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Abstract

Let H be a fixed graph without isolated vertices, and let G be a graph on n vertices. Let

2 ≤ k ≤ n− 1 be an integer. We prove that if k ≤ n− 2 and every k-vertex induced subgraph

of G is H-decomposable then G or its complement is either a complete graph or a complete

bipartite graph. This also holds for k = n − 1 if all the degrees of the vertices of H have

a common factor. On the other hand, we show that there are graphs H for which it is NP-

Complete to decide if every n − 1-vertex subgraph of G is H-decomposable. In particular, we

show that H = K1,h−1 where h > 3, are such graphs.

1 Introduction

All graphs considered here are finite, undirected and simple. Given two graphs, H and G, where

H has no isolated vertices, the graph G is H-decomposable, denoted by H |G, if the edge-set of G

is the union of edge-disjoint isomorphic copies of H. We refer to the recent book of Bosak [2] as a

general reference for decomposition problems.

It has been proved by Dor and Tarsi [11] that for any fixed graph H having a connected component

with at least three edges, the decision problem ”does H |G” is NP-Complete. On the other hand,

it is shown by Caro et al. in [7, 9] that the class of decomposition problems called “Random

H-decompositions” is solvable in polynomial time, and several structural results were published

by Beineke, Goddard and Hamburger, and many others [3, 13]. Aigner and Triesch [1] and Caro

[5, 6] raised the problem of the possibility to determine the structure of a graph G in terms of

the information given on its induced subgraphs. Inspired by this question Caro and Yuster [10]

considered the following: Let F be a graph property (i.e. a family of graphs). For n > k > 1 a

graph G on n vertices has the property F (n, k) if every induced k-vertex subgraph of G has property

F . In that paper, the computational complexity of deciding whether G has F (n, k) is discussed

∗Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: zeac603@uvm.haifa.ac.il
†Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: raphy@math.tau.ac.il

1



for a wide range of properties and values of k. Let H be a fixed graph and let FH be the graph

property of being H decomposable. The focus of this paper is to determine the computational

complexity of FH(n, k), and provide a structure for FH(n, k) whenever this family of graphs is

easily recognizable. For ease of notation we put H(n, k) = FH(n, k).

In order to present the results we need the following notations. For a graph G = (V,E) denote

by e(G) = |E(G)| the cardinality of the edge-set of G, and denote by em(G) the number of its

edges modulo m where m > 1 is an integer. For a subset A ⊂ V denote by 〈A〉 the induced

graph of G with vertex-set A. For a graph H having h vertices with degrees d1, . . . , dh we put

gcd(H) = gcd(d1, . . . , dh). Our main tool is the following theorem which is interesting in its own

right.

Theorem 1.1 Let G be a graph on n vertices and let m ≥ 2 and n−2 ≥ k ≥ 2 be integers. Suppose

that for any two subsets A,B ⊂ V with |A| = |B| = k we have em(〈A〉) = em(〈B〉). Then, one of

the following holds:

1. G ∈ {Kn,Kn}.

2. G ∈ {K1,n−1,K1,n−1} where k mod m = 1.

3. G ∈ {Ka,n−a,Ka,n−a} where m = 2 and k mod 2 = 1.

Using Theorem 1.1 we prove:

Theorem 1.2 Let H be a fixed graph on h ≥ 3 vertices without isolated vertices.

1. If gcd(H) ≥ 2 and h ≤ k ≤ n− 1 then H(n, k) ⊂ {Kn,Kn}.

2. If gcd(H) = 1 and h ≤ k ≤ n − 2 and H has more than two edges then H(n, k) ⊂
{Kn,Kn,K1,n−1,K1,n−1}.

3. If H has two edges (i.e. H = P3 or H = 2K2) then H(n, k) ⊂ {Kn,Kn,Ka,n−a,Ka,n−a}.

Furthermore, in all of the above cases we can decide if G ∈ H(n, k) in polynomial time.

Theorem 1.2 shows that H(n, k) has an easily recognizable structure whenever k ≤ n− 2. This is

not the case for H(n, n − 1) (unless gcd(H) > 1) even for some very simple graphs H, as can be

seen from the following theorem.

Theorem 1.3 Let H = K1,k where k ≥ 3. Given a graph G on n vertices, the decision problem

”does G ∈ H(n, n− 1)” is NP-Complete.
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We wish to emphasize that Theorem 1.1 essentially solves some problems mentioned in [4, 5] whose

origin can be traced to an old open paper of Kelley and Merriell [12].

