Graphs Having the Local Decomposition Property

Yair Caro * Raphael Yuster [†]

Abstract

Let H be a fixed graph without isolated vertices, and let G be a graph on n vertices. Let $2 \le k \le n-1$ be an integer. We prove that if $k \le n-2$ and every k-vertex induced subgraph of G is H-decomposable then G or its complement is either a complete graph or a complete bipartite graph. This also holds for k = n-1 if all the degrees of the vertices of H have a common factor. On the other hand, we show that there are graphs H for which it is NP-Complete to decide if every n-1-vertex subgraph of G is H-decomposable. In particular, we show that $H = K_{1,h-1}$ where h > 3, are such graphs.

1 Introduction

All graphs considered here are finite, undirected and simple. Given two graphs, H and G, where H has no isolated vertices, the graph G is H-decomposable, denoted by $H \mid G$, if the edge-set of G is the union of edge-disjoint isomorphic copies of H. We refer to the recent book of Bosak [2] as a general reference for decomposition problems.

It has been proved by Dor and Tarsi [11] that for any fixed graph H having a connected component with at least three edges, the decision problem "does H | G" is NP-Complete. On the other hand, it is shown by Caro et al. in [7, 9] that the class of decomposition problems called "Random H-decompositions" is solvable in polynomial time, and several structural results were published by Beineke, Goddard and Hamburger, and many others [3, 13]. Aigner and Triesch [1] and Caro [5, 6] raised the problem of the possibility to determine the structure of a graph G in terms of the information given on its induced subgraphs. Inspired by this question Caro and Yuster [10] considered the following: Let F be a graph property (i.e. a family of graphs). For n > k > 1 a graph G on n vertices has the property F(n, k) if every induced k-vertex subgraph of G has property F. In that paper, the computational complexity of deciding whether G has F(n, k) is discussed

^{*}Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: zeac603@uvm.haifa.ac.il [†]Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: raphy@math.tau.ac.il

for a wide range of properties and values of k. Let H be a fixed graph and let F^H be the graph property of being H decomposable. The focus of this paper is to determine the computational complexity of $F^H(n,k)$, and provide a structure for $F^H(n,k)$ whenever this family of graphs is easily recognizable. For ease of notation we put $H(n,k) = F^H(n,k)$.

In order to present the results we need the following notations. For a graph G = (V, E) denote by e(G) = |E(G)| the cardinality of the edge-set of G, and denote by $e_m(G)$ the number of its edges modulo m where m > 1 is an integer. For a subset $A \subset V$ denote by $\langle A \rangle$ the induced graph of G with vertex-set A. For a graph H having h vertices with degrees d_1, \ldots, d_h we put $gcd(H) = gcd(d_1, \ldots, d_h)$. Our main tool is the following theorem which is interesting in its own right.

Theorem 1.1 Let G be a graph on n vertices and let $m \ge 2$ and $n-2 \ge k \ge 2$ be integers. Suppose that for any two subsets $A, B \subset V$ with |A| = |B| = k we have $e_m(\langle A \rangle) = e_m(\langle B \rangle)$. Then, one of the following holds:

- 1. $G \in \{K_n, \overline{K_n}\}.$
- 2. $G \in \{K_{1,n-1}, \overline{K_{1,n-1}}\}$ where $k \mod m = 1$.
- 3. $G \in \{K_{a,n-a}, \overline{K_{a,n-a}}\}$ where m = 2 and $k \mod 2 = 1$.

Using Theorem 1.1 we prove:

Theorem 1.2 Let H be a fixed graph on $h \ge 3$ vertices without isolated vertices.

- 1. If $gcd(H) \ge 2$ and $h \le k \le n-1$ then $H(n,k) \subset \{K_n, \overline{K_n}\}$.
- 2. If gcd(H) = 1 and $h \leq k \leq n-2$ and H has more than two edges then $H(n,k) \subset \{K_n, \overline{K_n}, K_{1,n-1}, \overline{K_{1,n-1}}\}$.
- 3. If H has two edges (i.e. $H = P_3$ or $H = 2K_2$) then $H(n,k) \subset \{K_n, \overline{K_n}, K_{a,n-a}, \overline{K_{a,n-a}}\}$.

Furthermore, in all of the above cases we can decide if $G \in H(n,k)$ in polynomial time.

Theorem 1.2 shows that H(n,k) has an easily recognizable structure whenever $k \le n-2$. This is not the case for H(n, n-1) (unless gcd(H) > 1) even for some very simple graphs H, as can be seen from the following theorem.

