this section we prove Theorem 1.1. It is convenient to resolve the case $k=n-2$ and deduce from it the result for smaller values of k.

Theorem 2.1 Let G be a graph on n vertices and let $m \geq 2$ be an integer. suppose that for any two subsets $A, B \subset V$ with $|A|=|B|=n-2$ we have $e_{m}(\langle A\rangle)=e_{m}(\langle B\rangle)$. Then, one of the following holds:

1. $G \in\left\{K_{n}, \overline{K_{n}}\right\}$.
2. $G \in\left\{K_{1, a}, \overline{K_{1, a}}\right\}$ where $a \bmod m=2$.
3. $G \in\left\{K_{a, b}, \overline{K_{a, b}}\right\}$ where $m=2$ and $a \neq b \bmod 2$.

Proof If $n<3$ the claim is trivially true, so we assume $n \geq 3$. For $i=0, \ldots, m-1$ define $D_{i}=\{v \in V \mid \operatorname{deg}(v) \bmod m=i\}$. We need the following two lemmas.

Lemma 2.2 Each $\left\langle D_{i}\right\rangle$ is either a complete graph or an empty graph.
Proof Assume that some D_{i} is neither a complete nor an empty graph. Hence D_{i} has three vertices u, v, w such that $(u, v) \in E$ but $(v, w) \notin E$. But then deleting u and v from G changes the number of edges by $2 i-1 \bmod m$ while deleting v and w from G changes the number of edges by $2 i \bmod m$. Thus $e_{m}(\langle V \backslash\{u, v\}\rangle) \neq e_{m}(\langle V \backslash\{v, w\}\rangle)$, which contradicts our assumption.