The rest of this paper is organized as follows. In Section 2 we prove Theorem 1.1 which provides

us with the structure of graphs whose k-subgraphs have the same number of edges (modulo m).

In section 3 we prove Theorem 1.2 thereby providing the structure for H(n, k) for k ≤ n− 2 and,

whenever gcd(H) > 1, also for k = n−1. In section 4 we turn to the case k = n−1 and gcd(H) = 1

and provide hardness results for some simple graphs H having this property. Section 5 contains

concluding remarks and open problems.

2 k-subgraphs with the same number of edges

In this section we prove Theorem 1.1. It is convenient to resolve the case k = n − 2 and deduce

from it the result for smaller values of k.

Theorem 2.1 Let G be a graph on n vertices and let m ≥ 2 be an integer. suppose that for any

two subsets A,B ⊂ V with |A| = |B| = n − 2 we have em(〈A〉) = em(〈B〉). Then, one of the

following holds:

1. G ∈ {Kn,Kn}.

2. G ∈ {K1,a,K1,a} where a mod m = 2.

3. G ∈ {Ka,b,Ka,b} where m = 2 and a 6= b mod 2.

Proof If n < 3 the claim is trivially true, so we assume n ≥ 3. For i = 0, . . . ,m − 1 define

Di = {v ∈ V | deg(v) mod m = i}. We need the following two lemmas.

Lemma 2.2 Each 〈Di〉 is either a complete graph or an empty graph.

Proof Assume that some Di is neither a complete nor an empty graph. Hence Di has three vertices

u, v, w such that (u, v) ∈ E but (v, w) /∈ E. But then deleting u and v from G changes the number

of edges by 2i−1 mod m while deleting v and w from G changes the number of edges by 2i mod m.

Thus em(〈V \ {u, v}〉) 6= em(〈V \ {v, w}〉), which contradicts our assumption. 2

Lemma 2.3 There are at most two distinct indices i, j such that |Di| > 0 and |Dj | > 0.

Proof Assuming the contrary, let i, j, k be distinct integers such that none of Di, Dj , Dk is an

empty set. Since every graph with at least two vertices has two vertices with the same degree,
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we may assume |Di| > 1. By Lemma 2.2 each 〈Di〉, 〈Dj〉, 〈Dk〉 is a complete graph or an empty

graph. Suppose first 〈Di〉 is complete and that for some v ∈ Di, w ∈ Dj , (v, w) ∈ E. Then with

A = V \{u, v} for some u ∈ Di and with B = V \{v, w} we get em(〈A〉) = e(G)− (2i−1) mod m 6=
e(G)−(i+j−1) mod m = em(〈B〉), a contradiction. Suppose next that 〈Di〉 is an empty graph and

for some v ∈ Di, w ∈ Dj , (v, w) /∈ E. Defining A and B as above we again have em(〈A〉) 6= em(〈B〉)
which is a contradiction. By symmetry the same conclusions hold for Di versus Dk. Hence if

〈Di〉 is complete we may assume there exist u ∈ Di, v ∈ Dj , w ∈ Dk such that (u, v) /∈ E and

(u,w) /∈ E. Putting A = V \ {u, v} and B = V \ {u,w} we get em(〈A〉) = e(G)− (i + j) mod m 6=
e(G) − (i + k) mod m = em(〈B〉). If 〈Di〉 is an empty graph we may assume there exist u ∈ Di,

v ∈ Dj , w ∈ Dk such that (u, v) ∈ E and (u,w) ∈ E. With A = V \ {u, v} and B = V \ {u,w} we

get em(〈A〉) = e(G)− (i + j − 1) mod m 6= e(G)− (i + k − 1) mod m = em(〈B〉). 2

We now return to the proof of Theorem 2.1. Suppose first that we only have one index i with

|Di| ≥ 1. Then by lemma 2.2 G ∈ {Kn,Kn}, and we are done. Otherwise, by lemma 2.3, we have

exactly two indices i, j with |Di| = a ≥ 2 and |Dj | = b ≥ 1. Observe that the proof of Lemma 2.3

implies that if 〈Di〉 is complete, then there are no edges between Di and Dj , and if Di is the empty

graph, all possible edges between Di and Dj exist. By reversing the roles of i and j in the proof

we also get that if 〈Di〉 is complete so is 〈Dj〉 and thus G = Ka ∪Kb, or else both 〈Di〉 and 〈Dj〉
are empty graphs in which case G = Ka,b.