Theorem 1.3 Let $H = K_{1,k}$ where $k \ge 3$. Given a graph G on n vertices, the decision problem "does $G \in H(n, n-1)$ " is NP-Complete.

We wish to emphasize that Theorem 1.1 essentially solves some problems mentioned in [4, 5] whose origin can be traced to an old open paper of Kelley and Merriell [12].

The rest of this paper is organized as follows. In Section 2 we prove Theorem 1.1 which provides us with the structure of graphs whose k-subgraphs have the same number of edges (modulo m). In section 3 we prove Theorem 1.2 thereby providing the structure for H(n,k) for $k \leq n-2$ and, whenever gcd(H) > 1, also for k = n-1. In section 4 we turn to the case k = n-1 and gcd(H) = 1and provide hardness results for some simple graphs H having this property. Section 5 contains concluding remarks and open problems.

2 k-subgraphs with the same number of edges

In this section we prove Theorem 1.1. It is convenient to resolve the case k = n - 2 and deduce from it the result for smaller values of k.

Theorem 2.1 Let G be a graph on n vertices and let $m \ge 2$ be an integer. suppose that for any two subsets $A, B \subset V$ with |A| = |B| = n - 2 we have $e_m(\langle A \rangle) = e_m(\langle B \rangle)$. Then, one of the following holds:

- 1. $G \in \{K_n, \overline{K_n}\}$.
- 2. $G \in \{K_{1,a}, \overline{K_{1,a}}\}$ where $a \mod m = 2$.
- 3. $G \in \{K_{a,b}, \overline{K_{a,b}}\}$ where m = 2 and $a \neq b \mod 2$.

Proof If n < 3 the claim is trivially true, so we assume $n \ge 3$. For i = 0, ..., m - 1 define $D_i = \{v \in V \mid deg(v) \mod m = i\}$. We need the following two lemmas.

Lemma 2.2 Each $\langle D_i \rangle$ is either a complete graph or an empty graph.

Proof Assume that some D_i is neither a complete nor an empty graph. Hence D_i has three vertices u, v, w such that $(u, v) \in E$ but $(v, w) \notin E$. But then deleting u and v from G changes the number of edges by $2i - 1 \mod m$ while deleting v and w from G changes the number of edges by $2i - 1 \mod m$ while deleting v and w from G changes the number of edges by $2i \mod m$. Thus $e_m(\langle V \setminus \{u, v\} \rangle) \neq e_m(\langle V \setminus \{v, w\} \rangle)$, which contradicts our assumption. \Box

Lemma 2.3 There are at most two distinct indices i, j such that $|D_i| > 0$ and $|D_j| > 0$.

Proof Assuming the contrary, let i, j, k be distinct integers such that none of D_i, D_j, D_k is an empty set. Since every graph with at least two vertices has two vertices with the same degree,

we may assume $|D_i| > 1$. By Lemma 2.2 each $\langle D_i \rangle, \langle D_j \rangle, \langle D_k \rangle$ is a complete graph or an empty graph. Suppose first $\langle D_i \rangle$ is complete and that for some $v \in D_i$, $w \in D_j$, $(v, w) \in E$. Then with $A = V \setminus \{u, v\}$ for some $u \in D_i$ and with $B = V \setminus \{v, w\}$ we get $e_m(\langle A \rangle) = e(G) - (2i-1) \mod m \neq e(G) - (i+j-1) \mod m = e_m(\langle B \rangle)$, a contradiction. Suppose next that $\langle D_i \rangle$ is an empty graph and for some $v \in D_i$, $w \in D_j$, $(v, w) \notin E$. Defining A and B as above we again have $e_m(\langle A \rangle) \neq e_m(\langle B \rangle)$ which is a contradiction. By symmetry the same conclusions hold for D_i versus D_k . Hence if $\langle D_i \rangle$ is complete we may assume there exist $u \in D_i$, $v \in D_j$, $w \in D_k$ such that $(u, v) \notin E$ and $(u, w) \notin E$. Putting $A = V \setminus \{u, v\}$ and $B = V \setminus \{u, w\}$ we get $e_m(\langle A \rangle) = e(G) - (i+j) \mod m \neq e(G) - (i+k) \mod m = e_m(\langle B \rangle)$. If $\langle D_i \rangle$ is an empty graph we may assume there exist $u \in D_i$, $v \in D_j$, $w \in D_k$ such that $(u, v) \in E$ and $(u, w) \in E$. With $A = V \setminus \{u, v\}$ and $B = V \setminus \{u, w\}$ we get $e_m(\langle A \rangle) = e(G) - (i+j-1) \mod m \neq e(G) - (i+k-1) \mod m = e_m(\langle B \rangle)$. \Box