Lemma 2.3 There are at most two distinct indices i, j such that $\left|D_{i}\right|>0$ and $\left|D_{j}\right|>0$.
Proof Assuming the contrary, let i, j, k be distinct integers such that none of D_{i}, D_{j}, D_{k} is an empty set. Since every graph with at least two vertices has two vertices with the same degree,
we may assume $\left|D_{i}\right|>1$. By Lemma 2.2 each $\left\langle D_{i}\right\rangle,\left\langle D_{j}\right\rangle,\left\langle D_{k}\right\rangle$ is a complete graph or an empty graph. Suppose first $\left\langle D_{i}\right\rangle$ is complete and that for some $v \in D_{i}, w \in D_{j},(v, w) \in E$. Then with $A=V \backslash\{u, v\}$ for some $u \in D_{i}$ and with $B=V \backslash\{v, w\}$ we get $e_{m}(\langle A\rangle)=e(G)-(2 i-1) \bmod m \neq$ $e(G)-(i+j-1) \bmod m=e_{m}(\langle B\rangle)$, a contradiction. Suppose next that $\left\langle D_{i}\right\rangle$ is an empty graph and for some $v \in D_{i}, w \in D_{j},(v, w) \notin E$. Defining A and B as above we again have $e_{m}(\langle A\rangle) \neq e_{m}(\langle B\rangle)$ which is a contradiction. By symmetry the same conclusions hold for D_{i} versus D_{k}. Hence if $\left\langle D_{i}\right\rangle$ is complete we may assume there exist $u \in D_{i}, v \in D_{j}, w \in D_{k}$ such that $(u, v) \notin E$ and $(u, w) \notin E$. Putting $A=V \backslash\{u, v\}$ and $B=V \backslash\{u, w\}$ we get $e_{m}(\langle A\rangle)=e(G)-(i+j) \bmod m \neq$ $e(G)-(i+k) \bmod m=e_{m}(\langle B\rangle)$. If $\left\langle D_{i}\right\rangle$ is an empty graph we may assume there exist $u \in D_{i}$, $v \in D_{j}, w \in D_{k}$ such that $(u, v) \in E$ and $(u, w) \in E$. With $A=V \backslash\{u, v\}$ and $B=V \backslash\{u, w\}$ we get $e_{m}(\langle A\rangle)=e(G)-(i+j-1) \bmod m \neq e(G)-(i+k-1) \bmod m=e_{m}(\langle B\rangle)$.
We now return to the proof of Theorem 2.1. Suppose first that we only have one index i with $\left|D_{i}\right| \geq 1$. Then by lemma $2.2 G \in\left\{K_{n}, \overline{K_{n}}\right\}$, and we are done. Otherwise, by lemma 2.3 , we have exactly two indices i, j with $\left|D_{i}\right|=a \geq 2$ and $\left|D_{j}\right|=b \geq 1$. Observe that the proof of Lemma 2.3 implies that if $\left\langle D_{i}\right\rangle$ is complete, then there are no edges between D_{i} and D_{j}, and if D_{i} is the empty graph, all possible edges between D_{i} and D_{j} exist. By reversing the roles of i and j in the proof we also get that if $\left\langle D_{i}\right\rangle$ is complete so is $\left\langle D_{j}\right\rangle$ and thus $G=K_{a} \cup K_{b}$, or else both $\left\langle D_{i}\right\rangle$ and $\left\langle D_{j}\right\rangle$ are empty graphs in which case $G=K_{a, b}$.
Assume first that $G=K_{a} \cup K_{b}$. If $b \geq 2$ then for $u, v \in D_{i}, w, z \in D_{j}$ we may choose $A=V \backslash\{u, v\}$, $B=V \backslash\{w, z\}, C=V \backslash\{u, w\}$ and since we must have $e_{m}(\langle A\rangle)=e_{m}(\langle B\rangle)=e_{m}(\langle C\rangle)$ we must have $2 i-1 \bmod m=2 j-1 \bmod m=i+j \bmod m$. This is only possible if $m=2$ and $a \neq b \bmod 2$. If $b=1$ Then $G=K_{a} \cup K_{1}$ and by the above reasoning we infer that $2 i-1 \bmod m=i$ hence $i \bmod m=1$ which implies $a \bmod m=2$.
If $G=K_{a, b}$ we note that if G has the property that every two $n-2$-vertex subsets A and B have $e_{m}(\langle A\rangle)=e_{m}(\langle B\rangle)$ then \bar{G} also has this property. Hence either $G=K_{a, 1}$ with $a \bmod m=2$ or $G=K_{a, b}$ with $m=2$ and $a \neq b \bmod 2$.
Proof of Theorem 1.1. We apply induction on n, fixing k and m. Clearly, for $n=k+2$ the claim reduces to Theorem 2.1. Also, for $k=2$ the claim becomes trivial, so we assume $k \geq 3$ and $n \geq k+3$. We first show that, subject to the conditions of Theorem 1.1, $G \in$ $\left\{K_{n}, \overline{K_{n}}, K_{1, n-1}, \overline{K_{1, n-1}}, K_{a, n-a}, \overline{K_{a, n-a}}\right\}$. Since $n-1 \geq k+2$, we have that for every $n-1$ subset $A \subset V$, all its k-subsets have the same number of edges modulo m. Hence by the induction hypothesis, $\langle A\rangle \in\left\{K_{n-1}, \overline{K_{n-1}}, K_{1, n-2}, \overline{K_{1, n-2}}, K_{a^{\prime}, n-1-a^{\prime}}, \overline{K_{a^{\prime}, n-1-a^{\prime}}}\right\}$. An easy check shows that G itself must belong to the family $\left\{K_{n}, \overline{K_{n}}, K_{1, n-1}, \overline{K_{1, n-1}}, K_{a, n-a}, \overline{K_{a, n-a}}\right\}$. But now case 1 follows trivially, and for case 2 observe that if a k-subset A does not contain the center of the star
$K_{1, n-1}$ then $e_{m}(\langle A\rangle)=0$, while a k-subset B containing the center has $e_{m}(\langle B\rangle)=k-1$. Hence, $k \bmod m=1$. By taking complements (as in the last part of the proof of Theorem 2.1), the second possibility in case 2 , namely $\overline{K_{1, n-1}}$, holds only if $k \bmod m=1$.
For case 3, if $G=K_{a, n-a}$, we may assume $2 \leq a \leq n-a$. Write $k=k_{1}+k_{2}$ where $0<k_{1}<a$, $0<k_{2}<n-a$ which is possible as $n \geq k+3, a \geq 2$ and $n-a \geq 2$. Now, consider the k subsets A, B, C having bipartitions $A=A_{1} \cup A_{2},\left|A_{1}\right|=k_{1},\left|A_{2}\right|=k_{2}, B=B_{1} \cup B_{2},\left|B_{1}\right|=k_{1}-1$, $\left|B_{2}\right|=k_{2}+1, C=C_{1} \cup C_{2},\left|C_{1}\right|=k_{1}+1,\left|C_{2}\right|=k_{2}-1$. By equating $e_{m}(\langle B\rangle)$ and $e_{m}(\langle C\rangle)$ we obtain the condition $2\left(k_{1}-k_{2}\right) \bmod m=0$. By equating $e_{m}(\langle A\rangle)$ and $e_{m}(\langle B\rangle)$ we obtain the condition $k_{1}-k_{2} \bmod m=1$. This implies that $m=2$ and $k \bmod 2=k_{1}+k_{2} \bmod 2=k_{1}-k_{2} \bmod 2$, hence $k \bmod 2=1$. The second possibility in case 3 is solved, as before, by taking complements. This completes the proof of Theorem 1.1.