Assume first that G = Ka∪Kb. If b ≥ 2 then for u, v ∈ Di, w, z ∈ Dj we may choose A = V \{u, v},
B = V \ {w, z}, C = V \ {u,w} and since we must have em(〈A〉) = em(〈B〉) = em(〈C〉) we must

have 2i−1 mod m = 2j−1 mod m = i+ j mod m. This is only possible if m = 2 and a 6= b mod 2.

If b = 1 Then G = Ka ∪ K1 and by the above reasoning we infer that 2i − 1 mod m = i hence

i mod m = 1 which implies a mod m = 2.

If G = Ka,b we note that if G has the property that every two n− 2-vertex subsets A and B have

em(〈A〉) = em(〈B〉) then G also has this property. Hence either G = Ka,1 with a mod m = 2 or

G = Ka,b with m = 2 and a 6= b mod 2. 2

Proof of Theorem 1.1. We apply induction on n, fixing k and m. Clearly, for n = k + 2

the claim reduces to Theorem 2.1. Also, for k = 2 the claim becomes trivial, so we assume

k ≥ 3 and n ≥ k + 3. We first show that, subject to the conditions of Theorem 1.1, G ∈
{Kn,Kn,K1,n−1,K1,n−1,Ka,n−a,Ka,n−a}. Since n − 1 ≥ k + 2, we have that for every n − 1-

subset A ⊂ V , all its k-subsets have the same number of edges modulo m. Hence by the induction

hypothesis, 〈A〉 ∈ {Kn−1,Kn−1,K1,n−2,K1,n−2,Ka′,n−1−a′ ,Ka′,n−1−a′}. An easy check shows that

G itself must belong to the family {Kn,Kn,K1,n−1,K1,n−1,Ka,n−a,Ka,n−a}. But now case 1 fol-

lows trivially, and for case 2 observe that if a k-subset A does not contain the center of the star
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K1,n−1 then em(〈A〉) = 0, while a k-subset B containing the center has em(〈B〉) = k − 1. Hence,

k mod m = 1. By taking complements (as in the last part of the proof of Theorem 2.1), the second

possibility in case 2, namely K1,n−1, holds only if k mod m = 1.

For case 3, if G = Ka,n−a, we may assume 2 ≤ a ≤ n − a. Write k = k1 + k2 where 0 < k1 < a,

0 < k2 < n − a which is possible as n ≥ k + 3, a ≥ 2 and n − a ≥ 2. Now, consider the k-

subsets A,B,C having bipartitions A = A1 ∪A2, |A1| = k1, |A2| = k2, B = B1 ∪B2, |B1| = k1− 1,

|B2| = k2+1, C = C1∪C2, |C1| = k1+1, |C2| = k2−1. By equating em(〈B〉) and em(〈C〉) we obtain

the condition 2(k1 − k2) mod m = 0. By equating em(〈A〉) and em(〈B〉) we obtain the condition

k1− k2 mod m = 1. This implies that m = 2 and k mod 2 = k1 + k2 mod 2 = k1− k2 mod 2, hence

k mod 2 = 1. The second possibility in case 3 is solved, as before, by taking complements. This

completes the proof of Theorem 1.1. 2

3 The local decomposition property

Proof of Theorem 1.2 We begin with the case gcd(H) > 1. We apply induction on n, while k

is fixed. The basis of the induction is n = k + 1. Suppose that G is neither the complete nor the

empty graph. Then there exist vertices u, v, w such that (u, v) ∈ E but (u,w) /∈ E. The degree of

u in 〈G \ v〉 differs by one from the degree of u in 〈G \ w〉. Thus in one of these graphs gcd(H)

does not divide the degree of u, and hence it is not H-decomposable. Assuming we have proved

our claim for n − 1, we prove it for n. The induction hypothesis implies that every n − 1-subset

induces Kn−1 or Kn−1. Thus it immediately follows that G ∈ {Kn,Kn}.
Suppose now that gcd(H) = 1. Since every induced k-subgraph of G has an H-decomposition it

follows that for every two k-subsets A,B ⊂ V , ee(H)(〈A〉) = ee(H)(〈B〉). Hence by Theorem 1.1 we

infer that if e(H) = 2 then G ⊂ {Kn,Kn,Ka,n−a,Ka,n−a}, otherwise G ⊂ {Kn,Kn,K1,n−1,K1,n−1}.
We now need to show that, given a graph G, we can tell in polynomial time if G ∈ H(n, k). We

show this according to the structure of G.