We now return to the proof of Theorem 2.1. Suppose first that we only have one index i with $|D_i| \ge 1$. Then by lemma 2.2 $G \in \{K_n, \overline{K_n}\}$, and we are done. Otherwise, by lemma 2.3, we have exactly two indices i, j with $|D_i| = a \ge 2$ and $|D_j| = b \ge 1$. Observe that the proof of Lemma 2.3 implies that if $\langle D_i \rangle$ is complete, then there are no edges between D_i and D_j , and if D_i is the empty graph, all possible edges between D_i and D_j exist. By reversing the roles of i and j in the proof we also get that if $\langle D_i \rangle$ is complete so is $\langle D_j \rangle$ and thus $G = K_a \cup K_b$, or else both $\langle D_i \rangle$ and $\langle D_j \rangle$ are empty graphs in which case $G = K_{a,b}$.

Assume first that $G = K_a \cup K_b$. If $b \ge 2$ then for $u, v \in D_i$, $w, z \in D_j$ we may choose $A = V \setminus \{u, v\}$, $B = V \setminus \{w, z\}, C = V \setminus \{u, w\}$ and since we must have $e_m(\langle A \rangle) = e_m(\langle B \rangle) = e_m(\langle C \rangle)$ we must have $2i - 1 \mod m = 2j - 1 \mod m = i + j \mod m$. This is only possible if m = 2 and $a \ne b \mod 2$. If b = 1 Then $G = K_a \cup K_1$ and by the above reasoning we infer that $2i - 1 \mod m = i$ hence $i \mod m = 1$ which implies $a \mod m = 2$.

If $G = K_{a,b}$ we note that if G has the property that every two n - 2-vertex subsets A and B have $e_m(\langle A \rangle) = e_m(\langle B \rangle)$ then \overline{G} also has this property. Hence either $G = K_{a,1}$ with $a \mod m = 2$ or $G = K_{a,b}$ with m = 2 and $a \neq b \mod 2$. \Box

Proof of Theorem 1.1. We apply induction on n, fixing k and m. Clearly, for n = k + 2 the claim reduces to Theorem 2.1. Also, for k = 2 the claim becomes trivial, so we assume $k \geq 3$ and $n \geq k + 3$. We first show that, subject to the conditions of Theorem 1.1, $G \in \{K_n, \overline{K_n}, K_{1,n-1}, \overline{K_{1,n-1}}, K_{a,n-a}, \overline{K_{a,n-a}}\}$. Since $n - 1 \geq k + 2$, we have that for every n - 1-subset $A \subset V$, all its k-subsets have the same number of edges modulo m. Hence by the induction hypothesis, $\langle A \rangle \in \{K_{n-1}, \overline{K_{n-1}}, K_{1,n-2}, \overline{K_{1,n-2}}, K_{a',n-1-a'}, \overline{K_{a',n-1-a'}}\}$. An easy check shows that G itself must belong to the family $\{K_n, \overline{K_n}, K_{1,n-1}, \overline{K_{1,n-1}}, \overline{K_{n,n-a}}, \overline{K_{n,n-a}}\}$. But now case 1 follows trivially, and for case 2 observe that if a k-subset A does not contain the center of the star

 $K_{1,n-1}$ then $e_m(\langle A \rangle) = 0$, while a k-subset B containing the center has $e_m(\langle B \rangle) = k - 1$. Hence, k mod m = 1. By taking complements (as in the last part of the proof of Theorem 2.1), the second possibility in case 2, namely $\overline{K_{1,n-1}}$, holds only if k mod m = 1.

For case 3, if $G = K_{a,n-a}$, we may assume $2 \le a \le n-a$. Write $k = k_1 + k_2$ where $0 < k_1 < a$, $0 < k_2 < n-a$ which is possible as $n \ge k+3$, $a \ge 2$ and $n-a \ge 2$. Now, consider the ksubsets A, B, C having bipartitions $A = A_1 \cup A_2$, $|A_1| = k_1$, $|A_2| = k_2$, $B = B_1 \cup B_2$, $|B_1| = k_1 - 1$, $|B_2| = k_2 + 1$, $C = C_1 \cup C_2$, $|C_1| = k_1 + 1$, $|C_2| = k_2 - 1$. By equating $e_m(\langle B \rangle)$ and $e_m(\langle C \rangle)$ we obtain the condition $2(k_1 - k_2) \mod m = 0$. By equating $e_m(\langle A \rangle)$ and $e_m(\langle B \rangle)$ we obtain the condition $k_1 - k_2 \mod m = 1$. This implies that m = 2 and $k \mod 2 = k_1 + k_2 \mod 2 = k_1 - k_2 \mod 2$, hence $k \mod 2 = 1$. The second possibility in case 3 is solved, as before, by taking complements. This completes the proof of Theorem 1.1. \Box