3 The local decomposition property

Proof of Theorem 1.2 We begin with the case $\operatorname{gcd}(H)>1$. We apply induction on n, while k is fixed. The basis of the induction is $n=k+1$. Suppose that G is neither the complete nor the empty graph. Then there exist vertices u, v, w such that $(u, v) \in E$ but $(u, w) \notin E$. The degree of u in $\langle G \backslash v\rangle$ differs by one from the degree of u in $\langle G \backslash w\rangle$. Thus in one of these graphs $\operatorname{gcd}(H)$ does not divide the degree of u, and hence it is not H-decomposable. Assuming we have proved our claim for $n-1$, we prove it for n. The induction hypothesis implies that every $n-1$-subset induces K_{n-1} or $\overline{K_{n-1}}$. Thus it immediately follows that $G \in\left\{K_{n}, \overline{K_{n}}\right\}$.
Suppose now that $\operatorname{gcd}(H)=1$. Since every induced k-subgraph of G has an H-decomposition it follows that for every two k-subsets $A, B \subset V, e_{e(H)}(\langle A\rangle)=e_{e(H)}(\langle B\rangle)$. Hence by Theorem 1.1 we infer that if $e(H)=2$ then $G \subset\left\{K_{n}, \overline{K_{n}}, K_{a, n-a}, \overline{K_{a, n-a}}\right\}$, otherwise $G \subset\left\{K_{n}, \overline{K_{n}}, K_{1, n-1}, \overline{K_{1, n-1}}\right\}$. We now need to show that, given a graph G, we can tell in polynomial time if $G \in H(n, k)$. We show this according to the structure of G.