• If G is the empty graph Kn, every k-subgraph of it is trivially H-decomposable.

• If G = Kn then every k-subgraph is Kk, and we need to determine whether Kk is H-

decomposable. A necessary condition (which is easily checked) is e(H) |
(k
2

)
. This condition is

also sufficient if k > k0 = k0(H), by Wilson’s Theorem [14]. For k ≤ k0 the problem is solved

in constant time, as H is fixed.

• If G = K1,n−1 = Kn−1 ∪ K1 we need both Kk and Kk−1 to be H-decomposable. Each is

determined as in the previous case.
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• If G = K1,n−1 we must have H = K1,h−1 with h − 1 | n − k − 1. This is clearly a necessary

and sufficient condition which can be easily verified.

• If G = Ka,n−a and H = P3 = K1,2, we must have, by Theorem 1.1 that k mod 2 = 1. Thus

every k-subgraph of G is either the empty graph or it is complete bipartite with an even

number of edges. In both cases it is H-decomposable according to a theorem of Caro and

Schönheim [8] which states that a graph is P3 decomposable if every connected component

has an even number of edges.

• If G = Ka ∪ Kn−a, a ≤ n/2 and H = P3 we again must have k odd. Every k-subgraph of

G is a union of an even and an odd clique where, according to [8], each must have an even

number of edges in order to ensure P3 decomposition. Thus each clique must have 0, 1 mod 4

edges. This is only possible for a = 1.

• If G = Ka,n−a, a ≤ n/2 and H = 2K2 we have, as before, that k must be odd. By Caro’s

Theorem [4] a graph G is has a 2K2 decomposition iff e(G) is even, ∆(G) ≤ e(G)/2 and

G 6= K3 ∪K2. Thus, we must have n − a < k − 1, and since k ≤ n − 2, we must also have

4 ≤ a ≤ n/2. These conditions are also sufficient, by applying Caro’s Theorem.

• If G = Ka ∪Kn−a, a ≤ n/2 and H = 2K2 then by a parity argument k mod 4 = 1 since only

in this case it is true that for every choice of 0 ≤ k1 ≤ a, 0 ≤ k2 ≤ n− a, k1 + k2 = k we get

the necessary condition
(k1
2

)
+

(k2
2

)
mod 2 = 0. In view of the forbidden K3 ∪K2 either k ≥ 9,

k mod 4 = 1 and a ≤ n/2 is unrestricted, or k = 5 and a = 1. 2

As an immediate corollary of Theorem 1.2 we have:

Corollary 3.1 Let H be a fixed graph without isolated vertices. Deciding membership in H(n, k)

can be done in polynomial time for 1 ≤ k ≤ n−2. If gcd(H) > 1, deciding membership in H(n, n−1)

can also be done in polynomial time.

4 Hardness of n− 1 decomposition of stars

Corollary 3.1 leaves open the complexity of deciding membership in H(n, n− 1) for graphs having

gcd(H) = 1. The purpose of this section is to show that this problem is probably much harder, as it

is NP-Complete even for a simple family of graphs, namely the stars with three or more edges. Note

that for the star with two edges, P3, we have the Theorem of Caro and Schönheim [8], mentioned

in the previous section.
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Proof of Theorem 1.3. Our first ingredient is the construction of a (fixed) graph Hk with the

following properties:

1. Hk has 3k + 2 vertices, one vertex has degree 1 and the rest have have degree k − 1 mod k.

2. Hk has a K1,k decomposition.

Hk is constructed as follows. The vertex set of Hk is {a1, . . . , ak, b1, . . . , bk, c1, . . . , ck, u, v}. The

vertices {a1, . . . , ak, b1, . . . , bk} induce a clique K2k. It is well known (e.g. Wilson’s Theorem) that

K2k is K1,k-decomposable. We now add to Hk k copies of K1,k whose roots are the ai’s as follows.

a1 is connected to all c1, . . . , ck. ai, for i = 2, . . . , k is connected to u and v and to all c2, . . . , ck but

not to ci. Our construction shows that Hk is K1,k-decomposable. The vertex c1 has degree 1. The

vertices a1, . . . , ak have degree 3k − 1, the vertices b1, . . . , bk have degree 2k − 1, and the vertices

c2, . . . , ck, u, v have degree k − 1.