3 The local decomposition property

Proof of Theorem 1.2 We begin with the case gcd(H) > 1. We apply induction on n, while k is fixed. The basis of the induction is n = k + 1. Suppose that G is neither the complete nor the empty graph. Then there exist vertices u, v, w such that $(u, v) \in E$ but $(u, w) \notin E$. The degree of u in $\langle G \setminus v \rangle$ differs by one from the degree of u in $\langle G \setminus w \rangle$. Thus in one of these graphs gcd(H) does not divide the degree of u, and hence it is not H-decomposable. Assuming we have proved our claim for n - 1, we prove it for n. The induction hypothesis implies that every n - 1-subset induces K_{n-1} or $\overline{K_{n-1}}$. Thus it immediately follows that $G \in \{K_n, \overline{K_n}\}$.

Suppose now that gcd(H) = 1. Since every induced k-subgraph of G has an H-decomposition it follows that for every two k-subsets $A, B \subset V$, $e_{e(H)}(\langle A \rangle) = e_{e(H)}(\langle B \rangle)$. Hence by Theorem 1.1 we infer that if e(H) = 2 then $G \subset \{K_n, \overline{K_n}, K_{a,n-a}, \overline{K_{a,n-a}}\}$, otherwise $G \subset \{K_n, \overline{K_n}, K_{1,n-1}, \overline{K_{1,n-1}}\}$. We now need to show that, given a graph G, we can tell in polynomial time if $G \in H(n, k)$. We show this according to the structure of G.

- If G is the empty graph $\overline{K_n}$, every k-subgraph of it is trivially H-decomposable.
- If $G = K_n$ then every k-subgraph is K_k , and we need to determine whether K_k is H-decomposable. A necessary condition (which is easily checked) is $e(H) \mid \binom{k}{2}$. This condition is also sufficient if $k > k_0 = k_0(H)$, by Wilson's Theorem [14]. For $k \le k_0$ the problem is solved in constant time, as H is fixed.
- If $G = \overline{K_{1,n-1}} = K_{n-1} \cup K_1$ we need both K_k and K_{k-1} to be *H*-decomposable. Each is determined as in the previous case.

- If $G = K_{1,n-1}$ we must have $H = K_{1,h-1}$ with h-1 | n-k-1. This is clearly a necessary and sufficient condition which can be easily verified.
- If $G = K_{a,n-a}$ and $H = P_3 = K_{1,2}$, we must have, by Theorem 1.1 that $k \mod 2 = 1$. Thus every k-subgraph of G is either the empty graph or it is complete bipartite with an even number of edges. In both cases it is H-decomposable according to a theorem of Caro and Schönheim [8] which states that a graph is P_3 decomposable if every connected component has an even number of edges.
- If $G = K_a \cup K_{n-a}$, $a \le n/2$ and $H = P_3$ we again must have k odd. Every k-subgraph of G is a union of an even and an odd clique where, according to [8], each must have an even number of edges in order to ensure P_3 decomposition. Thus each clique must have 0, 1 mod 4 edges. This is only possible for a = 1.
- If $G = K_{a,n-a}$, $a \le n/2$ and $H = 2K_2$ we have, as before, that k must be odd. By Caro's Theorem [4] a graph G is has a $2K_2$ decomposition iff e(G) is even, $\Delta(G) \le e(G)/2$ and $G \ne K_3 \cup K_2$. Thus, we must have n - a < k - 1, and since $k \le n - 2$, we must also have $4 \le a \le n/2$. These conditions are also sufficient, by applying Caro's Theorem.
- If $G = K_a \cup K_{n-a}$, $a \le n/2$ and $H = 2K_2$ then by a parity argument $k \mod 4 = 1$ since only in this case it is true that for every choice of $0 \le k_1 \le a$, $0 \le k_2 \le n-a$, $k_1 + k_2 = k$ we get the necessary condition $\binom{k_1}{2} + \binom{k_2}{2} \mod 2 = 0$. In view of the forbidden $K_3 \cup K_2$ either $k \ge 9$, $k \mod 4 = 1$ and $a \le n/2$ is unrestricted, or k = 5 and a = 1. \Box

As an immediate corollary of Theorem 1.2 we have:

Corollary 3.1 Let H be a fixed graph without isolated vertices. Deciding membership in H(n,k) can be done in polynomial time for $1 \le k \le n-2$. If gcd(H) > 1, deciding membership in H(n, n-1) can also be done in polynomial time.