- If G is the empty graph $\overline{K_{n}}$, every k-subgraph of it is trivially H-decomposable.
- If $G=K_{n}$ then every k-subgraph is K_{k}, and we need to determine whether K_{k} is H decomposable. A necessary condition (which is easily checked) is $e(H) \left\lvert\,\binom{ k}{2}\right.$. This condition is also sufficient if $k>k_{0}=k_{0}(H)$, by Wilson's Theorem [14]. For $k \leq k_{0}$ the problem is solved in constant time, as H is fixed.
- If $G=\overline{K_{1, n-1}}=K_{n-1} \cup K_{1}$ we need both K_{k} and K_{k-1} to be H-decomposable. Each is determined as in the previous case.
- If $G=K_{1, n-1}$ we must have $H=K_{1, h-1}$ with $h-1 \mid n-k-1$. This is clearly a necessary and sufficient condition which can be easily verified.
- If $G=K_{a, n-a}$ and $H=P_{3}=K_{1,2}$, we must have, by Theorem 1.1 that $k \bmod 2=1$. Thus every k-subgraph of G is either the empty graph or it is complete bipartite with an even number of edges. In both cases it is H-decomposable according to a theorem of Caro and Schönheim [8] which states that a graph is P_{3} decomposable if every connected component has an even number of edges.
- If $G=K_{a} \cup K_{n-a}, a \leq n / 2$ and $H=P_{3}$ we again must have k odd. Every k-subgraph of G is a union of an even and an odd clique where, according to [8], each must have an even number of edges in order to ensure P_{3} decomposition. Thus each clique must have $0,1 \bmod 4$ edges. This is only possible for $a=1$.
- If $G=K_{a, n-a}, a \leq n / 2$ and $H=2 K_{2}$ we have, as before, that k must be odd. By Caro's Theorem [4] a graph G is has a $2 K_{2}$ decomposition iff $e(G)$ is even, $\Delta(G) \leq e(G) / 2$ and $G \neq K_{3} \cup K_{2}$. Thus, we must have $n-a<k-1$, and since $k \leq n-2$, we must also have $4 \leq a \leq n / 2$. These conditions are also sufficient, by applying Caro's Theorem.
- If $G=K_{a} \cup K_{n-a}, a \leq n / 2$ and $H=2 K_{2}$ then by a parity argument $k \bmod 4=1$ since only in this case it is true that for every choice of $0 \leq k_{1} \leq a, 0 \leq k_{2} \leq n-a, k_{1}+k_{2}=k$ we get the necessary condition $\binom{k_{1}}{2}+\binom{k_{2}}{2} \bmod 2=0$. In view of the forbidden $K_{3} \cup K_{2}$ either $k \geq 9$, $k \bmod 4=1$ and $a \leq n / 2$ is unrestricted, or $k=5$ and $a=1$.

As an immediate corollary of Theorem 1.2 we have:
Corollary 3.1 Let H be a fixed graph without isolated vertices. Deciding membership in $H(n, k)$ can be done in polynomial time for $1 \leq k \leq n-2$. If $\operatorname{gcd}(H)>1$, deciding membership in $H(n, n-1)$ can also be done in polynomial time.

4 Hardness of $n-1$ decomposition of stars

Corollary 3.1 leaves open the complexity of deciding membership in $H(n, n-1)$ for graphs having $\operatorname{gcd}(H)=1$. The purpose of this section is to show that this problem is probably much harder, as it is NP-Complete even for a simple family of graphs, namely the stars with three or more edges. Note that for the star with two edges, P_{3}, we have the Theorem of Caro and Schönheim [8], mentioned in the previous section.

Proof of Theorem 1.3. Our first ingredient is the construction of a (fixed) graph H_{k} with the following properties:

1. H_{k} has $3 k+2$ vertices, one vertex has degree 1 and the rest have have degree $k-1 \bmod k$.
2. H_{k} has a $K_{1, k}$ decomposition.
H_{k} is constructed as follows. The vertex set of H_{k} is $\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{k}, u, v\right\}$. The vertices $\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}\right\}$ induce a clique $K_{2 k}$. It is well known (e.g. Wilson's Theorem) that $K_{2 k}$ is $K_{1, k}$-decomposable. We now add to $H_{k} k$ copies of $K_{1, k}$ whose roots are the a_{i} 's as follows. a_{1} is connected to all c_{1}, \ldots, c_{k}. a_{i}, for $i=2, \ldots, k$ is connected to u and v and to all c_{2}, \ldots, c_{k} but not to c_{i}. Our construction shows that H_{k} is $K_{1, k}$-decomposable. The vertex c_{1} has degree 1 . The vertices a_{1}, \ldots, a_{k} have degree $3 k-1$, the vertices b_{1}, \ldots, b_{k} have degree $2 k-1$, and the vertices $c_{2}, \ldots, c_{k}, u, v$ have degree $k-1$.
Denote by $H_{k, t}$ for $1 \leq t \leq k-1$ the union of t copies of H_{k} that intersect only in the unique degree 1 vertex of H_{k}. Thus, $H_{k, t}$ has $(3 k+1) t+1$ vertices, all vertices but one having degree $k-1 \bmod k$, and one vertex (the "unifier") has degree t. Clearly, $H_{k, t}$ is $K_{1, k}$-decomposable.
We recall that by the theorem of Dor and Tarsi, deciding if a graph G is $K_{1, k}$-decomposable ($k \geq 3$ fixed) is NP-Complete. We perform a polynomial transformation from this problem to our problem by constructing a graph G^{\prime} having the property that G has a $K_{1, k}$ decomposition iff the deletion of every vertex from G^{\prime} induces a subgraph which has a $K_{1, k}$ decomposition. Given the input graph G, we first test if $k \mid e(G)$. If this is not the case then G is not $K_{1, k}$ decomposable and we are done. So we assume $k \mid e(G)$. We construct G^{\prime} as follows:
For each vertex v of G with degree $t \bmod k$ we add to G a copy of $H_{k, k-1-t}$ by identifying v with the unifier vertex of a copy of $H_{k, k-1-t}$. (Note that if v already has degree $k-1 \bmod k$ we do not attach anything to it). Note that after this modification v has degree $k-1 \bmod k$, and the newly added $(3 k+1)(k-1-t)$ vertices also have degree $k-1 \bmod k$. We do this for every vertex v and obtain the graph $G^{\prime \prime}$, which we shall later use to define G^{\prime}. Note that $G^{\prime \prime}$ is constructed in polynomial time, and has $n^{\prime \prime} \leq n(3 k+1)(k-1)$ vertices, where n is the number of vertices of G. Every vertex of $G^{\prime \prime}$ has degree $k-1 \bmod k$, and since $G^{\prime \prime}$ is the edge-disjoint union of G and copies of H_{k}, it is $K_{1, k}$-decomposable if G is. We claim that the converse is also true. Consider a $K_{1, k}$-decomposition of $G^{\prime \prime}$, and a copy of $K_{1, k}$ in such a decomposition. The edge that is adjacent to the degree 1 vertex of H_{k} is a bridge in $G^{\prime \prime}$ in every occurrence of H_{k} in $G^{\prime \prime}$. Since H_{k} is $K_{1, k^{-}}$ decomposable it follows that each copy of $K_{1, k}$ in the decomposition of $G^{\prime \prime}$ is either entirely within G or entirely within one of the added copies of H_{k}. Hence, G is also $K_{1, k}$-decomposable. Note also that $n^{\prime \prime} \bmod k=0$. To see this, note that the sum of the degrees of the vertices of $G^{\prime \prime}$ must
divide $2 k$ and is also $n^{\prime \prime}(k-1) \bmod k$. The graph G^{\prime} is defined by adding to $G^{\prime \prime}$ a new vertex x, and connecting it to all vertices of $G^{\prime \prime}$. Thus, x has degree $0 \bmod k$. Put $n^{\prime}=n^{\prime \prime}+1$.
Suppose first that G is not $K_{1, k}$-decomposable. Then, $G^{\prime \prime}$ is also not $K_{1, k}$-decomposable, and $G^{\prime \prime}=G^{\prime} \backslash x$ is an $n^{\prime}-1$-vertex induced subgraph of G^{\prime}. Now, suppose G is $K_{1, k}$-decomposable. Thus, $G^{\prime \prime}$ is also $K_{1, k}$-decomposable. We claim that for each vertex $v \in G^{\prime}, G^{\prime} \backslash v$ is $K_{1, k}$-decomposable. This is clearly true if $v=x$. Otherwise, $v \in G^{\prime \prime}$. We construct a $K_{1, k}$-decomposition of $G^{\prime} \backslash v$ from a given decomposition of $G^{\prime \prime}$ as follows. We replace each occurrence of v in the decomposition for $G^{\prime \prime}$ by x. We have used $\operatorname{deg}(v)$ edges of x in this way. We still remain with $n^{\prime \prime}-1-\operatorname{deg}(v)$ unused edges of x. But $n^{\prime \prime} \bmod k=0$ and $\operatorname{deg}(v) \bmod k=k-1$ hence $k \mid n^{\prime \prime}-1-\operatorname{deg}(v)$, and we can decompose these edges into copies of $K_{1, k}$.
Finally, we note that the $H(n, n-1)$ recognition problem is in NP for every graph H by providing n distinct decompositions, one for each $n-1$ induced subgraph.
Note that the proof of Theorem 1.3 also shows that G^{\prime} is $K_{1, k}$-decomposable if $G^{\prime \prime}$ is and hence if G is. This means that the following "intersection" problem is also NP-Complete: Given a graph G, is it, and all its $n-1$-vertex induced subgraphs, $K_{1, k}$-decomposable ($k \geq 3$).