Denote by Hk,t for 1 ≤ t ≤ k−1 the union of t copies of Hk that intersect only in the unique degree

1 vertex of Hk. Thus, Hk,t has (3k+1)t+1 vertices, all vertices but one having degree k−1 mod k,

and one vertex (the ”unifier”) has degree t. Clearly, Hk,t is K1,k-decomposable.

We recall that by the theorem of Dor and Tarsi, deciding if a graph G is K1,k-decomposable (k ≥ 3

fixed) is NP-Complete. We perform a polynomial transformation from this problem to our problem

by constructing a graph G′ having the property that G has a K1,k decomposition iff the deletion of

every vertex from G′ induces a subgraph which has a K1,k decomposition. Given the input graph

G, we first test if k | e(G). If this is not the case then G is not K1,k decomposable and we are done.

So we assume k | e(G). We construct G′ as follows:

For each vertex v of G with degree t mod k we add to G a copy of Hk,k−1−t by identifying v with

the unifier vertex of a copy of Hk,k−1−t. (Note that if v already has degree k − 1 mod k we do

not attach anything to it). Note that after this modification v has degree k − 1 mod k, and the

newly added (3k + 1)(k− 1− t) vertices also have degree k− 1 mod k. We do this for every vertex

v and obtain the graph G′′, which we shall later use to define G′. Note that G′′ is constructed

in polynomial time, and has n′′ ≤ n(3k + 1)(k − 1) vertices, where n is the number of vertices of

G. Every vertex of G′′ has degree k − 1 mod k, and since G′′ is the edge-disjoint union of G and

copies of Hk, it is K1,k-decomposable if G is. We claim that the converse is also true. Consider a

K1,k-decomposition of G′′, and a copy of K1,k in such a decomposition. The edge that is adjacent

to the degree 1 vertex of Hk is a bridge in G′′ in every occurrence of Hk in G′′. Since Hk is K1,k-

decomposable it follows that each copy of K1,k in the decomposition of G′′ is either entirely within

G or entirely within one of the added copies of Hk. Hence, G is also K1,k-decomposable. Note

also that n′′ mod k = 0. To see this, note that the sum of the degrees of the vertices of G′′ must
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divide 2k and is also n′′(k − 1) mod k. The graph G′ is defined by adding to G′′ a new vertex x,

and connecting it to all vertices of G′′. Thus, x has degree 0 mod k. Put n′ = n′′ + 1.

Suppose first that G is not K1,k-decomposable. Then, G′′ is also not K1,k-decomposable, and

G′′ = G′\x is an n′−1-vertex induced subgraph of G′. Now, suppose G is K1,k-decomposable. Thus,

G′′ is also K1,k-decomposable. We claim that for each vertex v ∈ G′, G′ \ v is K1,k-decomposable.

This is clearly true if v = x. Otherwise, v ∈ G′′. We construct a K1,k-decomposition of G′ \ v from

a given decomposition of G′′ as follows. We replace each occurrence of v in the decomposition for

G′′ by x. We have used deg(v) edges of x in this way. We still remain with n′′− 1− deg(v) unused

edges of x. But n′′ mod k = 0 and deg(v) mod k = k − 1 hence k | n′′ − 1 − deg(v), and we can

decompose these edges into copies of K1,k.

Finally, we note that the H(n, n− 1) recognition problem is in NP for every graph H by providing

n distinct decompositions, one for each n− 1 induced subgraph. 2

Note that the proof of Theorem 1.3 also shows that G′ is K1,k-decomposable if G′′ is and hence if

G is. This means that the following ”intersection” problem is also NP-Complete: Given a graph

G, is it, and all its n− 1-vertex induced subgraphs, K1,k-decomposable (k ≥ 3).

5 Concluding remarks and open problems

We note that for some simple graphs H, deciding whether G is H-decomposable can be done in

polynomial time. This holds, for example, whenever every connected component of H is an edge

or when every connected component of H is a path of length 2. Although the Theorem of Dor

and Tarsi shows that H-decomposition is NP-Complete whenever H has a connected component

consisting of more than two edges, (for example if H is a triangle), it can be seen from Theorem 1.2

that H(n, n−2) is easily recognizable for all graphs, and even H(n, n−1) is, assuming gcd(H) > 1.

A triangle provides a good example where decomposition is difficult, but local decomposition is

easy, for all values of k.

It is interesting to find the complexity of deciding membership in H(n, n−1) for graphs other than

stars (for which it is NP-Complete) and for graphs other than the ones where H-decomposition is

polynomial, or that have gcd(H) > 1 (for which it is polynomial).
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