4 Hardness of n-1 decomposition of stars

Corollary 3.1 leaves open the complexity of deciding membership in H(n, n-1) for graphs having gcd(H) = 1. The purpose of this section is to show that this problem is probably much harder, as it is NP-Complete even for a simple family of graphs, namely the stars with three or more edges. Note that for the star with two edges, P_3 , we have the Theorem of Caro and Schönheim [8], mentioned in the previous section.

Proof of Theorem 1.3. Our first ingredient is the construction of a (fixed) graph H_k with the following properties:

- 1. H_k has 3k + 2 vertices, one vertex has degree 1 and the rest have have degree $k 1 \mod k$.
- 2. H_k has a $K_{1,k}$ decomposition.

 H_k is constructed as follows. The vertex set of H_k is $\{a_1, \ldots, a_k, b_1, \ldots, b_k, c_1, \ldots, c_k, u, v\}$. The vertices $\{a_1, \ldots, a_k, b_1, \ldots, b_k\}$ induce a clique K_{2k} . It is well known (e.g. Wilson's Theorem) that K_{2k} is $K_{1,k}$ -decomposable. We now add to H_k k copies of $K_{1,k}$ whose roots are the a_i 's as follows. a_1 is connected to all c_1, \ldots, c_k . a_i , for $i = 2, \ldots, k$ is connected to u and v and to all c_2, \ldots, c_k but not to c_i . Our construction shows that H_k is $K_{1,k}$ -decomposable. The vertex c_1 has degree 1. The vertices a_1, \ldots, a_k have degree 3k - 1, the vertices b_1, \ldots, b_k have degree 2k - 1, and the vertices c_2, \ldots, c_k, u, v have degree k - 1.

Denote by $H_{k,t}$ for $1 \le t \le k-1$ the union of t copies of H_k that intersect only in the unique degree 1 vertex of H_k . Thus, $H_{k,t}$ has (3k+1)t+1 vertices, all vertices but one having degree $k-1 \mod k$, and one vertex (the "unifier") has degree t. Clearly, $H_{k,t}$ is $K_{1,k}$ -decomposable.

We recall that by the theorem of Dor and Tarsi, deciding if a graph G is $K_{1,k}$ -decomposable ($k \ge 3$ fixed) is NP-Complete. We perform a polynomial transformation from this problem to our problem by constructing a graph G' having the property that G has a $K_{1,k}$ decomposition iff the deletion of every vertex from G' induces a subgraph which has a $K_{1,k}$ decomposition. Given the input graph G, we first test if $k \mid e(G)$. If this is not the case then G is not $K_{1,k}$ decomposable and we are done. So we assume $k \mid e(G)$. We construct G' as follows:

For each vertex v of G with degree $t \mod k$ we add to G a copy of $H_{k,k-1-t}$ by identifying v with the unifier vertex of a copy of $H_{k,k-1-t}$. (Note that if v already has degree $k-1 \mod k$, and the not attach anything to it). Note that after this modification v has degree $k-1 \mod k$, and the newly added (3k+1)(k-1-t) vertices also have degree $k-1 \mod k$. We do this for every vertex v and obtain the graph G'', which we shall later use to define G'. Note that G'' is constructed in polynomial time, and has $n'' \leq n(3k+1)(k-1)$ vertices, where n is the number of vertices of G. Every vertex of G'' has degree $k-1 \mod k$, and since G'' is the edge-disjoint union of G and copies of H_k , it is $K_{1,k}$ -decomposable if G is. We claim that the converse is also true. Consider a $K_{1,k}$ -decomposition of G'', and a copy of $K_{1,k}$ in such a decomposition. The edge that is adjacent to the degree 1 vertex of H_k is a bridge in G'' in every occurrence of H_k in G''. Since H_k is $K_{1,k}$ decomposable it follows that each copy of $K_{1,k}$ in the decomposition of G'' is either entirely within G or entirely within one of the added copies of H_k . Hence, G is also $K_{1,k}$ -decomposable. Note also that $n'' \mod k = 0$. To see this, note that the sum of the degrees of the vertices of G'' must divide 2k and is also $n''(k-1) \mod k$. The graph G' is defined by adding to G'' a new vertex x, and connecting it to all vertices of G''. Thus, x has degree $0 \mod k$. Put n' = n'' + 1.