5 Concluding remarks and open problems

We note that for some simple graphs H, deciding whether G is H-decomposable can be done in polynomial time. This holds, for example, whenever every connected component of H is an edge or when every connected component of H is a path of length 2. Although the Theorem of Dor and Tarsi shows that H-decomposition is NP-Complete whenever H has a connected component consisting of more than two edges, (for example if H is a triangle), it can be seen from Theorem 1.2 that $H(n, n-2)$ is easily recognizable for all graphs, and even $H(n, n-1)$ is, assuming $g c d(H)>1$. A triangle provides a good example where decomposition is difficult, but local decomposition is easy, for all values of k.
It is interesting to find the complexity of deciding membership in $H(n, n-1)$ for graphs other than stars (for which it is NP-Complete) and for graphs other than the ones where H-decomposition is polynomial, or that have $\operatorname{gcd}(H)>1$ (for which it is polynomial).

References

[1] M. Aigner and E. Triesch, Realizability and uniqueness in graphs, Discrete Mathematics 136 (1994), 3-20.
[2] J. Bosak, Decomposition of Graphs, Kluner Academic, Dordrecht 1990.
[3] L. W. Beineke, W. Goddard and P. Hamburger, Random packings of graphs, Discrete Mathematics, in press.
[4] Y. Caro, Chromatic decomposition of a graph, Ars Combinatoria 21 (1986), 29-32.
[5] Y. Caro, On graphs with prescribed subgraphs of order k and a theorem of Kelly and Merriell, Czechoslovak Mathematical Journal 44 (1994), 623-629.
[6] Y. Caro, On graphs determined by their k subgraphs, Ars Combinatoria, to appear.
[7] Y. Caro, J. Rojas and S. Ruiz, A forbidden subgraphs characterization and a polynomial time algorithm for randomly decomposable graphs, Czechoslovak Mathematical Journal 46 (1996), 413-419.
[8] Y. Caro and J. Schönheim, Decomposition of trees into isomorphic subtrees, Ars Combinatoria 9 (1980), 119-130.
[9] Y. Caro, A. Sebo and M. Tarsi, Recognizing greedy structures, Journal of Algorithms 20 (1996), 137-156.
[10] Y. Caro and R. Yuster, Recognizing global occurrence of local properties, submitted.
[11] D. Dor and M. Tarsi, Graph decomposition is NPC, a complete proof of Holyer's conjecture, Proceedings of the $20^{t h}$ ACM Symposium on the Theory of Computing, ACM Press (1992), 252-263.
[12] P. Kelley and D. Merriell, A class of graphs, Transactions of the American Mathematical Society 96 (1960), 488-492.
[13] D. P. Sumner, Randomly Matchable Graphs, Journal of Graph Theory 3 (1979), 183-186.
[14] R. M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, Congressus Numerantium XV (1975), 647-659.

[^0]: *Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: zeac603@uvm.haifa.ac.il
 ${ }^{\dagger}$ Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: raphy@math.tau.ac.il