Suppose first that G is not $K_{1,k}$ -decomposable. Then, G'' is also not $K_{1,k}$ -decomposable, and $G'' = G' \setminus x$ is an n'-1-vertex induced subgraph of G'. Now, suppose G is $K_{1,k}$ -decomposable. Thus, G'' is also $K_{1,k}$ -decomposable. We claim that for each vertex $v \in G'$, $G' \setminus v$ is $K_{1,k}$ -decomposable. This is clearly true if v = x. Otherwise, $v \in G''$. We construct a $K_{1,k}$ -decomposition of $G' \setminus v$ from a given decomposition of G'' as follows. We replace each occurrence of v in the decomposition for G'' by x. We have used deg(v) edges of x in this way. We still remain with n'' - 1 - deg(v) unused edges of x. But $n'' \mod k = 0$ and $deg(v) \mod k = k - 1$ hence $k \mid n'' - 1 - deg(v)$, and we can decompose these edges into copies of $K_{1,k}$.

Finally, we note that the H(n, n-1) recognition problem is in NP for every graph H by providing n distinct decompositions, one for each n-1 induced subgraph. \Box

Note that the proof of Theorem 1.3 also shows that G' is $K_{1,k}$ -decomposable if G'' is and hence if G is. This means that the following "intersection" problem is also NP-Complete: Given a graph G, is it, and all its n-1-vertex induced subgraphs, $K_{1,k}$ -decomposable $(k \ge 3)$.

5 Concluding remarks and open problems

We note that for some simple graphs H, deciding whether G is H-decomposable can be done in polynomial time. This holds, for example, whenever every connected component of H is an edge or when every connected component of H is a path of length 2. Although the Theorem of Dor and Tarsi shows that H-decomposition is NP-Complete whenever H has a connected component consisting of more than two edges, (for example if H is a triangle), it can be seen from Theorem 1.2 that H(n, n-2) is easily recognizable for all graphs, and even H(n, n-1) is, assuming gcd(H) > 1. A triangle provides a good example where decomposition is difficult, but local decomposition is easy, for all values of k.

It is interesting to find the complexity of deciding membership in H(n, n-1) for graphs other than stars (for which it is NP-Complete) and for graphs other than the ones where *H*-decomposition is polynomial, or that have gcd(H) > 1 (for which it is polynomial).

References

 M. Aigner and E. Triesch, *Realizability and uniqueness in graphs*, Discrete Mathematics 136 (1994), 3-20.

- [2] J. Bosak, Decomposition of Graphs, Kluner Academic, Dordrecht 1990.
- [3] L. W. Beineke, W. Goddard and P. Hamburger, *Random packings of graphs*, Discrete Mathematics, in press.
- [4] Y. Caro, Chromatic decomposition of a graph, Ars Combinatoria 21 (1986), 29-32.
- Y. Caro, On graphs with prescribed subgraphs of order k and a theorem of Kelly and Merriell, Czechoslovak Mathematical Journal 44 (1994), 623-629.
- [6] Y. Caro, On graphs determined by their k subgraphs, Ars Combinatoria, to appear.
- [7] Y. Caro, J. Rojas and S. Ruiz, A forbidden subgraphs characterization and a polynomial time algorithm for randomly decomposable graphs, Czechoslovak Mathematical Journal 46 (1996), 413-419.
- [8] Y. Caro and J. Schönheim, Decomposition of trees into isomorphic subtrees, Ars Combinatoria 9 (1980), 119-130.
- Y. Caro, A. Sebo and M. Tarsi, *Recognizing greedy structures*, Journal of Algorithms 20 (1996), 137-156.
- [10] Y. Caro and R. Yuster, *Recognizing global occurrence of local properties*, submitted.
- [11] D. Dor and M. Tarsi, Graph decomposition is NPC, a complete proof of Holyer's conjecture, Proceedings of the 20th ACM Symposium on the Theory of Computing, ACM Press (1992), 252-263.
- [12] P. Kelley and D. Merriell, A class of graphs, Transactions of the American Mathematical Society 96 (1960), 488-492.
- [13] D. P. Sumner, Randomly Matchable Graphs, Journal of Graph Theory 3 (1979), 183-186.
- [14] R. M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, Congressus Numerantium XV (1975), 647-659.